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This study proposes a new mechanism that can lead to layering or convection from the
finite amplitude perturbation acting on the double diffusive convection with uniform
background shear. We focus on the double diffusive convection in the diffusive regime
with the cold fresh water laying above the warm salty water. We demonstrate that,
although the unperturbed system is linearly stable, the finite amplitude perturbation can
trigger the initial flow motions which subsequently obtain energy from the gravitational
potential energy and from the uniform background shear, and evolve to layering or
convection. By using the linear stability analysis for the initial growth stage and the
energy analysis for the following transitional stage, the critical Richardson number can
be predicted theoretically. Here the Richardson number measures the relative strength of
stratification to the background shear. The dominant wavenumbers and the growth rates
of the corresponding modes given by linear theory agree well with the two-dimensional
direct numerical simulations, and so does the critical Richardson number predicted by the
theoretical model. The layering state is dominated by the double diffusion process, while
the convection state at smaller Richardson number exhibits stronger influences from shear
and generates smaller heat and salinity fluxes. The theoretical model is further applied to
the parameter range which is relevant to the real oceanic environments and reveals that for
the typical density ratio observed in the staircase regions in the Arctic Ocean, the current
mechanism can lead to layering for relatively weak shear.
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1. Introduction

The density of seawater in Earth’s oceans mainly depends on both temperature and
salinity, and the molecular diffusivities of the two components differ by two orders of
magnitude. When the vertical gradients of the two components induce opposing density
stratification, double diffusive convection (DDC) can occur even when the total density
gradient is stable (Stern 1960). Two different types of DDC develop in different regions
of the oceans. In (sub-)tropical oceans, warm salty water usually overlies cold fresh water,
and DDC is usually of the salt-finger type (Kunze 2003; Schmitt 2003). Meanwhile, in
the polar regions both temperature and salinity increase with depth in the upper part of
water body and diffusive DDC is widespread (Kelley et al. 2003). Remarkably, both types
of DDC could lead to a large-scale structure in the ocean known as the thermohaline
staircase, characterized by alternating appearance of interfaces with high temperature and
salinity gradients and well-mixed layers in the vertical direction (Schmitt et al. 2005;
Timmermans et al. 2008). Although there is abundant observational evidence that the
DDC process exists in these high-gradient interfaces (e.g. see Schmitt 1981; Kunze,
Williams & Schmitt 1987; Padman & Dillon 1987; Toole et al. 2011), the origin of
thermohaline staircases has not been fully explained. The DDC and its related staircase
structures transport temperature and salinity against the density gradient, thus playing an
important role in oceanic diapycnal mixing and global climate change (Johnson & Kearney
2009; Lee et al. 2014; Timmermans & Marshall 2020). Therefore, it is of great interest
to investigate the dynamics of DDC and the associated thermohaline staircases in the
ocean.

In the present study we focus on the diffusive type of DDC, where the temperature
gradient provides an unstable buoyancy force while the salinity gradient stabilizes the
system. A key parameter governing the instability of DDC is the density ratio, which for
the diffusive DDC represents the ratio of the density variation induced by the salinity
difference Δs to that by the temperature difference Δθ , namely, Λ = (βsΔs)/(βθΔθ).
Here βs and βθ are the positive coefficients of density variation due to changes in salinity
and temperature, respectively. Linear instability analyses reveal that the linearly unstable
modes of diffusive DDC can develop for 1 < Λ < 1.14 (Walin 1964; Veronis 1965).
However, field observations in the Arctic Ocean indicate that the density ratio usually
falls within the range of 2 < Λ < 10 for the regions with diffusive staircases (Guthrie, Fer
& Morison 2015; Shibley et al. 2017). This significant discrepancy between the prediction
of linear theory and the field measurements has been one of the major puzzles regarding
the dynamics of the diffusive DDC and the staircases.

Compared with field observations, the very narrow range of Λ predicted by linear
instability analyses implies that the diffusive DDC driven solely by an unstable
temperature gradient and a stable salinity gradient is probably not enough to fully
explain real oceanic staircases. Therefore, other processes have been included to develop
theoretical models for staircase formation. The intrusion theory considers horizontal
gradients of temperature and salinity, providing one mechanism for layering (Merryfield
2000; Bebieva & Timmermans 2017). By using the parameterization of turbulent diapycnal
diffusivities, it has been shown that layering and staircases can spontaneously develop
(Ma & Peltier 2022a,b). Recent studies also reveal that by adding background shear, the
parameter range for linear instability is greatly extended compared with that for the pure
DDC configuration (Radko 2016). It should be noted that since DDC represents one of the
small-scale processes in the ocean, shear induced by flows at larger scales is abundant in
the real oceanic environment.
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Diffusive DDC with a uniform background shear

Although thermohaline-shear instability can occur over a much larger range of Λ
compared with pure DDC, the instability behaviours strongly depend on the actual form
of shear. Radko (2016) introduced a non-uniform shear with sinusoidal velocity profiles
and revealed that the system can be unstable up to Λ of around 10. For time-dependent
shear with sinusoidal velocity profiles, layering occurs for shear oscillating at the buoyancy
frequency, and shear with larger wavelengths is more effective in exciting flow instability
(Brown & Radko 2019). In these studies, the vertical characteristic length scale, i.e. the
wavelength, is comparable to the height of the layers developed. In the Arctic Ocean,
the typical height of layers in thermohaline staircases is of the order of a metre (Shibley
et al. 2017), and the characteristic length of shear induced by mesoscale and large-scale
motions can be much larger than the typical scales of staircases. For these situations, DDC
with uniform shear may be a more realistic model. However, a recent study shows that
steady and uniform shear cannot trigger the development of linearly unstable modes, while
temporally varying shear is required for linear instability at 1.5 < Λ < 4 (Radko 2019).

Similar results for uniform shear have been obtained in our previous work, see Yang
et al. (2022) (YVLC22). In YVLC22 we employed a wall-bounded model where a fluid
layer is vertically bounded by two horizontal plates across which constant temperature
and salinity differences are introduced. For the diffusive DDC configuration, the bottom
plate has higher temperature and salinity. Linear theory indicates that a uniform shear
does not extend the parameter range of linear instability. However, even when the system
is linearly stable, a finite-amplitude perturbation to the initial temperature and salinity can
successfully trigger flow motions that sustain and evolve into layers (Yang et al. 2022).
For fixed Λ = 2 and shear with moderate strength, the transport behaviours agree with
the theory of Linden & Shirtcliffe (1978) which proposed that the vertical transport of
the high-gradient interfaces is dominated by the diffusion process. It is worth mentioning
that in their direct numerical simulations (DNS), YVLC22 was able to use similar Prandtl
and Schmidt numbers as seawater in the polar region with the help of the highly efficient
in-house code (Ostilla Mónico et al. 2014). Still, due to the extremely fine meshes required
by the salinity field with a Schmidt number of the order 1000 and the very long time
required for the flow evolution, only two-dimensional (2-D) DNS is feasible in the study
of YVLC22.

Nevertheless, one major limitation of YVLC22 is that only a small group of parameters
were investigated using 2-D DNS. In particular, the density ratio is fixed at Λ = 2, and
the Richardson number is fixed at Ri = 1, respectively. Here, the Richardson number is
defined as the ratio between the free-fall velocity given by the destabilizing temperature
difference and the horizontal velocity difference between the two plates. Additionally, a
detailed theoretical explanation of the flow evolution from the initially finite amplitude
perturbation to the final layering state is lacking. Therefore, the aim of the present study is
twofold. First, we will extend the parameter range in our 2-D DNS, particularly over a wide
range of Ri. Using the DNS results, we will provide a more comprehensive understanding
of vertical transport. Second, by using linear instability analysis and the energy-analysis
method, we aim to clarify the physical mechanisms that dominate the different stages of
flow evolution and identify the critical parameters.

The structure of this paper is as follows. In § 2, we introduce the governing equations and
provide details of the numerics. In § 3, we present the DNS results, including the various
stages of flow development and statistical analysis of the final stage. Then, § 4.1 focuses
on the linear stability analysis of the initial stage, and § 4.2 focuses on the energy analysis
for the transitional stage. Finally, we present the conclusions in § 5.
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2. Problem formulation

2.1. Governing equations
We consider a 2-D fluid layer which is vertically bounded by two parallel plates with
a separation of H. The two boundaries have fixed temperature θ∗ and salinity s∗
with constant differences of Δθ = θ∗

z∗=0 − θ∗
z∗=H and Δs = s∗

z∗=0 − s∗
z∗=H , respectively.

Hereafter, the asterisk ∗ denotes dimensional forms of the variables. The fluid density
is assumed to be linearly dependent on both the temperature and salinity as ρ∗ =
ρ∗

0 (1 − βθθ
∗ + βss∗), in which θ∗ = T∗ − T∗

z∗=H and s∗ = S∗ − S∗
z∗=H , respectively.

A background shear flow u∗
b is separated from the velocity field with a constant shear rate

As, i.e. u∗
b = As(z∗/H − 1/2). Figure 1 shows the flow configuration and the corresponding

boundary conditions. Within the Oberbeck–Boussinesq approximation, the dimensional
equations for the velocity deviation u∗ = (u∗,w∗) from the linear shearing velocity u∗

b,
the temperature θ∗ and the salinity s∗ read

∂tu∗ + u∗∂xu∗ + w∗∂zu∗ + u∗
b∂xu∗ + w∗∂zu∗

b = −∂xp∗ + ν∇2u∗, (2.1a)

∂tw∗ + u∗∂xw∗ + w∗∂zw∗ + u∗
b∂xw∗ = −∂zp∗ + ν∇2w∗ + g(βθθ∗ − βss∗), (2.1b)

∂tθ
∗ + u∗∂xθ

∗ + w∗∂zθ
∗ + u∗

b∂xθ
∗ = κθ∇2θ∗, (2.1c)

∂ts∗ + u∗∂xs∗ + w∗∂zs∗ + u∗
b∂xs∗ = κs∇2s∗, (2.1d)

∂xu∗ + ∂zw∗ = 0. (2.1e)

Here u∗ is the streamwise (horizontal) velocity, w∗ is the vertical velocity, p∗ is the
kinematic pressure, g is the gravitational acceleration, κθ is the thermal diffusivity and κs
is the salinity diffusivity. For the velocity u∗ we apply the stress-free and non-penetrative
conditions at the top and bottom plates, while in the horizontal direction the periodic
condition is used for all variables. Therefore, the boundary conditions are as follows:

∂zu∗ = 0, w∗ = 0, θ∗ = Δθ, s∗ = Δs, at z∗ = 0, (2.2a)

∂zu∗ = 0, w∗ = 0, θ∗ = 0, s∗ = 0, at z∗ = H. (2.2b)

We non-dimensionalize the governing equations (2.1) and the boundary conditions (2.2)
using the domain height H, the scalar differences Δθ and Δs, and the free-fall velocity√

gβθΔθH. In addition, the stream functionψ can be introduced as (u,w) = (∂zψ,−∂xψ).
The continuity equation (2.1e) is then satisfied automatically and the momentum equations
reduce to

∂t∇2ψ = ∂xψ∂z∇2ψ − ∂zψ∂x∇2ψ

− z − 1/2√
Ri

∂x(∇2ψ)+
√

Pr√
Ra

∇4ψ − (∂xθ −Λ∂xs), (2.3a)

∂tθ = ∂xψ∂zθ − ∂zψ∂xθ − z − 1/2√
Ri

∂xθ + 1√
RaPr

∇2θ, (2.3b)

∂ts = ∂xψ∂zs − ∂zψ∂xs − z − 1/2√
Ri

∂xs +
√

Pr√
RaSc

∇2s. (2.3c)

The non-dimensional parameters in the above equations are defined as

Pr = ν

κθ
, Sc = ν

κs
, Ra = gβθΔθH3

κθν
, Λ = βsΔs

βθΔθ
, Ri = gβθΔθH

A2
s

. (2.4a–e)
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Hg

ub∗

x∗

z∗

∂zu∗ = 0, w∗ = 0, θ∗ = 0, s∗ = 0

∂zu∗ = 0, w∗ = 0, θ∗ = Δθ, s∗ = Δs

Figure 1. Schematic illustration of the 2-D flow domain, the coordinate system, the uniform background
shearing and the boundary conditions.

In the current study, the Prandtl number Pr and the Schmidt number Sc are set to
10 and 1000, respectively, which are typical values found in the polar oceans. The
corresponding diffusivity ratio is τ = κs/κθ = 0.01. The thermal Rayleigh number Ra
measures the strength of the destabilizing buoyancy component. The density ratio Λ
indicates the relative strength of the stabilizing buoyancy component due to salinity.
Oceanic observations have found that Λ is usually within the range of [2, 10] in the
diffusive DDC region (Guthrie et al. 2015; Shibley et al. 2017). The reciprocal of
the Richardson number Ri measures the strength of the background shear relative to
the driving buoyancy force induced by temperature difference. Note that a different
Richardson number can be defined based on the total density difference as

Riρ = g(βsΔs − βθΔθ)H
A2

s
= Ri · (Λ− 1). (2.5)

Under the current dimensionless form, the boundary conditions at two plates read

∂xψ = 0, ∂2
zψ = 0, θ = 1, s = 1, at z = 0; (2.6a)

∂xψ = 0, ∂2
zψ = 0, θ = 0, s = 0, at z = 1. (2.6b)

To measure the global transport properties, the key response parameters are the Nusselt
numbers for salinity and temperature, respectively, and the vertical Reynolds numbers,
which are defined as

Nus = 〈w∗s∗〉 − κs〈∂zs∗〉
κsΔsH−1 , Nuθ = 〈w∗θ∗〉 − κθ 〈∂zθ

∗〉
κθΔθH−1 , Rez = w∗

rmsH
ν

. (2.7a–c)

Here, the angle brackets 〈·〉 denote averaging over the entire domain. The
root-mean-square (r.m.s.) value of the corresponding velocity magnitude computed over
the entire domain is denoted by the subscript ‘rms’. Another important parameter in the
DDC system is the total density flux ratio, defined as follows:

γ = βs(〈w∗s∗〉 − κs〈∂zs∗〉)
βθ (〈w∗θ∗〉 − κθ 〈∂zθ∗〉) = Nus

Nuθ
·Λ · τ, (2.8)

which measures the ratio of the density fluxes due to salinity and heat. In the diffusive
regime of DDC, the flux ratio is less than unity, indicating that the density flux is
dominated by temperature.
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2.2. Numerical settings
We numerically solve (2.3a)–(2.3c) using our in-house code, which has been widely
employed in our previous sheared DDC simulations (Li & Yang 2022; Yang et al. 2022)
and other works (Ostilla Mónico et al. 2014; Yang, Verzicco & Lohse 2016). Basically the
second-order finite-difference scheme and the fractional time step method are used, and a
special multiple-grid method is employed to solve the velocity and temperature fields on
a base mesh and the salinity field on a refined mesh, respectively (Ostilla-Mónico et al.
2015). The initial fields are set to linear scalar distributions with additional sinusoidal
perturbations, i.e.

ψ(t = 0) = 0, θ(t = 0) = 1 − z − δ sin(ki
zz), s(t = 0) = 1 − z − δ sin(ki

zz),
(2.9a–c)

in which δ and ki
z are the amplitude and the vertical wavenumber of the perturbations,

respectively. Small random disturbances are added to trigger the flow. Numerical
experiments suggest that the layering state will evolve from the initial field (2.9a–c) if
an initially unstable density stratification exists, i.e.

∂zρ = (Λ− 1)(−1 − ki
zδ cos(ki

zz)) > 0, at some z. (2.10)

For Λ > 1, the condition (2.10) is equivalent to

δ > 1/ki
z. (2.11)

In the present study, three different combinations of (Ra,Λ) are investigated: (106, 2);
(106, 3); (107, 2). The aspect ratio of the flow domain is fixed at Γ = 4. For a proper
resolution, we always ensure that the base mesh size is smaller than both the Kolmogorov
scale and the Batchelor scale of the temperature field, and that the refined mesh size is
smaller than the Batchelor scale of the salinity field. Due to the small diffusivity of the
salinity field and the corresponding sharp interfaces, very fine resolutions are needed,
restricting all simulations to 2-D. Nevertheless, our previous study YVLC22 reveals
that both 2-D and three-dimensional (3-D) simulations exhibit very similar evolution of
flow morphology. For each combination of (Ra,Λ), simulations are carried out with
different Ri values. Specifically, Ri gradually increases from a small value, which is
still larger than the critical value 0.25 of shear instability, to a large value at which the
initial perturbations diminish and the flow reaches the laminar and conductive states.
As in YVLC22, (δ, ki

z) = (0.05, 12π) for Ra = 106 and (0.025, 16π) for Ra = 107. The
numerical details are summarized in table 1. The cases that reach the laminar state are
indicated by Nus = Nuθ = 1 and Rez = 0. For these cases, larger amplitude δ is also tested,
and the same laminar state is obtained. Therefore, this final state is unlikely to be affected
by the strength of the initial perturbation.

In the following we will first discuss the evolution of flow morphology and
corresponding transport properties. Then, we will utilize linear instability analysis to
explain the emergence of initial vortices. Finally, we will discuss the conditions under
which the vortical state induced by the initial perturbations can be sustained. The
predictions of theoretical analyses will be compared with the numerical results of DNS.

3. The flow morphology and mean statistics

3.1. Flow evolution and different final states
As reported in YVLC22, for fixed Λ = 2 and Ri = 1, multiple layers of billow vortices
emerge from the initial perturbations and stay in a very organized pattern. These vortices
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Diffusive DDC with a uniform background shear

Ra Λ Ri Nx(mx) Nz(mz) Kw
x tf ts Nl Nus Nuθ Rez γ̄ Λ̄in

106 2 0.3 768(4) 384(3) 3 1200 4000 2 2.88 1.63 3.94 0.035 3.5
106 2 0.5 768(4) 384(3) 5 10 000 10 000 1 2.66 1.45 2.63 0.037 3.7
106 2 1 768(4) 384(3) 7 28 000 3000 1 18.5 6.19 9.84 0.060 6.0
106 2 1.5 768(4) 384(3) 7 2100 13 000 2 15.5 4.08 12.4 0.076 7.6
106 2 2 768(4) 384(3) 7 2500 4000 2 18.0 4.36 10.4 0.083 8.3
106 2 3 768(4) 384(3) 8 300 100 0 1 1 0 0.020 2.0
106 2 4 768(4) 384(3) 10 200 100 0 1 1 0 0.020 2.0
106 3 0.3 768(4) 384(3) 5 8500 5000 1 1.55 1.34 3.83 0.035 3.5
106 3 0.5 768(4) 384(3) 7 35 000 10 000 1 3.85 2.87 10.6 0.040 4.0
106 3 0.7 768(4) 384(3) 8 52 000 5000 1 5.29 3.51 13.1 0.045 4.5
106 3 0.8 768(4) 384(3) 9 400 100 0 1 1 0 0.030 3.0
106 3 1 768(4) 384(3) 10 200 100 0 1 1 0 0.030 3.0
107 2 0.3 1440(4) 720(3) 4 15 000 5000 2 5.08 2.27 20.6 0.045 4.5
107 2 0.5 1440(4) 720(3) 5 25 000 2000 1 5.95 2.62 12.3 0.045 4.5
107 2 1 1440(4) 720(3) 8 7000 2000 3 21.4 4.75 27.6 0.090 9.0
107 2 2 1440(4) 720(3) 11 11 000 1000 3 19.5 4.66 20.1 0.084 8.4
107 2 3 1440(4) 720(3) 12 12 000 1000 3 25.8 5.37 22.0 0.096 9.6
107 2 4 1440(4) 720(3) 14 1000 100 0 1 1 0 0.020 2.0

Table 1. Numerical details for all the cases. Columns from left to right are as follows: the temperature Rayleigh
number; the density ratio; the Richardson number; the resolutions with refined factors in the horizontal and
vertical directions; the max wavenumber for the domain width in the transitional stage; the simulation time
when the flow reaches the final stage; the duration of the sampling period in the final stage; the number of
layers in the layering stage; the statistical salinity and temperature Nusselt numbers; the statistical vertical
Reynolds number; the statistical total flux ratio; the interfacial density ratio.

travel horizontally with the background shear velocity and merge with each other. Finally,
the flow enters the layering state with convection layers separated by sharp interfaces.
This process is illustrated here by figure 2 which depicts the typical density fields for
(Ra,Λ,Ri) = (106, 2, 2) and (107, 2, 2). As shown in figure 2(a), multiple layers of
vortices appear, and the number of layers is determined by the vertical wavenumber ki

z of
the initial perturbation (2.9a–c). At this moment, we consider the flow to be in the initial
stage. As the flow progresses into the second stage, which we refer to as the transitional
stage, these vortices grow in size and begin merging both horizontally and across layers,
as seen in figure 2(b). Eventually, the vortices disappear and layered structures dominate,
as shown in figures 2(c) and 2(d). We refer to this stage as the final stage. The number of
layers in the final stage varies for different parameters, but it is unlikely to be determined by
a large ki

z. For even higher value of Ra = 108, YVLC22 reports six layers exist. Similarly,
Radko (2016) demonstrates that the layer thickness is not controlled by the vertical shear
scale, which is in a sinusoidal form. All these findings imply the existence of an intrinsic
length scale dictating the layer size, which is independent of the initial perturbations or
the background forces.

The above evolution process can be quantitatively illustrated by figure 3, which plots the
time history of the global transport quantities and the dominant horizontal wavenumber for
the case with Ra = 106,Λ = 2 and Ri = 2. The global quantities include the two Nusselt
numbers Nuθ and Nus, and the Reynolds number Rez defined by the vertical r.m.s. velocity.
The dominant horizontal wavenumber kx is extracted by conducting the fast Fourier
transform (FFT) of the instantaneous density field and determining the wavenumber with
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1.0

(b)(a)

(d )(c) 0.5

0

)

Figure 2. The instantaneous density fields for the case with Ra = 106,Λ = 2,Ri = 2 at (a) t = 40,
(b) t = 400 and (c) t = 4000. (d) The instantaneous density field for the case with Ra = 107,Λ = 2,Ri = 2 at
t = 12 000.
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(i) (ii)

Figure 3. The time evolution of (a) the vertical Reynolds number, (b) the temperature Nusselt number,
(c) the salinity Nusselt number and (d) the horizontal wavenumber (rescaled by Γ/2π) for the case with
Ra = 106,Λ = 2,Ri = 2. Panels (a i, b i, c i, d i) show the zoom-in plots of the initial period. The black, yellow
and blue lines denote the initial, transitional and final stages, respectively.

the maximal mode amplitude. Instead of kx, we plot the rescaled wavenumber

Kx = Γ

2π
kx, (3.1)

which is equal to the number of wave patterns within the width of flow domain.
Three stages can be identified and displayed by different colours in figure 3. Starting

from the initial field, linear instability occurs due to the initially unstable density
stratification. During this stage, both Nusselt numbers and Reynolds number increase until
they saturate, as the nonlinear effect becomes strong enough. This can be observed in the
segment marked by the black lines in figure 3(a–d). The strong nonlinear effect arises
from the interactions between large vortices at different heights, hindering their continued
growth, as shown in figure 2(b). As will be shown below, the dominant wavenumber Kx
is determined by the linear instability mechanism. As the flow enters the transitional
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stage, all three global quantities fluctuate around certain values, while the dominant
wavenumber Kx remains constant. As the flow reaches the end of this stage and transitions
towards the final stage, the Reynolds number Rez starts to increase, and fluctuations of
the global quantities become stronger. Meanwhile, the horizontal dominant wavenumber
Kx gradually decreases, indicating that the vortices grow in size and merge with each
other. Note that this merging is different from that in pure Kelvin–Helmholtz instability
where the vortices merge in pairs. The transitional stage is marked by the yellow colour in
figure 3.

The final stage is characterized by a dominant horizontal wavenumber Kx equal to
unity. For the case shown in figure 3 with Ra = 106, Λ = 2 and Ri = 2, the final state
is characterized by two layers separated by one sharp internal interface, as depicted in
figure 2(c). For the case with the same Λ and Ri but a higher Rayleigh number Ra = 107,
three layers with two internal interfaces exist in the final state, as seen in figure 2(d).
We refer to this type of final state as the layering state, which has at least one internal
interface and more than one layer. During the layering state, the global transport quantities
exhibit significant fluctuations, especially the salinity Nusselt number. These fluctuations
are mainly caused by the spatial oscillation of the internal interfaces.

Two other types of final stages with Kx = 1 are also obtained for different parameters.
One is the convection type, where the entire bulk consists of only one convection layer. The
other is the laminar state in which no flow motions other than the background shear can
be sustained. We distinguish between the layering and the convection states because the
latter does not have internal interfaces, and the convection layer directly interacts with the
boundary layers adjacent to the two plates. Denoting the number of layers at the final state
by Nl, the layering state has Nl > 1, the convection state has Nl = 1 and the laminar state
has Nl = 0. We also mark the time tf when the dominant wavenumber Kx first decreases
to unity and the flow reaches the final state. Both Nl and tf are listed in table 1.

The relationships between Nl, tf and Ri are complex. For Λ = 2, as Ri increases or the
background shear weakens, Nl first decreases to unity and then increases for moderate Ri.
When Ri is large enough, Nl suddenly decreases to zero without any layering state being
observed. ForΛ = 3, however, the layering state is absent for all the cases considered here;
that is, Nl = 1 for small Ri and Nl = 0 for large Ri. These unusual behaviours are due to
the fact that the layering state can be sustained by either the shear or the DDC motions,
as we will demonstrate in § 3.2. The time tf varies dramatically for different types of final
stages. When the final state is the laminar type, all the initial flow motions decay very
quickly, resulting in a small tf of approximately 102. In contrast, the time needed for the
layering state to be established is relatively longer, usually reaching the order of 103. For
the convection state, tf is extremely large compared with the adjacent layering or laminar
cases. For example, tf = 28 000 for Ra = 106,Ri = 1,Nl = 1, while tf = 2100 for Ra =
106,Ri = 1.5,Nl = 2. In figure 4, we plot the time history of the dominant wavenumber Kx
and the spatially averaged density profile for the former case. The system remains in a state
with Kx ≈ 3 for a very long time period, exceeding 20 000 time units. The bulk consists
of two strongly oscillating interfaces separating three layers. The distance between the
two interfaces gradually increases, and the top and bottom layers diminish within the time
period 17 000 < t < 30 000, after which the bulk reaches the final convection state. This
long-term middle stage with Kx > 1 appears in all cases with Nl = 1, resulting in large tf .
This phenomenon seems to occur when the shear is competitive with the stable density
stratification, namely Riρ ∼ 1.

Notice that the time scale used here for non-dimensionalization is t1 = H/
√

gβθΔθH,
which is much shorter than that of the long-term transitional stage. Another relevant
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Figure 4. The time evolution of (a) the horizontal wavenumber (rescaled by Γ/2π) and (b) the density mean
profile for the case with Ra = 106,Λ = 2,Ri = 1. In (a) the yellow, blue, and red lines denote the transitional
stage, the layering stage and the special middle stage for this case, respectively. The transient initial stage is not
shown in the figure. In (b) the instantaneous salinity fields at t = 10 000 and t = 35 000 are shown below.

time scale is t2 = H2/κθ , which characterizes the time for temperature diffusing across
the whole domain. The ratio of the two time scales is t2/t1 = √

RaPr. For Ra =
107,Pr = 10, this yields t2 = 10 000t1, which is of the same order of magnitude as
the duration of the transitional stage. This suggests to some extent that the long-term
evolution of the flow field during the transitional stage is dominated by temperature
diffusion. Similar to YVLC22, we calculate the corresponding dimensional quantities
for the ocean environment. We choose βθ = 6.3 × 10−5 K−1, κθ = 1.4 × 10−7 m2 s−1,
g = 9.8 m s−2 and Δθ = 0.05 K, which is the typical value of the temperature difference
across an interface in the Arctic Ocean (Shibley et al. 2017). Then, for Ra = 106, H ≈
0.2 m and t2 ≈ 3 days; for Ra = 107, H ≈ 0.4 m and t2 ≈ 13 days, respectively. The
longest simulation time in our present work is approximately 47 days (Ra = 106,Λ =
3,Ri = 0.7). Considering that the variability of large-scale oceanic currents is generally
seasonal (Rudels 2015), steady shear on the time scale of t2 should be relatively easy to
maintain.

It is necessary to point out that a stronger initial perturbation, i.e. larger δ, is unlikely to
change the final state. Further theoretical analyses, given in § 4, reveal that larger δ only
results in larger wavenumber of the initial linear unstable mode, which requires stronger
shear to be sustained. This explains why, in test cases where the final state is laminar,
increasing δ merely accelerates the return of the flow field to its laminar state. For cases
reaching the convection or layering state, even when there is sufficiently strong shear to
sustain the initial modes with larger wavenumbers induced by larger δ, the vortices will
gradually merge during the transitional stage and ultimately follow the same path to the
same final state. Therefore, the initial perturbation only affects the wavenumbers of the
unstable modes in the initial stage, determining whether the flow can be sustained. Once
the flow enters the transitional stage, the subsequent evolution process will no longer be
influenced by the initial perturbation.
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Figure 5. The temporal and horizontal averaged scalar profiles in the final stage for the case with
(a) Ra = 106,Λ = 2, (b) Ra = 106,Λ = 3 and (c) Ra = 107,Λ = 2. The blue solid lines denote the salinity
profiles and the yellow dashed lines denote the temperature profiles.

3.2. The statistical properties of the final stage
We now examine the statistic behaviours of the final stage for the cases that reach the
layering or convective state. The time period ts during which the statistics are sampled
is set to be equal to or greater than 1000, as shown in table 1. As a confirmation of the
statistically steady state, all the statistics are calculated over the first and the second halves
of the sampling period, and the two values agree with each other.

Figure 5 presents the mean scalar profiles 〈s〉h and 〈θ〉h for all cases. Hereafter, the
overbar denotes the time-averaged value of the respective variable. The staircase shape is
evident in the cases with a layering final state. The interface regions in these mean profiles
are thicker than those in the instantaneous fields shown in figure 2. This is caused by
the strong spatial oscillation of the sharp interfaces which smooths the averaged profiles.
Notably, the typical heights of convection layers for both Ra = 106 and Ra = 107 are much
larger than the vertical wavelength of the initial perturbation (2.9a–c). Therefore, the final
staircase configuration results from the nonlinear interactions among the travelling vortices
during the second stage and the emerging layers during the transition from the second to
the final stage.

The profiles exhibit very complex and non-monotonic variations as Ri changes,
especially for the two groups with Λ = 2. For the group with Ra = 106 and Λ = 3 (see
figure 5b), the bulk becomes laminar for Ri = 0.8. When Ri ≤ 0.7, the bulk becomes
nearly homogeneous for both mean temperature and salinity, and the homogeneous layer
is bounded by two layers with linear mean profiles from the top and bottom. As Ri
decreases, the homogeneous layer shrinks in the vertical direction. In the other two groups
with Λ = 2 (see figure 5a,c), the laminar state exists when Ri is large enough. As Ri
becomes smaller, the number of layers in the bulk varies non-monotonically. Taking the
group with Ra = 107 and Λ = 2 for example, three layers appear for 3 ≥ Ri ≥ 1. When
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Figure 6. The convective and conductive profiles for the two scalar components for the cases with
(a,b) Ra = 106,Λ = 3,Ri = 0.3 and (c,d) Ra = 107,Λ = 2,Ri = 3.

Ri decreases from 1 to 0.5, the three-layer state is replaced by a one-layer configuration.
As Ri further decreases to 0.3, it seems that another internal interface appears near the
top plate. However, a significant difference between this case and the layering state at
intermediate Richardson numbers is that, in the former, the mean profiles exhibit different
structures for the two components, while in the latter, both mean temperature and salinity
profiles have the same number of layers. Therefore, this case does not have well-defined
layering morphology. Another similar case is the one with Ra = 106,Λ = 2 and Ri = 0.3,
namely the case shown by the most left-hand profiles in figure 5(a). As will be shown next,
these two cases exhibit very different behaviours in fluxes compared with the well-defined
layering state at the intermediate Richardson numbers.

To illustrate these different regimes in more detail, we will examine the fluxes and the
thicknesses of the interfaces for the statistically steady state. The dimensionless convective
and conductive fluxes for the salinity and temperature are defined as

Fvs = w∗s∗

κsΔsH−1 , Fd
s = −∂zs∗

ΔsH−1 , Fvθ = w∗θ∗

κθΔθH−1 , Fd
θ = −∂zθ

∗

ΔθH−1 , (3.2a–d)

in which the superscripts v and d denote the convective and conductive fluxes, respectively.
Figure 6 shows the mean vertical profiles of the quantities in (3.2a–d) for two typical cases.
One case has only one convection layer and no internal interface with Ra = 106,Λ =
3,Ri = 0.3, while the other case has three convection layers and two internal interfaces
with Ra = 107,Λ = 2,Ri = 3. Notice that for the statistically steady state, the sum of the
convective and conductive fluxes should be constant at any height. Within the boundary
interfaces, the convective fluxes tend to zero, and the vertical transport is dominated by
molecular diffusion. Figures 6(a) and 6(b) clearly show two thicker boundary interfaces.
Within the internal interfaces, however, the convective fluxes are smaller than those in the
convection layers but are not negligible, as shown in figures 6(c) and 6(d). This is because
the internal interfaces experience very strong spatial oscillation, causing the convective
fluxes to increase accordingly. As a result, the vertical extent of the internal interfaces
appears blurred, making it challenging to define their precise thicknesses.

To investigate the diffusive interfaces systematically, we choose to analyse the boundary
interfaces, of which the thickness can be defined as the distance between the location of the
first peak of the standard deviation profile and the corresponding boundary, as shown in
figure 7. Hereafter, the thicknesses of the temperature and salinity boundary interfaces are
denoted by hθ and hs, respectively. Figure 8 displays the instantaneous scalar fields for the
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Figure 7. The standard deviation profiles for the two scalar components for the cases with (a) Ra = 106,

Λ = 3,Ri = 0.3 and (b) Ra = 107,Λ = 2,Ri = 3. Panel (c) presents a zoom-in plot of the profiles shown in
(b). In both (a) and (c) the corresponding thicknesses are marked by the vertical solid lines.
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Figure 8. The instantaneous flow fields for the cases with Ra = 106,Λ = 3,Ri = 0.3 (a,c,e) and Ra =
107,Λ = 2,Ri = 3 (b,d, f ). Panels (a,b), (c,d) and (e, f ) represent temperature, salinity and density,
respectively.

same two cases depicted in figures 6 and 7. For the case with Ra = 106,Λ = 3,Ri = 0.3,
the boundary interfaces are rather thick, with their thicknesses comparable to that of
the central convection layer. In contrast, for the case with Ra = 107,Λ = 2,Ri = 3, the
boundary interface thicknesses are much smaller than those of the convection layers.
Furthermore, as mentioned earlier, due to intense oscillations, the internal interfaces
occupy a relatively larger vertical range, as shown in figure 7(b).

Figure 9 plots the variations of the ratio hθ /hs, the time-averaged flux ratio γ̄ and the
time averaged Nusselt numbers. The figure includes only cases that do not transition into
the laminar state. All four quantities exhibit much larger values at high Ri compared with
those at low Ri. In the theoretical model proposed by Linden & Shirtcliffe (1978) for
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Figure 9. The Richardson number versus the time-averaged (a) ratio of temperature and salinity boundary
layer thicknesses, (b) total flux ratio, (c) salinity Nusselt number and (d) temperature Nusselt number for the
cases with different Ra and Λ. The solid symbols denote the DDC-dominated regime, while the open symbols
denote the shear-influenced regime.

the diffusive DDC flow, the transport within the interfaces is dominated by the diffusion
process. Then, since temperature diffuses much faster than salinity, the thickness of the
thermal diffusion core is much larger than that of the salinity diffusion core, and the
ratio of the two thicknesses should be approximately equal to 1/

√
τ = 10. The flux ratio,

meanwhile, should be equal to
√
τ = 0.1. Figures 9(a) and 9(b) indicate that, for large Ri,

hθ /hs is approximately 8 and γ̄ exceeds 0.08, respectively. These two values closely match
the theoretical predictions provided by the model of Linden & Shirtcliffe (1978). This
strongly suggests that under conditions of high Ri or weak shear, the flow and the transport
are dominated by the diffusive DDC process. The model of Linden & Shirtcliffe (1978)
also suggests that near the interfaces, the unstable temperature layer could release plumes
which transport both heat and salt. Such a scenario is clearly observable in figure 8(b,d, f ).

For small Ri, as shown in figure 8(a,c,e), the plumes are severely tilted due to the
strong shear. As a result, weaker transport and smaller Nusselt numbers are observed.
The thickness ratio hθ /hs approaches unity as Ri decreases. The decrease in Nuθ as Ri
decreases is smaller than the decrease in Nus, and as a result, the flux ratio γ̄ also decreases
with Ri. This regime at small Ri is referred to as the shear-influenced regime, as opposite
to the DDC-dominated regime at large Ri. Figure 10 displays all the cases in different
regimes, with the vertical dashed line marking the boundary between the shear-influenced
regime and the DDC-dominated regime. Another boundary between the DDC-dominated
regime and the laminar regime will be theoretically predicted in § 4. Comparing figures 10
and 5, it is evident that the well-defined staircases only occur in the DDC-dominated
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Figure 10. The regime diagram displaying the shear-influenced regime (open symbols), the DDC-dominated
regime (blue and yellow solid symbols) and the laminar regime (grey symbols).

regime with weak background shear. As a final demonstration of the difference between
the DDC-dominated and shear-influenced regimes, we calculate the local density ratio in
the diffusive core of the interface as

Λin = βsS∗
z

βθΘ∗
z

= ΛNus

Nuθ
= γ

τ
, (3.3)

in which S∗
z and Θ∗

z are the dimensional mean vertical gradients of salinity and
temperature, respectively. The values of Λin are summarized in table 1. According to the
model of Linden & Shirtcliffe (1978), one has Λin ≈ τ−1/2 = 10 for the diffusive DDC
interfaces. Indeed, for the cases in the DDC-dominated regime, Λin is large and close to
10. In contrast, in the shear-influenced regime, this quantity is much smaller.

4. Theoretical model for the development of layering

4.1. Linear development of the initial stage
In the previous section, we identified three different stages of the flow evolution and
discussed the statistics and transport of the final stage. We now present theoretical
analyses on how the flow is triggered and develops from the initial conditions (2.9a–c).
In this section, we focus on the initial stage and conduct the linear stability analysis for
the governing equations (2.3a)–(2.3c) with the initial conditions (2.9a–c). The second
transitional stage will be discussed in the next section.

Specifically, we expand the variables in ascending powers of a small dimensionless
parameter ε, i.e.

{ψ, θ, s}T = {ψ0, θ0, s0}T + ε{ψ1, θ1, s1}T + O(ε2), (4.1)

in which {ψ0, θ0, s0}T is the base state and {ψ1, θ1, s1}T is the linear solution. To satisfy
the initial conditions (2.9a–c), we set the base state as

ψ0 = 0, θ0 = 1 − z − δ sin(ki
zz) e−ωθ t, s0 = 1 − z − δ sin(ki

zz) e−ωst, (4.2a–c)

in which ωθ = ki
z
2
/
√

RaPr and ωs = ki
z
2
/(Le

√
RaPr). Substituting the parameters with

their numerical values used in the DNS, we obtain (ωθ , ωs) = (0.45, 0.0045) for Ra = 106

and (ωθ , ωs) = (0.25, 0.0025) for Ra = 107. It is easy to find out that the state (4.2a–c)
is a trivial solution of the (2.3a)–(2.3c). Substituting (4.1) and (4.2a–c) into the governing
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equations (2.3a)–(2.3c), we obtain the linearized equations at the order ε as follows:

∂t∇2ψ1 = −z − 1/2√
Ri

∂x∇2ψ1 +
√

Pr√
Ra

∇4ψ1 − (∂xθ1 −Λ∂xs1), (4.3a)

∂tθ1 = −(1 + ki
zδ cos(ki

zz) e−ωθ t)∂xψ1 − z − 1/2√
Ri

∂xθ1 + 1√
RaPr

∇2θ1, (4.3b)

∂ts1 = −(1 + ki
zδ cos(ki

zz) e−ωst)∂xψ1 − z − 1/2√
Ri

∂xs1 +
√

Pr√
RaSc

∇2s1. (4.3c)

Equations (4.3a)–(4.3c) form an eigenvalue problem when assuming the normal-mode
solution as

{ψ1, θ1, s1}T = eωit{ψ̂1(z), θ̂1(z), ŝ1(z)}T ej(kxx−ωrt) + c.c. (4.4)

Here, {ψ̂1(z), θ̂1(z), ŝ1(z)}T are the vertical shape functions, ωi and ωr are the real and
imaginary temporal growth factors, respectively, kx is the horizontal wave number, j is the
imaginary unit and c.c. stands for the conjugate complex. The boundary conditions then

ψ̂1 = 0, ∂2
z ψ̂1 = 0, θ̂1 = 0, ŝ1 = 0, at z = 0, (4.5a)

ψ̂1 = 0, ∂2
z ψ̂1 = 0, θ̂1 = 0, ŝ1 = 0, at z = 1. (4.5b)

The first term on the right-hand sides of both (4.3b) and (4.3c) explicitly contain time
t, and this term represents the exponential decay of the initial sinusoidal perturbation.
Since we are interested in the initial development of the normal modes at small t, we set
exp(−ωθ t) ≈ 1 and exp(−ωst) ≈ 1 in (4.3b) and (4.3c). That is, we first investigate the
linear instability under the assumption that the initial perturbation remains unchanged.
Afterwards, the influence of the time decay terms in the perturbations will be examined.
The Prandtl number and the Schmidt number are set as 10 and 1000, respectively. Then the
eigenvalue problem is influenced by the control parameters Ra, Λ and Ri, as well as the
parameters for the initial perturbation δ and ki

z. For a given combination of (δ, ki
z,Ra,Λ),

the eigenvalue problem is solved numerically for a wide range of kx and Ri. The Chebyshev
polynomial expansion is used in the z-direction with 300 grid points. Computations are
also conducted with 600 grid points and the results are similar between the two resolutions.
The growth rates ωi and ωr, along with the shape functions, are solved for each kx.

Figure 11 displays the results of linear instability analyses for three different
combinations of (δ, ki

z,Ra,Λ) over the range 0.1 ≤ Ri ≤ 10. Here, δ and ki
z are chosen

to be the same as those used in DNS, and (Ra,Λ) = (106, 2), (106, 3) and (107, 2),
respectively. For all three combinations of (Ra,Λ), unstable wavenumbers exist over the
entire range of 0.1 ≤ Ri ≤ 10. The wavenumber of the fastest-growing mode is indicated
by the dashed curves. The initial dominant wavenumber kw

x is also extracted from the
flow fields at the beginning of DNS, and marked by the circle symbols. The predictions
of the linear instability theory agree with DNS results. Closed circles indicate the cases
that develop into layering, while open circles mark the cases which become laminar at
the end. Thus, although the finite-amplitude perturbations at the beginning can trigger
linearly unstable modes, these modes do not necessarily result in layering. For comparison,
Radko (2016) and Radko (2019) demonstrate that steady sinusoidal shear and time-varying
uniform shear can excite linear instability without initial perturbations, respectively. For
a single uniform shear, which has no inflection points in its vertical profile, it is both
inherently stable and incapable of inducing diffusive DDC instability. Existing studies
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Figure 11. The contour of ωi as a function of kx and Ri for the cases with (a) (Ra,Λ) = (106, 2), (b) (106, 3)
and (c) (107, 2), respectively. The solid lines denote the neutral curves with ωi = 0 and the dashed lines denote
the fastest-growing modes. Here kw

x extracted from DNS results is displayed by circles, with closed symbols
for the cases developing into layering or convection state and the open ones for those becoming laminar.

indicate that a sinusoidal or stochastic external force, varying in time or space, must be
needed for triggering unstable modes in the linearly stable diffusive DDC regime.

The above results about the linearly unstable modes are derived for very small t at the
beginning of the flow evolution, since both exp(−ωθ t) and exp(−ωst) in (4.3) are set to
unity. As time increases, the base flow changes due to the decay of initially finite-amplitude
perturbation. Additionally, the growth rate of the unstable modes is expected to vary
with time. However, further investigation indicates that the flow evolution is dominated
by similar linear instability for a relatively long time, even as the initial perturbation
decays. To demonstrate this, we conduct linear stability analysis at different times for
the case with (δ, ki

z,Ra,Λ,Ri) = (0.05, 12π, 106, 2, 2). Specifically, for a given time t,
the corresponding values of exp(−ωθ t) and exp(−ωst) are set in (4.3) and the eigenvalue
problem is solved accordingly. In other words, we will use the initial conditions (4.2a–c),
which decay with time t, as the new initial conditions, and assume they do not change with
time. Figure 12(a) displays the growth rates of different wavenumbers at different time.
The system is linearly unstable up to t ≈ 100. The most unstable wavenumber, as marked
by the dashed line, and the corresponding growth rate both change slightly with time. This
indicates that for a considerable initial time period, the linearly unstable modes are similar.
Therefore, assuming the initial perturbations remain unchanged for linear stability analysis
is reasonable, explaining why we obtain consistent results between linear theory and DNS
under this assumption. The underlying reason for this phenomenon is that the time decay
coefficients ωθ and ωs are very small for large Ra, particularly ωs, which is much smaller
than the typical growth rate of the unstable modes. Thus, during the time period when the
unstable modes are sufficiently developed, it can be assumed that the initial perturbations
remain unchanged.

The influences of the amplitude δ on the linear instability are also investigated for the
same case at t = 0, and the results are shown in figure 12(b). Linear instability does occur
when δ is large enough. Interestingly, the critical value of δ is slightly smaller than 1/ki

z.
Therefore, the system can be linearly unstable even when the initial perturbation is not
strong enough to cause locally unstable stratification.

Based on the results shown in figure 12, we can calculate the temporal growth of the
most unstable mode at t = 0 with wavenumber kw

x , and compare it with the DNS results.
The comparison is shown in figure 13 for three cases with different parameters. For the
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Figure 12. The temporal growth rate ωi as a function of (a) (kx, t) at δ = 0.05 and (b) (kx, δ) at t = 0 for
the case with (ki

z,Ra,Λ,Ri) = (12π, 106, 2, 2). The solid line denotes ωi = 0, the dashed line denotes the
fastest-growing mode and the dash–dotted line denotes δ = 1/ki

z.
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102
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DNS(FFT) Linear stability analysis
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Figure 13. The amplitude of density anomaly versus time for the cases with (a) (Ra,Λ,Ri) = (106, 2, 2),
(b) (106, 3, 0.5) and (c) (107, 2, 1), respectively. The blue solid lines denote the DNS results, and the red
dashed lines denote the values calculated by linear growth rates.

DNS results, the dominant horizontal mode of the density anomaly

ρ′ = ρ − 〈ρ〉h = Λ(s − 〈s〉h)− (θ − 〈θ〉h) (4.6)

is extracted using the FFT, and the temporal variation of the amplitude δp is shown by the
solid lines. Then, starting with δp at t = 1, the growth of the amplitude is also calculated
by using the growth rate ωi(t) given by the linear theory. Notice that the growth rate ωi(t)
varies with time. The amplitude is then computed by the integration

δp(t) = δp|t=1 × exp
[∫ t

τ=1
ωi(τ ) dτ

]
, (4.7)

and the results are shown by the dashed lines in figure 13. Remarkably, the linear theory
can predict the growth of amplitude up to t ≈ 30. This strongly implies that, although
the base flow constantly changes as the initial perturbation decays, the growth of the
fluctuation motions is dominated by the linear instability mechanism.
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Figure 14. (a) The imaginary part and the real part of the shape functions for temperature and salinity
and (b) the corresponding density field of the linear fastest-growing mode at t = 0 for the case with
(δ, ki

z,Ra,Λ,Ri) = (0.05, 12π, 106, 2, 2). The leftward travelling mode with ωr < 0 and the rightward
travelling one with ωr > 0 are denoted by the yellow dashed lines and blue solid lines, respectively, in
(a) and by the arrows in (b).

For the completeness of the linear stability analysis, we plot the flow field corresponding
to the most unstable mode during the linear instability stage, as shown in figure 14.
The parameters used are (δ, ki

z,Ra,Λ,Ri) = (0.05, 12π, 106, 2, 2). Both the leftward
travelling mode with ωr < 0 and the rightward travelling one with ωr > 0 are shown.
The perturbations mainly occur at the centre part of the domain, and the flow patterns are
very similar to the flow field given by DNS, e.g. see figure 2(a). Notice that the pattern of
two counter-propagating waveforms occurs at the initial stage for all cases, which may be
due to the set-up of the background shear flow, i.e. the streamwise velocity is positive in
the upper region and negative in the lower region.

4.2. Sustenance of the transitional stage
For all the cases simulated in the current study, linear instability occurs as discussed in
the previous section. However, not all of them develop into layering or convective states.
When Ri is large, the fluctuation motions induced by the initial linear process die out,
and the flow returns to the laminar state. Only when Ri is smaller than a certain critical
value Ric for a given Ra and Λ, do the fluctuation motions sustain and lead to layering or
convection states. Here we will employ the energy method and theoretically determine the
critical value Ric and compare the theoretical predictions with DNS results.

We start with the kinetic energy equation, which can be obtained by conducting the inner
product between the momentum equations (2.1a) and (2.1b) and the velocity u∗. With the
help of the incompressible equation (2.1e), the non-dimensional equation for the kinetic
energy e = |u|2/2 reads

∂e
∂t

+ ∇ · (ue)+ z − 1/2

2
√

Ri

∂e
∂x

+ 1√
Ri

uw

= −∇ · ( pu)+
√

Pr√
Ra
(∇2e − (∇u)2)+ (θ −Λs)w. (4.8)

The above equation can be integrated over the whole domain, and by using the boundary
condition (2.6), one can obtain the total kinetic energy balance equation as

∂Ek

∂t
= Πs +Πp −Πd, (4.9)
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Figure 15. The time evolution of Πd,Πp, Πs and Πs +Πp for the case with Ra = 106,Λ = 2 and Ri = 2.
The vertical dotted line denotes the boundary between the transitional stage and the final stage.

in which

Ek = 1
2
〈u2 + w2〉V , (4.10a)

Πs = − 1√
Ri

〈uw〉V , (4.10b)

Πp = 〈wθ〉V −Λ〈ws〉V , (4.10c)

Πd =
√

Pr√
Ra

〈(∂xu)2 + (∂zu)2 + (∂xw)2 + (∂zw)2〉V . (4.10d)

Hereafter the bracket 〈·〉V denotes the volume-averaged quantity. As per the definition,
Ek represents the kinetic energy, Πs represents the energy exchange with the background
shear, Πp represents the energy exchange with the potential energy and Πd represents
the energy dissipation due to viscosity. As an illustration, figure 15 plots these different
terms against time for a case with (Ra,Λ,Ri) = (106, 2, 2). For this case, the transitional
stage lasts until t = 2500, as marked by the vertical dotted line, and then the system
enters the final state. During the transitional stage, bothΠp andΠs are positive, indicating
that the flow receives kinetic energy from the background shear and the potential energy
stored in scalar fields. At this moment, the vertical momentum flux is down-gradient
across the wavelike structures. However, neither the background shear nor the potential
energy released by scalar field alone can sustain the flow. Only the combination of the two
production mechanisms of kinetic energy can overcome the viscous dissipation. During
the final layering state, the kinetic energy production due to the release of potential energy
is much larger than that due to interactions with the background shear. Additionally, Πs
exhibits a strong oscillation and can sometimes become negative. Here,Πs < 0 means that
part of the potential energy is converted into the vertical kinetic energy, and the vertical
momentum flux becomes up-gradient, a phenomenon often observed in stably stratified
sheared turbulence for high gradient Richardson numbers (Holt, Koseff & Ferziger 1992;
Piccirillo & van Atta 1997). The oscillation of Πs near zero indicates that the vertical
momentum flux frequently changes its direction, which is probably due to the oscillation
of the interfaces.
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Figure 16. The instantaneous fields of (a) vertical velocity, (b) horizontal velocity, (c) temperature anomaly
and (d) salinity anomaly at t = 200 for the case with Ra = 106,Λ = 2,Ri = 2.

The above discussions imply that during the transitional stage, the background shear
plays an indispensable role. A naïve criterion for the flow to sustain during the transitional
stage is

∂Ek/∂t > 0, or Πs +Πp > Πd. (4.11)

In order to utilize the above criterion, the explicit forms of all terms must be provided,
which is practically impossible for the entire flow. Instead, we focus on the dominant mode
of the flow during the transitional stage and seek the explicit formulae of Πs, Πp and Πd
for the dominant mode. Figure 16 depicts the flow fields of different variables at t = 200
for the same case shown in figure 15, in which θ ′ = θ − 1 + z and s′ = s − 1 + z are the
temperature and salinity anomalies, respectively. One notices that for different quantities,
the dominant wavenumbers in the streamwise direction are similar, while those in the
vertical direction are not. Especially, due to the slow diffusion, the salinity anomaly field
in figure 16(d) retains most details of the initial finite amplitude perturbation. One of the
major characteristics is that positive and negative salinity anomalies stack over each other
in the vertical direction, a phenomenon not observed for the other three quantities.

To develop the explicit formulae for the terms in the energy balance criterion, we
discuss the wavenumbers for different flow quantities in detail. As shown in figure 14,
the linear fastest-growing mode simultaneously contains a waveform moving forward in
the upper region along the flow direction and a waveform moving backward in the lower
region. The vertical wavenumbers of these two waveforms are approximately 4π. However,
after nonlinear interactions, the upper and lower modes of the transitional stage merge
into a single mode, which propagates slowly along one direction. For a relatively long
period at the beginning of the transitional stage, the streamwise wavenumber kw

x of this
mode remains the fastest-growing wavenumber predicted by the linear analysis, while the
vertical wavenumber kw

z is approximately 2π. This structure can be clearly observed in the
vertical velocity field shown in figure 16(a). Furthermore, the flow field in this stage is
also influenced by the initial sinusoidal perturbations (2.9a–c). The salinity anomaly field
clearly exhibits a vertical wavenumber ki

z, as shown in figure 16(d). The relevant vertical
wavenumbers contain both kw

z and ki
z, which we refer to as the waving mode and the initial

mode, respectively. However, their relative strengths differ for different flow quantities.
Since the initial salinity perturbation diffuses slowly, the salinity field is most strongly
affected by the initial mode during the transitional stage. On the other hand, the initial
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temperature perturbation diffuses quickly, resulting in a relatively smaller influence on
the temperature field. The velocity field, in the absence of initial perturbations, is hardly
affected by the initial mode.

Based on the aforementioned analysis, the flow evolution at the beginning of the
transitional stage can be assumed to be a quasi-steady process. Therefore, we can now
propose the following waving model:

u = ∂zψ = −δw
ψkw

z sin(kw
x x + kw

z z)− δi
ψki

z sin(ki
zz), (4.12a)

w = −∂xψ = δw
ψkw

x sin(kw
x x + kw

z z), (4.12b)

θ = 1 − z + δw
θ sin(kw

x x + kw
z z)+ δi

θ sin(ki
zz), (4.12c)

s = 1 − z + δw
s sin(kw

x x + kw
z z)+ δi

s sin(ki
zz), (4.12d)

in which

ψ = δw
ψ cos(kw

x x + kw
z z)+ δi

ψ cos(ki
zz), (4.13a)

δw
ψ = −δw

u /k
w
z = δw

w/k
w
x , (4.13b)

δi
ψ = −δi

u/k
i
z. (4.13c)

Hereafter, the superscripts w and i denote the waving mode and the initial mode,
respectively. Here δw

u , δ
w
w, δ

w
θ and δw

s are the amplitudes of the waving mode for horizontal
velocity, vertical velocity, temperature and salinity, respectively, while δi

u, δ
i
θ and δi

s are
the respective amplitudes of the initial mode. Their values are determined by the interplay
between the linear fastest-growing mode and the initial perturbations. As stated before, the
velocity field is hardly affected by the latter, thus δi

u should be small, and δw
u and δw

w are
close to the amplitudes of the linear mode when the flow enters the transitional stage. For
the salinity field, on the other hand, the corresponding linear mode is largely inhibited by
the initial salinity perturbation, which diffuses slowly, thus δw

s is small and δi
s is close to

δ, namely the amplitude of the initial perturbations. The initial temperature perturbation
diffuses quickly, resulting in a small δi

θ . However, it still influences the linear mode to
some extent, resulting in a relatively small δw

θ compared with δw
u and δw

w . Based on the
above analysis, we can conclude δw

s � δw
θ < δw

u , which will be used later.
It is noteworthy that the model (4.12) does not satisfy the vertical boundary conditions;

hence, it serves as an approximate model for describing the bulk region. Substituting (4.12)
into (4.10), we can obtain

Ew
k == 1

4
δw
ψ

2
(kw

x
2 + kw

z
2
), (4.14a)

Πw
s == 1

2
√

Ri
δw
ψ

2kw
x kw

z , (4.14b)

Πw
p = 1

2
(δw
θ −Λδw

s )δ
w
ψkw

x , (4.14c)

Πw
d =

√
Pr

2
√

Ra
δw
ψ

2
(kw

x
2 + kw

z
2
)2. (4.14d)

It can be observed that the initial mode contributes negligibly to the volume-averaged
energy. Since δw

s � δw
θ , Πw

p mainly comes from the energy released from the temperature
field.
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By substituting (4.14) into the criterion (4.11), we arrive at the following condition for
the transitional stage which can sustain

1√
Ri

≥
√

Pr√
Ra

((kw
x )

2 + (kw
z )

2)2

kw
x kw

z
− cw, (4.15)

in which

cw = δw
θ −Λδw

s

δw
ψkw

z
≈ δw

θ

δw
u
, (4.16)

is an empirical coefficient. Since δw
θ < δw

u , cw should be smaller than unity. In this paper
we adopt cw = 0.8 based on the numerical results. The specific value of cw may be
influenced by both the initial linear instability and the subsequent nonlinear evolution,
which needs detailed investigation in future work. The term on the left-hand side of (4.15)
represents the dimensionless vertical shear rate, while the two right-hand terms represent
the dimensionless rates of viscous dissipation and potential energy release, respectively.
Therefore, the physical interpretation here is that the background shear needs to provide
enough energy to compensate for the difference between the consumption of viscous
dissipation and the supply of potential energy, thus sustaining the flow. For Ri ∼ O(1) in
the current work, when condition (4.15) is satisfied, the magnitudes of the two right-hand
terms are comparable. As discussed before, kw

z can be set to 2π. Then, for given Ra and
Λ, one can readily calculate the value of kw

x at which the equality in (4.15) holds for
some Richardson number Rie. We denote this critical streamwise wavenumber by kwe

x . The
physical meaning of kwe

x is that the mode given in (4.12) with kw
z = 2π and kw

x = kwe
x will

satisfy the sustenance condition (4.15) when Ri is smaller than Rie. For ease of comparison
with linear stability analysis, we use the corresponding wavenumber Kw

x = kwe
x Γ/2π in the

following discussion instead of kwe
x itself.

Figure 17 depicts the dependence of Rie on Kw
x for Ra = 106 and Ra = 107, as shown

by the blue solid lines. The infinite singularity point on the curves corresponds to the
situation whereΠp = Πd, indicating that energy balance can be maintained without shear.
Below the curves lies the region where the shear is strong enough for the mode with Kw

x
to grow in kinetic energy. In the same figure 17, we also plot the streamwise wavenumber
of the most unstable linear mode versus Ri, represented by the dashed line. When the
dashed lines lie below the solid lines, it signifies that the most unstable mode given by the
linear instability process can sustain during the transitional stage, indicating that the mode
can acquire enough kinetic energy from the background shear and scalar stratification
to overcome viscous dissipation. Consequently, the intersection of the two lines defines
a critical Richardson number Ric. For a given Ra and Λ, if Ri < Ric, then the linear
instability mechanism can induce unstable mode from the initial condition (2.9a–c) and
this unstable mode can survive in the transitional stage. Such modes will eventually lead
to layering or convection state. In figure 17, we also include the DNS results. All the
cases those reaching the laminar state are marked by open circles, and those reaching
the layering or convection state by solid circles, respectively. Remarkably, the transition
between different cases agrees excellently with the critical Richardson number Ric defined
above.

Therefore, the following procedure can be used to determine the critical parameter Ric
for any given Ra and Λ. One can first conduct linear stability analysis and obtain the
dependency of Kw

x on Ri for the most unstable mode. Second, one can obtain another
dependency between Kw

x and Ri from the condition (4.15). Then Ric can be determined by
the coincident point of the two dependencies. If Ri < Ric, the layering or convection state
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Figure 17. Here Ri versus Kw
x plotted by (4.15) (blue solid lines), the linear fastest-growing modes (yellow

dashed lines) and the DNS results (black circles) for (a) Ra = 106 and (b) Ra = 107. The solid circles denote
the cases with final layering or convection state and the open circles denote the cases with final laminar state.

can be established through the linear instability and the transitional stage starting from
the initial condition (2.9a–c). It should be noted that the linear instability also depends
on δ and ki

z. In figure 12(b), it can be seen that Kw
x increases with the initial perturbation

amplitude δ, leading to a decrease in Ric. From the perspective of critical values, it is
meaningful to find an upper limit for Ric, which implies that δ should be set as small
as possible. However, δ needs to be located far enough from the neutral curve to ensure
that the linear unstable modes develop with sufficiently large growth rates. In the current
work, the chosen values of δ = 0.05 (Ra = 106) and δ = 0.025 (Ra = 107) have been very
close to the neutral curves, meanwhile they are large enough to promote the development
of linear unstable modes. Hence, the values of Ric obtained in this study are reasonably
accurate. From a practical perspective, here we provide an empirical formula δ = 2/ki

z; that
is, setting the amplitude to be twice the critical value of density reversal (see (2.11)). Under
this condition, we investigate the influence of ki

z on the critical Richardson number, as
shown in figure 18. For Λ = 2 and different Rayleigh numbers, Ric consistently decreases
as ki

z increases. When ki
z = 48π, Ric is near unity for all Ra. The underlying reason for

this pattern is that larger ki
z results in larger Kw

x in the linear stability analysis, thus the
corresponding mode needs stronger shear to be sustained. Therefore, to establish an upper
limit for Ric, we must identify the minimum wavenumber of the initial perturbation that
can induce the flow to evolve into a layering state for different Ra. This requires more
large-scale simulations, which we can only leave for future work.

Based on the method presented in figure 17, we can further predict Ric for different Λ
and Ra, as shown in figure 19(a). Here we still choose (δ, ki

z) = (0.05, 12π) for Ra = 106

and (δ, ki
z) = (0.025, 16π) for other Ra. It can be observed that within the range of

[2, 10], which is the typical range in the oceanic diffusive DDC region, Ric increases
with decreasing Λ and increasing Ra. This can be expected since at higher density ratios,
the unstable temperature buoyancy provides less potential energy, thus requiring stronger
shear contributions. Conversely, higher temperature Rayleigh numbers correspond to
greater temperature potential energy, resulting in a lower demand for shear energy supply.
Figure 19(b) displays the critical density Richardson number Ricρ = Ric(Λ− 1) versus
Λ. Here Ricρ remains relatively constant across different density ratios, and within the
current range, Ricρ always exceeds unity. When Ra = 1010, Ricρ ≈ 16, indicating that even
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Figure 18. The variations of the critical Richardson number versus the vertical wavenumber of the initial
perturbation. δ = 2/ki

z and Λ = 2 are used for all the calculations.

very weak shear can promote flow development. Notice that this large Ricρ only holds for
ki

z = 16π. As stated in § 3.1, more layers exist under higher Ra. Whether larger ki
z is needed

to induce these layers requires further exploration. One concern is that there are no solid
vertical boundaries within actual ocean thermohaline staircases. However, in the current
system, the diffusive interfaces attached to boundaries are similar to those between layers,
both dominated by the mechanism of diffusive DDC. Therefore, the solid boundaries can
be approximately assumed as the interfaces within the thermohaline staircases. A more
precise conclusion would still rely on high-Ra simulations, where there are numerous
interfaces and mixing layers far from the boundaries. Observations in the Arctic Ocean
indicate that the value of Ra between two adjacent interfaces is approximately 109 (Shibley
et al. 2017). Therefore, the mechanism for layering presented in this paper is highly
achievable in the Arctic Ocean. Our model provides a potential physical explanation for
the formation of staircase structures within diffusive DDC regions of the ocean. The fact
that the instability of diffusive DDC is independent of the density ratio has also been found
in the stratified turbulence model (Ma & Peltier 2022a). This suggests that the range of
density ratio before the formation of thermohaline staircases may be even larger, and it
finally shrinks to [2, 10] due to the mechanism of diffusive interface.

5. Conclusion

In this study, we conducted a series of 2-D DNS for diffusive DDC with a uniform
background shear between two horizontal plates. The fluid properties used in the
simulations are close to the typical values of Arctic seawater, i.e. Pr = 10, Sc = 1000.
Similar to our previous work (Yang et al. 2022), finite-amplitude perturbations in
temperature and salinity were introduced to drive flow instability. We have simulated three
sets of cases, each corresponding to specific (Ra, Λ) and different Ri. For each case, we
observed the flow evolution in three stages: the initial stage, the transitional stage and
the final stage. When the shear is weak, the flow eventually returns to a laminar state.
When the shear is strong enough (Ri is below a critical value Ric), the final stage exhibits
either a layering state (with at least one internal interface) or a convection state (with
no internal interface). For the two groups with Λ = 2, the final state changes from the
laminar type first to the layering type and then to the convection type as Ri gradually
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Figure 19. The variations of (a) the critical Richardson number and (b) the critical density Richardson
number versus the density ratio for different Rayleigh numbers.

decreases. For the group with Λ = 3, no layering state is observed and the final state
changes directly from the laminar type to the convection type. Further analysis reveals
that the properties of layering under weak shear are close to Linden & Shirtcliffe (1978)
theory, i.e. hθ /hs ≈ τ−1/2, γ ≈ τ 1/2 and Λin ≈ τ−1/2, indicating that the interface is
indeed controlled by diffusive processes. However, under the strong shear these parameters
decrease significantly, and the heat and salt fluxes also decrease substantially. This can be
attributed to the fact that shear causes significant tilting of the thermal plumes, resulting
in a thicker interface.

We demonstrate that the initial stage can be well described by the linear stability
analysis. Since finite-amplitude perturbations are present, the basic flow for the linear
equations must include a time-decay term corresponding to the initial perturbations.
Our calculations revealed that due to the very slow decay of the initial perturbation,
the dynamics of the linear instability are decoupled from the evolution of the initial
perturbation before the linear instability saturates. The wavenumbers and the growth rates
predicted by linear theory agree with the DNS results.

After the initially linear stage, the flow domain is dominated by layers of horizontally
travelling vortices. Within this transitional stage, the energy method reveals that once the
total kinetic energy production due to the conversion of gravity potential energy and the
production from shear combined exceeds the viscous dissipation, the transitional stage can
be sustained and finally develop into the final layering or convection state. By introducing
a dominant mode for the transitional stage, the energy balance can be expressed explicitly.
Then combining the theoretical results from the linear stability analysis and the energy
analysis, a critical Richardson number Ric can be determined. When the Richardson
number is below this critical value, the flow will sustain and develop into the layering or
convection state. The critical Richardson number Ric indeed agree with the transition value
of Ri given by DNS results. This method allowed us to predict Ric and the corresponding
critical value for density Richardson number Riρ directly in a larger parameter range,
i.e. higher Ra and Λ, which is challenging to achieve in DNS due to the computational
limitations. We found that within 2 ≤ Λ ≤ 10, representing the range in the diffusive
DDC regions of the Earth’s oceans, the critical density Richardson number Ricρ generally
exceeds unity and increase with Ra, but shows weak dependence on the density ratio Λ.

Therefore, the current study reveals that finite amplitude perturbations can greatly
extend the parameter range over which diffusive layering can occur for the DDC system

993 A14-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.672


Diffusive DDC with a uniform background shear

with uniform background shear. By combining the DNS results and theoretical analyses,
we demonstrate the detailed procedure of the flow evolution and provide the theoretical
predictions for the critical Richardson number. For the density ratio observed in the Arctic
Ocean, our model indicates that weak shear can already trigger layering when the finite
amplitude perturbation is introduced. Since finite amplitude perturbations are ubiquitous
due to other dynamic processes at various scales in the Arctic Ocean, the layering
mechanism presented here should be highly possible in the real oceanic environments.

The current study also opens several possible directions for future research.
First, the parameter range for the layering state needs more simulations covering a much

wider parameter space and probably 3-D simulations. Our previous work (Yang et al.
2022) has demonstrated that the flow structures in both 3-D and 2-D cases are similar,
with the interfaces being more stable in the 3-D scenario, exhibiting a quasi-2-D structure.
Therefore, we speculate that the conclusions obtained based on the 2-D model in this paper
are also applicable to the 3-D cases. However, this would require systematic 3-D DNS for
validation, which poses a significant challenge in terms of the computational cost.

Second, both Rayleigh–Bénard convection and DDC can spontaneously give rise
to self-sustained shearing flows superimposed on the convective plumes (Howard &
Krishnamurti 1986; Paparella, Spiegel & Talon 2002). What would happen if the
background shear is removed from the current layering state? We conducted a test
simulation and found that the current final state can indeed generate self-sustained shearing
flows, but this shearing flow cannot sustain the interface. Instead, they form a new layered
structure in which the original interior interface shifts to the location near the top plate.
The related systematic simulations will be conducted in the future.

Third, the wavenumber of the initial perturbation has a significant impact on the critical
Richardson number. What determines the minimum wavenumber that can trigger flow
development? Does the initial wavenumber always need to be much larger than the number
of layers in the final state? What would happen if they are close? These questions all require
more simulations to examine.

Finally, the instability mechanism with finite amplitude perturbation may also be
applicable to other systems, and the empirical coefficient within the theoretical model also
needs further investigation. Some of them are already carried out in our ongoing studies.
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