
ON NILPOTENT PRODUCTS OF CYCLIC GROUPS 

RUTH REBEKKA STRUIK 

I n t r o d u c t i o n . In this paper G = F/Fn is studied for F a free product 
of a finite number of cyclic groups, and Fn the normal subgroup generated by 
commuta tors of weight n. The case of n = 4 is completely t reated (F/F2 is 
well known; F/F% is completely t reated in (2)) ; special cases of n > 4 are 
s tudied; a partial conjecture is offered in regard to the unsolved cases. For 
n = 4 a multiplication table and other properties are given. 

The problem arose from Golovin's work on nilpotent products ((1) , (2), 
(3)) which are of interest because they are generalizations of the free and 
direct product of groups: all ni lpotent groups are factor groups of ni lpotent 
products in the same sense t ha t all groups are factor groups of free products , 
and all Abelian groups are factor groups of direct products. In part icular (as 
is well known) every finite Abelian group is a direct product of cyclic groups. 
Hence it becomes of interest to investigate nilpotent products of finite cyclic 
groups. 

Golovin has done this (as well as other things) in (2) and (3). In (2) there 
are results for the first nilpotent product (metabelian product) and in (3) 
there is a unique decomposition theorem for nilpotent products of finite cyclic 
groups. 

I t might be conjectured t ha t all finite nilpotent groups are nilpotent pro­
ducts of cyclic groups. However, in (2) and (3) Golovin notes examples of 
non-Abelian groups with ((G, G), G) = 1 which are not of this form. Here it 
is shown tha t the Burnside group with exponent 3 (with three or more 
generators) is not of this form. 

T o be more precise, and using Golovin's nota t ion: Let 

be the free product of the At. Let (a, b) = arlb~lab and (A,B) — {(a, b)\ 
a G A, b G B] where A and B are subgroups of a group. Let (A t) = {(A u A3)\ 
i 9^ j} where the A t are considered as subgroups of F (the i in (.4 t) is to 
indicate t h a t it is formed from the At in F). Let o(Ai)F be the normal sub­
group generated by (At) in F, k{At)F = (k-i{A t)Fj F). Then according to 
Golovin (1), the feth nilpotent product of the At is 

G = A1(k)A2(k) . . . (k)At = F/MI)F. 

(If the A i are cyclic, then G = F/Fk+2.) 
From now on, Golovin's notat ion will be dropped. 
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In (6) it is shown that if F is a free group with a finite number of generators, 
then every element of F/Fn can be uniquely expressed as a product of standard 
commutators. Here it is shown that if F is replaced by a free product of cyclic 
groups, then Hall's results hold "essentially" provided that all primes appear­
ing in the orders of the factors are > n — 1. If the primes are < n — 1, then 
the situation is complicated. The case n = 4 is completely treated here (that 
is, p = 2, n = 4); partial results and conjectures are offered for n > 4 and 
p < n — 1. 

Section 1 gives preliminary results. In § 2, the "well-behaved" case (p > 
n — 1) is handled, and in § 3, the other cases are discussed. 

The author would like to thank W. Magnus for encouragement while 
preparing this paper, and R. Ree for reading the manuscript and for helpful 
criticisms. The author is also indebted to the referee for many improvements. 

1. Preliminaries. Let G be an arbitrary group. As usual, (a, b) = a~lb~lab 
for a, b Ç G and if A, B are subgroups of G, then (A, B) = {(a, b)\a Ç A, 
b G B\. The lower central series of G is an infinite sequence of subgroups, 
Gi, G2, . . . , where Gi = G, G2 = (G, G), . . . , Gw+i = (Gn, G). ( ( (a b a2), a3), 
. . . , aw) will often be abbreviated (ax, . . . , an). An element of the form 
(((ai, a2), (a3, a 4 ) ) , . . . , aw) (that is, with arbitrary arrangement of paren­
theses) will often be referred to as a commutator (of weight n), as opposed 
to a member of Gn which is (in general) a product of commutators (of weight 
n or greater). In this paper, F will stand for a free product of a finite number 
of cyclic groups: F = Yl*^ u At cyclic. (At may be finite or infinite). The 
following identities are often useful: 

(xy,z) = (x,z)((x,z),y)(y,z) 

(x, yz) = (x, z) (z, (y, x))(x, y) 

In (6), the following theorem is proved: 

THEOREM HI. Let F be a free group with t generators, u\, u2, . . . , ut. Let 
Ui, . . . , us be a sequence of standard commutators of weight < n (See (7).) of 
non-decreasing weight. Then every element, g, of FjFn = G (free nilpotent 
group) can be uniquely expressed as 

g= n i=iuï 

where the ct are rational integers. If 

h= U uï G G, 

then 

gh = f i uï, 

where et = fi(cjy dk) are polynomials with integer coefficients in the Cj and the 
dk (for example, et = ct + dt; 1 < i < i). If s-tuples of the form (cx, . . . , cs), 
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ct rational integers are taken with multiplication given by (ci, . . . , cs) X (d\, . . . , 
ds) = (fi(cji djc), . . . ,fs(Cjj dk)), the set of these s-tuples forms a nilpotent group 
isomorphic to F/Fn. 

Throughout this paper, Hall's collection process will be frequently used. 
Several of its important theorems will now be summarized: 

THEOREM H2: Let R, S be any two elements of a group; let u\, u2, . . . , be a 
fixed sequence of commutators in R and S of non-decreasing weight, that is, 
ui = (22,5), u2 = ((R,S),R), uz = ((R,S),S), etc. Then 

(2) (RS)n = RnSnu{Mu{2{n). . . uï{n). . . 

where 

(3) /«(«) = fliQ + a , Q +...+ aai^ 

ai are rational integers and wt is the weight of ut as a commutator in R and S. 
(2) is an identity if the group is nilpotent; otherwise (2) can be considered as 
giving a series of "approximations" to (RS)n modulo successive members of the 
lower central series. 

The proof of Theorem HI also gives 

THEOREM H3. Let Ri, R2, . . . , Rsbe any s elements of a group. Let Ui, u2, . . . , 
be a fixed sequence of commutators in the Rt of non-decreasing weight (weight 
> 2). Let ii, ii, . . . , is be any fixed permutation of 1, 2, . . . , s. Then 

(4) (K1K2 . . . Ks) = KuKi2 . . . KisUi u2 . . . Ui . . . 

where fiin) are of form (3) with wt the weight of ut in the Rj. 

From Theorem HI we can obtain 

LEMMA HI. Let X, Y be any elements of a group, and let Ui, u2, . . . , be any 
fixed sequence of commutators in X and (X, Y) of non-decreasing weight; then 

(5) (Xn, Y) = (X, Y)nu{lWuf22M . . . uï(n). . . 

where the f%(n) are like (3) with Wi as the weight of ut in X and (X, Y). 

Proof of Lemma HI . (5) follows from (2) in view of 

(Xn, Y) = X-nY-xXnY = X^IY-'XY]71 = X'n[X(X, Y)]n 

= X~nXn{X, F ) V ( n ) . . . = (*, Y)nu{l(n) . . . . 
LEMMA H2. Let a be a fixed integer and G a group such that Gn = 1. Then 

if bj G G and r < n, 

(6) (&lf . . . , &*-i, bl bi+1, . . . , br) = (bl9 . . . , 6 r ) V l ( V ( t t ) . . . 

where the VJC are commutators inb\, . . . , bT of weight > r, and every bj, 1 < j < r 
appears in each commutator vk. The ft are of form (3) where wt is the weight 
of Vi minus (r — 1). 
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Proof. (6) is (5) with r = 2, i = 1, and a = n. For r = 2, i = 2, and 
a — n, take inverses on each side of (5). 

(7) (F, Xa) = u~Ma) . . . V l ( a ) ( F , X)* 

where ws G Gw_i. Since Gw = 1, s is finite. Now apply (4): 

(8) (F,X a ) = u-fAa). . . ^ r / l ( a ) ( F , X ) a [£< = (F ,X) or ujfjia)] 

[(F,Z)^T / l ( a ). . .^7 / s (aVi ] 
î^2 

where wt are commutators in (Y, X)a and u[~f^a). Use induction starting 
with (F, X) G GTO-i- For (Y, X) G Gw-S, assume the theorem (that is, (6)) 
is true for commutators G Gn-s+u and use this and (1) to express Wj in desired 
form. One will obtain as exponents in the expansions, expressions of the form 

< 9 ) 

From its meaning in terms of the number of subsets of a set, (9) is an integral-
valued function of a (of degree i X j ) . By (3.21) p. 64 of (5), this can be 
expressed in the form 

at rational integers. This is sufficient to show 

(10) (Y,Xa) = (Y,X)aU vlkM 

which completes the proof for r = 2. 

Suppose true for r, then for 

(H) ( c l l C î , . . . , i) i > 2 

put bi = (ci, C2), bt = Cj+i, i = 2, . . . , r in (6) and use induction hypothesis. 
For 

(12) (ci, c2, . . . , cT+i) 

put 

X — (ci, C2, . . . , cT), F = cr+i. 

By induction 

x = (Cl,..., cTy n <(0>-
Now use (1) an appropriate number of times with 

(«) 
x, 3/, 2 = (ch . . . , cr)

a, w*1 or cr+1 

and the induction hypothesis to put 

(13) (X, Y) = ((ch ..., crf IT ™lk(a\ cr+i) 

in the form of (6). 

https://doi.org/10.4153/CJM-1960-039-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-039-x


NILPOTENT PRODUCTS OF CYCLIC GROUPS 451 

A similar proof holds for 

Cr+l). 

Throughout this proof, we have implicitly used the fact that an arbitrary 
commutator can be expressed as a product of commutators of the form 
(bi, . . . , br). Or to express the same idea in a different way, (6) can be proved 
in the same way, if (bi, . . . , &*_i, bf, bi+i, . . . , br) and (bi, . . . , br) are 
replaced by arbitrary commutators (that is, monomial commutators with 
parentheses arranged arbitrarily). 

Let gcd stand for greatest common divisor and gcd(«i, . . . , ak) stand for 
the gcd of the rational integers «i, . . . , ak. The gcd(«i, . . . , ak, 0) = gcd 
(«i, . . . , ak). This should not be confused with (ai, . . . , ak), 3, member of 
Gk, G a group, since at Ç a group, and will not be rational integers (in this 
paper). A cyclic group of order 0 will be understood to be infinite cyclic. 

LEMMA 1. Let 

F = ILU*^, 
A i cyclic of order at. Let at generate A t. Let n > 3 be a fixed positive integer, and 
let all primes appearing in the factorizations of the at > n — 1. Let G = F/Fn. 
If v G G, and 

v = (az-n . . . , aik), 

then vN = 1, where 

N = gcd (ailf . . . ,aik), k > 2 

(some of the atj (or atj) may equal each other). If w is a product of commutators 
like v in which every commutator contains all the distinct at appearing in v, then 
wN = 1. Hence wN = 1 where w is an arbitrary commutator. 

Proof. Let 

v = (atl, . . . , ain_x) Ç Gn-L 

By (6) 

(14) 1 = (an, . . . , a"1/, • • • , CLin-i) = (a*i, • • • , CLinSij Y\ v"mj 

1 < j < n - 1 

where all vm = 1 since Gn = 1. Hence the Lemma holds for k = n — 1. Since 
Gn-i is Abelian, wN = 1 if w is a product of commutators of weight n — 1 
in which the same at appear in each commutator. 

Suppose true for k + 1, that is, if 

v = (atlJ . . . ,aik+l), 

then vN — 1 where 

N = gcd(«ft, . . . , a t t + 1 ) , 
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and if w is a product of commutators of weight k + 1 or greater in 

a ii, . . . , a ik + 1 , 

then wN = 1. Consider (ah, . . . , aik). By (6) 

(15) 1 = (o l n . . . , a ? , . . . , aik) = (aiu . . . , ai}f
ij U v%W 1 < j < k. 

n t£(afy) = i 
by the induction hypothesis, and the assumption on the primes; hence 

(atl, . . . ,aik)
a%i = 1. 

Hence 

(ailf . . . , a**)* = 1 where A7 = gcd(ah, . . . , aik). 

Making use of (4), one obtains that if w is the product of commutators of 
weight k or greater in ail} . . . , aik1 then wN = 1. Note that every factor of 
w must contain all the distinct atj, and that in a nilpotent group, every com­
mutator can be expressed a product of commutators of the form (atl, . . . , aik). 

For the case n = 4, (5) becomes: 

LEMMA 2. If G is any group and a, b £ G, £&ew 

(16) (a\bs) = (a,b)r\(a,b),ay(*)((a,b),b)r(*) mod G4, 

(6r, as) = (a, &)"rs((a, b), a)~T^ ((a, 6), 6)"s(ï) mod G4f 

Lemma 2 is proved in (14) and is a particular case of (5) in which the/*(rc) 
have been computed. The proof of (16) is based on the work of Magnus (11). 

2. The "well-behaved" case. 

THEOREM 1. Let A\, A2, Az be cyclic groups of orders ai} a2l «3 respectively, 
at odd integers. Let at generate At. Let 

Let uiy . . . , uu be a sequence of standard monomial commutators of non-
decreasing weight in a,\, a2, &3 of weight < 3. {See (7).) Let Nt = at if ut is 
of weight 1; let Nt = gcd(o^, aj) if ut = (au a3), and let Nt = gcd(au ah ak) 
if au ajy ak appear in ut of weight 3. Then every element of g of F/ F± can be 
uniquely expressed as 

(17) g = I l n? 

where the ct are integers modulo Nt. If 

A = n »? 
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is another element of F/F4, then 

gh= n «? 
where et = fi{ch dk) are the polynomials with integral coefficients of Theorem H I . 

(Theorem 1 is a generalization of a lemma appearing in (15).) 

Proof. By Lemma 1, ut
Ni = 1. Hence every element of G can be expressed 

in the form of (17) where the ct are integers modulo Nt. The problem is to 
show t h a t this expression is unique. 

Let «1, . . . , «H be ah a2, aZ} (ax, a2), (»i, a3), (a2, a3), (a l f a2, a i ) , (ax, a3, a i ) , 
(fl2, a3f a2) , (ai , a2, a2) , (ax, a3, a3), (a2, a3, a3), ( a b a2, a3), (a2, a3, a i ) , respec­
tively. If another sequence of s tandard commuta tors is chosen, a similar proof 
will hold. Since (aif aj), i 9^ j generate (G, G) modulo G3 and since 

((a, b), c)({b, c), a) ( (c , a ) , 6) = 1 modulo G4 (see (11)) 

and {au ajy ak) generate G 3 modulo G4, the «* specified above do form a 
basis for G. T h e following change of notat ion will be made : 

let Uij = (at, a3) and designate the corresponding cu du et by cih dih ei0 

respectively ; 

Let Uiji = (au aj, a*) and designate the corresponding cu du £% by c ^ , 
diju etji where i < j ; 

let Uijj = (au aj, aj) and designate the corresponding cu du et by cijj} 

dijjj etjj where i <j; 

let uijk = (au ah ak) and designate the corresponding cu diy et by cijk, 
dijic, eijk where i < j < k; 

let Ujjci = (aj, ak, at) and designate the corresponding cu du et by cjki, 
djki, ejki where i <j < k. 

For Theorem 1, ujki and uijk are «23i and «i2 3 respectively, bu t the more 
general notat ion is used here for the sake of Theorem 2. 

Then a somewhat laborious computa t ion gives 

e i c i ~x~ a ï 

e ij == c ij ~j~ a fj c ja 1 

&iji z= Ciji ~T~ CLiji Cj\ ~ I -\~ CfjCLi 

&iij = Cijj + dijj — dA ^y ~t~ cijdj — didjCj 

Cijk = cijk ~r dijk + Cikdj + Cijdk diCjCk ckdidj Cjdidk 

ëjki = Cjki ~T" djki + Cjkdf + Cijcdj — Ckdidj. 

(18) 
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Note that these are the/*(^ , dk) of Theorem HI for n = 4, and the particular 
sequence of ut chosen here. Also note that they apply unambiguously if they 
are interpreted as integers modulo the appropriate gcd. For example, em is 
an integer modulo gcd(«i, a2) ; c2, dh and cu appear in its formula, but since 
c2, di, and C\i are integers modulo a2, au and gcd («1,0:2) respectively, no 
ambiguity arises in the computation of a particular em- By Theorem HI , if 
one takes 14-tuples, (ci, . . . , cu), (d\, . . . , du), Cu dj rational integers and 
lets (18) define a multiplication, a group isomorphic to F/F4 (free nilpotent 
group) ( F a free group) is obtained. The same proof will go through if the 
cu dj are integers modulo the appropriate gcd. (One can also check the group 
axioms directly, a tedious verification.) Note that at odd is essential here, 
since (18) involves 

( * ) • ( 2 ) ' 

and this will give difficulty if one is dealing with integers modulo an even 
integer. 

THEOREM 2. Let Aly . . . , A t be cyclic groups of order «i, . . . , at respectively, 
ai odd integers or 0. Let at generate At. Let 

F= W *At. 
1 = 1 

Let U\, U2, . . . , be a sequence of standard {monomial) commutators of non-
decreasing weight in the at of weight < 3 (see (7)). Let Nf = at if ut is of 
weight 1; Nt = gcd(a*, a3) if ut = (aiy a3) and Ni = gcd(a:î-, aj, ak) if au ah ak 

appear in ut (of weight 3). Then every element of F/F4 can be uniquely expressed 
as 

g = n «? 
where ct are integers modulo Nt. (If Nt = 0, then ct is a rational integer.) If 

A = n UV 
is another element of F/F±, then 

gh= n ^ 
where et = fi(cjy dk) are the polynomials with integral coefficients of Theorem HI . 

Proof. The proof is the same as that of Theorem 1. (18) is a multiplication 
table for G provided the standard commutators are arranged in the order: 
ah (audi), (auaj,al), (auaj}aj), (auaj,ak), (ajyak,ai) with i < j < k. 

Comment. Since every finite nilpotent group is a direct product of prime 
power groups, the at may be assumed to be prime powers or 0. 

COROLLARY 1. Let 

g = n «? 
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be a particular element of G. Then gN = 1 where N is the least common multiple 
of the orders of the ut

Ci appearing in g unless g $ (G, G) and 3\N. In the latter 
case, g*N = 1, and g may be of order 3iV. If any of the ut appearing in g are 
infinite cyclic, then g is of infinite order. 

The author is indebted to the referee for a simplification of the statement 
and proof of this corollary. 

Proof. If g £ (G, G), then since (G, G) is Abelian, the Corollary follows. If 
g contains a ut which is infinite cyclic, then by (4) and the unique repre­
sentation of g, g must be infinite cyclic. If g (£ (G, G), and all the factors are 
of finite order, then at least one of the ut is equal to an ay. Looking at (4) 
with the n of (4) put equal to N, it is obvious that gN = 1 (Lemma 1 is used 
here) provided 3 \ N, since the ft{N) will involve iV, 

(? ) - a n d ( f ) -
(All commutators are of weight < 3). 

If 3]Ar, i.e., 3\cùj for an a;- appearing in g, then the above reasoning indicates 
that g3A = 1. g can actually be of order 3iV; for example, if 

(19) G = {a, b | a3 = P = 1, G4 = 1} 

an actual computation shows that ab, ab2, a2b, and a2b2 are of order 9; in 
this case 

(20) (aW)8 € G8. 

Another way of seeing this is to consider equation (7) of (14) (due to 
Sanov) that is, 

(21) ((<*,&),&)*"€ F(N)F* 

where F can be any group generated by a and b and F (À7) is the normal 
subgroup generated by all N = 3N' powers of elements of F. If a and b are 
of order i\7 and if all elements of F/F4 were of order N (or less), then ((a, b), b) 
would be of order <|iV and not N as Theorem 2 indicates (that is, / = 2, 
a\ = a.2 — N). 

Comment. The group G given by (19) is a kind of curiosity, for ^-groups, 
since it is not regular in the sense of Hall (5, p. 73). However all groups of 
the form 

(22) G = {a, b\apa = bp" = 1, G4 = 1} 

with p > 5, p a prime, are regular groups in the sense of Hall. 
A similar comment can be made in connection with 

(23) G = {a, b\a2 = b2 = 1, G3 = 1}, 

a group of order 8. 
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COROLLARY 2. The group St = {a f |l < i < /, sz = 1, 5 6 S*} w wo/ a 
nilpotent product of cyclic groups of order three, except for t = 2 when S2 = Fl Fz, 
F = {ai}*{a2}. However, St is a fully regular product (see [1]) of the {at}, and, 
in particular, it is the third Burnside product of the {a^ (12). 

Proof. The only candidates for St to be a nilpotent product are the first 
(F/Fz) and second (F/FA) nilpotent products. (F a free product of cyclic 
groups of order three.) Since ((ai, a2), ai) ^ 1 in F/F4 while ((ai, a2), ai) = 1 
in St (cf. (9)), St cannot be a second nilpotent product. As for the first nil-
potent product (that is, F/Fz), (ax, a2, a3) = 1 in this case, while (ai, a2, a3) ̂  1 
in 5Z. However, if £ = 2, S2 = F/'F$ where F is the free product of two cyclic 
groups of order three, and S2 = first nilpotent product of {a\} and {a2} (2, 9). 

THEOREM 3. Let A\, . . . , A t be cyclic groups of order alf . . . , at respectively. 
If Ai is infinite cyclic, let at = 0. Let at generate At; let F = n ^ = i * A t. Let 
n > 3 be a fixed positive integer and let all the primes appearing in the factori­
zations of the cti > n — 1. Let Ui, . . . , be a sequence of standard monomial 
commutators of non-decreasing weight in the a t of weight < n — 1. Let N t = at 

if Ui of weight 1, and 

Ni = gcd(af t, . . . , aik) if atj, 1 < j < k, 

appears in ut. Then every element g, of G = F/ Fn can be uniquely expressed as 

g = n «? 
where the ct are integers modulo Nt. (If Nt ; = 0, ct is a rational integer.) If 

h= n «i* 
is another element of F/Fn, then 

where et = fi(cj, dk) are the polynomials with integer coefficients of Theorem H I . 

We note that if F were free, the ut of weight k would form a basis for 
Fk/Fk+1, see (7). 

Proof. The proof is exactly the same as that of Theorems 1 and 2. Lemma 1 
shows that the orders of the ut are as stated in the theorem, so that every 
element of g is of the form stated, and the only problem is uniqueness. As 
in Theorem 1, one can theoretically compute a multiplication table similar 
to (18). This is computed by multiplying 

ci Co d\ d<, ci Ca — i di Co / c» d\\ d% 
Ui . . . Us

8 . U i . . . Us
s = U\ . . . Us-i Ui Us

8 (Us , Ui) Ui . . . 

etc., and using (5), (6), or (10), or a suitable modification of them. The 
coefficients of the multiplication table will involve 

<•*(?)• ft) I/-2). ( A ) -
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Note that the fk(n) of largest order will come from applying (5) and (10) to 

(ue
9',uï) or (uef,u\\)i <j 

and since in (5) one is dealing with commutators in X and (X, F), the corre­
sponding coefficients of the fi(cj, dk) will involve at most 

C%)'(»-'2) «* C-i)-Ci'i)-
Hence, since all the primes of the aj > n — 1, no ambiguity will occur because 
the Ci and dj are taken modulo the appropriate gcds. Hence Theorem HI can 
be used with the fi(cj} dk) considered as integers modulo the appropriate 
gcds, and this is sufficient to prove the theorem. 

COROLLARY. Let 

g = n «? 
be the unique representation of an element of G. Let N be the least common 
multiple of the orders of the uf* appearing in g. 

Case I. If one of the u t is infinite cyclic, then g is infinite cyclic. 

Case II. All the primes appearing in the orders of the Ui are greater than n — 1 
OR g Ç (G, G), (g is assumed to have factors which are all of finite order.) Then 

Case III. g $ (Gy G) and p (a prime) = n — 1 and p appears in the factori­
zation of one of the aj where aj is a factor of g. Then gvN = 1, and there are cases 
where gN ^ 1. 

Proof. Case I follows from (4) and the uniqueness of the representation 
of g. (Consider what happens in (4) to the infinite cyclic ut of least weight.) 
For Case II, consider (4) where Ri = ut

Ci (of g). If every ut (of g) G Gn-i, 
then (4) gives gN = 1. If g 6 Gn-S, use induction on s, (4), (6) Lemma 1, 
and the fact that the ut of (4) can be expressed as products of commutators 
of the form 

\CLin • . . j &ik)' 

If all the primes appearing in the aj of ut (of g) are greater than n — 1, the 
fi(N) of (4) will involve 

0 L"-ù-
and N\fi(N), hence 

u?m = 1 
and gAr = 1. If g G (G, G), then the same proof holds except that the ft(N) 
involve 
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\ 2 / ' ' ' * ' \n - 2/ ' 

For Case III, iî p = n — 1, p a prime, and for some a} (appearing in g, p\a} 

(hence p\N), then 

\n - 1/ = \p J 
may cause difficulty, but in any case, 

and hence gvN = 1. If «i = a2 = . . . = at = px = N where p = n — 1, then 
according to Sanov (13), 

(alf a2, . . . , a2)pX_1 G F(p*)FP+1 = F(£X)F. (£ = « - 1) 

p — 1 times 

where 

/?(px) = {x
pX|x e i7} . 

If ^A = 1 for every element of F/Fn, 

(ai, a2, . . . , a2) 

p — 1 times 

would have order ^x _ 1 or less which contradicts Theorem 3 (according to 
which (a 1 y a2, . . . , a2) has order px). Hence there exist elements which have 
order pK+l = pN. In view of the Corollary to Theorem 2, probably 

(aia2)
v 9e 1. 

Comment. If a / = 1, 1 < i < 2, n <^ p, pa. prime, all elements of G are 
of order p, and hence G is a factor group of the Burnside group B with ex­
ponent p in t generators. In (10) and (13) it is shown that Bs/Bs+i has the 
same rank as Fs/Fs+1 (F the free group with t generators) for s = 1 , 2 , . . . , 
p — 1. This provides a partial vérification of Theorem 3. 

Comment. In (4) Gruenberg states and proves ''Hall's Second Basis 
Theorem." It is essentially Theorem 3 for the case a\ = a2 — az = . . . 
= a i = px and n < p. Theorem 3 shows that Hall's Second Basis Theorem 
holds "one step further" for n = p + 1. 

3. The "ill-behaved" case. If p < n — 1, the proofs above break down 
The case of A = {a}, B = {b\, a2 = b2 = 1 is of interest. In F = ,4*£ (the 
free product of A and B), (A, B) is infinite cyclic and generated by (a, b). 
Since 
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(24) 1 = (a, V) = (a, by ((a, b),b), 

(a, b)2 € Fz. Similarly 

1 = ((a, b), 62) = ((a, b), by(((a, b), b), b) = (a, *)-«(((«, b), b), b). 

By induction, 

ta,bfn-2 £Fn; 

hence in F/Fn, 

(a, o) = 1. 

By (8), the Fn, n = 1, 2, . . . , are all distinct and hence (A, B) in F/Fn is 
exactly of order 2n_1 and F/Fn is of order 2n. 

That this is not a freak case can be seen from Theorem 4 below. Since 
finite nilpotent groups are direct products of prime power groups, it is sufficient 
for n = 4 to discuss the case of p = 2. 

THEOREM 4. Let At = {a^, 1 < i < t be cyclic groups of order 2 r \ Let 
ri<r2< ... <rt. Let F = I~I W ^ *• ^ G = F/F,. Then every element 
of G can be expressed uniquely in the form 

c'2) o C
( 3 > 

(25) aïal2 . . . a? JJ (Pu aj)Cl}(a\, aj)°ij (au af)°ij • 
i<3 

I l ((Oi,Oi),o*)Mit((oy,o*).o*)' ,M 

where the cu cih £ i / 2 \ cijky cjki are integers modulo 

2rS 2r»+1, 2r»-1, 2r», 2r» 

respectively while c*/3) are integers modulo 2r*-1, if rt = rh and 2U if rt T6- r J. In 
particular, {au a3) is of order 2Ti+1 for i ^ j . 

Formulas for multiplying two elements of G are given below. 

Proof. Let a, b, c be three of the at of orders na, nb, nc, respectively, 
na < nb < wc. By (16) 

1 = (a
na,b) = (a,ô)Wa(a,&,a)(2a),a, 6 G G. 

From the work of Magnus (11), it follows that 

1 = (a, b, a)na = (a, b, b)na = (a, 6, c)*a = (b, c, a)na in G. 

Since (G, G) is Abelian, and (̂ °) = na/2 (mod na) 

(26) (a, 6)2re« = 1 
and 
(27) (a, 6)-w« = (a, 6)w« = ((a, b), a ) K 

If na = nbl the same reasoning gives 

(a, ô)w» = ((a,ô), ô ) K 
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However, if na < nby all that can be said is ((a, 6), b)Ha = 1. In view of (26) 
and (27), computing a multiplication table using a representation such as 
(18) would be somewhat complicated; to avoid this difficulty, note that in G 

(o*,b) = (a,by((a,b),a) 
( } (a,P) = (a fft)»((a f6) fi) 

and hence {(a, b), ((a, b), a), ((a, b), b)} = {(a, b)y {a, 62), (a2, 6)}. Now, using 
(27) and the fact that (G, G) is Abelian, 

(a2, J)W = (a, 6)M(a, 6), a ) W = 1. 

If na = nbj then (a, 62)^« = 1? while if na < nbl 

(a, b2)n* = (a, è)2w«((a, 6), b)n" = 1. 

Hence every element of C7 can be expressed in the form of (25). If one multi­
plies two elements like (25), that is, let 

c = a?a? . . . (at, a,)"' . . . ((a„ a,), ak)
cijk. . . 

d = aZlaî* . . . (au a,)dij . . . ((af, a,), a*)di''fc . • . 

e = a{laf . . . (at, a3)
eij . . . ((ah a3), ak)

eiik. . . 

with e = c-d, then 

e% = Ci + di 

etj = ctj + du — 2a(ci:j)di — 2a(cij)dj — Cjdt + 2cA * ) 

+ 2dt\£j + 2 cjdid, 

(29) eft = c% + d% + a(Cij)di - cjç) 

efj = c™ + d{i] - di\J) + <x{ci3)dj - c$4j 

Cijic = Cijk -\- dijjc -\- (xyCijcjdj Cjcdidj diC3ck -\- ocyCijjd^ Cjdid^ 

ejki = Cjjci + djki + a(cjk)di + a{cik)dj — ckddj 

where 

&\Çij) — Cfj ~\~ ^Cfj ~t~ "Cij . 

Here there appear to be a few problems as to ambiguities, since, for example, 
dt is an integer modulo 2Ti and appears in the computation of ei3 which is an 
integer modulo 2Ti+l. However, if dt is replaced by dt + 2 r \ then 

Cjdt + 2 c,(£) + 2dt(£) 
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remains unchanged modulo 2ri+1. Similar reasoning applies to other cases of 
apparent ambiguity. 

We can now proceed as in the proof of Theorem 1 and construct a group 
H made of 

*+3(0+2(0 -tpies 

with multiplication as indicated by (29). The verification of the group axioms 
is straightforward, but tedious. 

It might be asked whether or not a modification of (18) could not be used 
instead of (29). There are several difficulties: in the case of p = 2, the etj 

are integers modulo 2 r i+1 , but ch dt which appear in the formula for e^ are 
integers modulo 2H (assuming rt = rj). Similarly if rt = rj} da is an integer 
modulo 2H and (f) will cause difficulties, since it is not unambiguously 
defined modulo 2H. If one decides to let c^ be integers modulo 2Ti, then the 
fact that 

(att a,) = (a,, a,, at) (see (27)) 

means that the multiplication formulas would have to take into account in 
some way the fact that the order of (au a3) is 2r*'+1. The author tried to 
think of a device to get around these difficulties, but was unable to do so. 

If one attempts to carry out computations for the general case, with 
p < n — 1, then by using (5) and (6) one readily obtains Lemma 3 below. 
Since nilpotent groups of finite order are direct products of ^-groups, we 
consider only the case of ^-groups here. 

LEMMA 3. Let Ai, . . . , A t be cyclic groups of order 

P ,...,P 

respectively. Let at generate At. Let F = 17 W* ^4*. Let G = F/Fn; let 

v = (atl1 ai2, . . . ,air) € GT. 

Let 

a = min (aiu . . . ,air). 

Then 

(30) vpa e GH-(*-I) 

VP Ç Gr+(j+l)(p-l) J = 0, 1, 2 . . . . 

If w Ç GT, then w can be substituted for v in (30). 

Proof. The proof follows by induction (r = n — \,n — 2 , . . . , ) and uses 
(6) and (4). 

Note that (20) is a special case of (30) with w = alb\ r = 1, p = 3, a = 1, 
j = 0, n = 4. Similarly, using group (23), one obtains another special case 
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of Lemma 3, with w = ab, r = 1, p — 2, n = 3, a = 1, j = 0. This gives 
rise to the conjecture that these may be the best possible results in the 
following sense: 

Conjecture. In the notation of Lemma 3, the order of v is pa+i, where j is 
the least integer such that 

r + (j + !)(/> ~ 1) > n. 
However, the author was unable to think of a way to prove that the order 

of v is exactly pa+j and not something less, nor of a manageable method to 
solve the general case of p < n — 1. 
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