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Abstract

Let A be a subset of N, the set of all nonnegative integers. For an integer & > 2, let hA be the set of all
sums of / elements of A. The set A is called an asymptotic basis of order 4 if 7A contains all sufficiently
large integers. Otherwise, A is called an asymptotic nonbasis of order 4. An asymptotic nonbasis A of
order £ is called a maximal asymptotic nonbasis of order 4 if A U {a} is an asymptotic basis of order h
for every a ¢ A. In this paper, we construct a sequence of asymptotic nonbases of order /4 for each i > 2,
each of which is not a subset of a maximal asymptotic nonbasis of order 4.
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1. Introduction

Let N denote the set of all nonnegative integers and let A be a subset of N. For an
integer h > 2, let hA denote the set of all sums of / elements of A. The set A is called
an asymptotic basis of order 4 if hA contains all sufficiently large integers. Otherwise,
A is called an asymptotic nonbasis of order 4. An asymptotic basis A of order £ is
minimal if A\ {a} is not an asymptotic basis of order % for every a € A. Dual to the
idea of a minimal asymptotic basis is that of a maximal asymptotic nonbasis. A set A
is called a maximal asymptotic nonbasis of order h if A is an asymptotic nonbasis of
order /2 but A U {a} is an asymptotic basis of order % for every a ¢ A.

The question of whether every asymptotic nonbasis of order /4 is a subset of some
maximal asymptotic nonbasis of order 4 was originally posed by Nathanson [5] and
repeated by Erdés and Nathanson [2, 3]. Hennefeld [4] constructed an asymptotic
nonbasis, A, of order & for 4 > 2 which is not a subset of a maximal asymptotic
nonbasis of order 4. The example is

A = {1} U {h} U {all multiples of h, except for q1, ¢, . . .},

where {g;} is an increasing sequence of multiples of &, with lim(g;; — ¢;) = co.
Recently, Alladi and Krantz [1] remarked that the set of even nonnegative integers
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is a trivial example of a maximal nonbasis of order £ for every 4 > 2, and one can
construct many other examples that are unions of the nonnegative parts of congruence
classes. It is difficult to construct nontrivial examples. In this paper, we extend the
result of Hennefeld.

Tueorem 1.1. Suppose h > 2, r€{0,1,...,h— 1} and (r,h) = 1. Let {g;}72, be a
sequence of positive integers with 0 < q; < gy < ... and lim(g;y1 — q;) = . Then
A = {r} U {h} U {all multiples of h, except for q\h, q2h, ...} is an asymptotic nonbasis
of order h which is not a subset of a maximal asymptotic nonbasis of order h.

Tueorem 1.2. Suppose h>2, r€{0,1,...,h— 1} and (r,h) = 1. Let {g;}2, be a
sequence of positive integers with 1 < g < qy < ... and lim(g;+; — g;) = oo and let
xi=qh+ri=1,2,.... Then

A = {0} U {all positive integers congruent to r (mod h), except for x1, xa, ...}

is an asymptotic nonbasis of order h which is not a subset of a maximal asymptotic
nonbasis of order h.

2. Proof of Theorem 1.1

By Hennefeld’s theorem [4], it is sufficient to prove Theorem 1.1 for i > 3. Clearly,
since r is the only element of A not congruent to O (mod #), kA will miss all integers of
the form g;h + (h — 1)r. Thus A is an asymptotic nonbasis of order 4. Suppose n > hr
and n # (h — 1)r (mod h). Since (r, h) = 1, the set {0, 7, 2r, ..., (h — 1)r} is a complete
set of residues modulo % and so there exists a positive integer k with 0 < k < h — 2 such
that

n = kr (mod h),

sayyn=qgh+kr.Ifg—(h—k—-1) ¢{q1,q,...}, then
n=gh+kr=[g—-(h—-k—1D)h+(h—-k—-1h+kr

Thus 7 is the sum of & elements of A. Suppose g — (h—k —1) € {g1,9>,...}. Since
lim(g;+1 — ¢;) = oo, there exist m, M € N such that ¢, + 1 < g,,+1 and g; — g;—1 > g, for
all i > M. Thus, when g — (h — k — 1) > gy,

n=gh+kr=[g—-(h—-k—-D)h+"h—-k—-1)h+kr
=lg-th-k—-1)—qulh+(qu+ Dh+(h—-k—-2)h+kr
and, again, n is the sum of & elements of A. Also, for any positive integer g ¢
{q1,q92,...}, gh+ (h— 1)r e hA. So all but a finite number of positive integers that
hA misses are integers of the form g;4 + (h — 1)r.
We claim that if x is any positive integer greater than zero, which is not congruent

to 0 (mod #), then A U {x} is an asymptotic basis of order h. Let x = gh + kr with
1 <k<h-1.1If k=1, then, for any sufficiently large i,

gh+h-Dr=0-1)x+[q;,—(h—-1)qg]h.
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Thus g;h + (h — 1)r is the sum of & elements of A U {x}. If 2 <k < h -1, then
gh+h-Dr—-x=(@—q@h+(h-1-kr.
Notethat 0 <h—-1—-k<h-3.Ifqgi—qg—(k—1)¢{q1,9,...}, then

gh+h—-Dr—-x=(@q—-q@h+Hh-1-kr
=lgi—qg—(Gk—D]h+k—-Dh+h-1-kr
Thus g;h + (h — 1)r — x is the sum of h— 1 elements of A. If g —g—(k—1)¢€
{q1,9>,- . .}, then, since lim(g;;, — g;) = oo, there exist m, M € N such that g,, + 1 < g;+1
and g; — gi—1 > g for all i > M. Thus, when ¢; — g — (k— 1) > qu,
gh+th-Dr—-x=(@q—-g@h+th-1-br
=lgi—qg—-k-Dlh+k-Dh+h-1-kr
=lgi—g—-k-1)—gulh+(@n+Dh+(k-2h+h-1-kr
Thus g;h + (h — 1)r — x is the sum of A — 1 elements of A and g2 + (h— 1)r =
x + [gih + (h — 1)r — x] is the sum of & elements of A U {x}.

Therefore, the only possibility for extending A to a maximal asymptotic nonbasis is
by adjoining B, a subset of {g, /4, g»h, . ..}. However, if there are an infinite number of
g;h missing from B, then A U B will be a nonbasis which is not maximal. If there are
only a finite number of g;4 missing from B, then A U B will be a basis. In neither

case will A U B be a maximal asymptotic nonbasis. This completes the proof of
Theorem 1.1.

3. Proof of Theorem 1.2

Since (r,h) = 1,kr £ r (mod h) for any k with 2 < k < h. Clearly, since zero is the
only element of A not congruent to r (mod /), hA will miss all integers x;. Let n > hr
and n # r (mod h). Since (r, h) = 1, the set {r, 2r, ..., hr} is a complete set of residues
modulo % and so there exists a positive integer k with 2 < k < & such that

n = kr (mod h).
Letn=qh+kr.If g ¢ {q1,q>,...}, then
n=(k-1r+(gh+r)ekAChA.

If g €{q1,q2,...}, take m € N such that ¢; — g;—; > 2 for all i > m. Then, except for a
finite number of n,

n=((k-2)r+(+r)+[(g—1h+r] €kAChA.

Thus all but a finite number of positive integers that 2A misses are integers x;.
We claim that if x is any positive integer greater than zero which is not congruent
to r (mod h), then A U {x} is an asymptotic basis of order /.
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If x=0 (mod h), then there exists a positive integer g such that x = gh. Since
lim(g;+1 — q;) = oo, there exists an m € N such that g; — ¢;_1 > ¢ for all i > m. So, for
alli > m,

Xi=x+ (- x)=x+[(gi —@h+r],

that is, x; € 2(A U {x}) C (A U {x}).
If x £ 0 (mod h), then h > 3 and, for all i, x; — x £ 0, 7 (mod /). Thus there exists
a positive integer 2 </ < h — 1 such that x;, —x =1Ir (mod h). Let x, —x=th+1Ir. If

t¢1{q1,92, ...}, then
xi—x={(-Dr+@h+r).

Thus x; — x is the sum of [ elements of A. If 7 € {¢1, ¢2, ...}, choose m € N such that
qi — qi—1 = 2 for all i > m. For all large enough i,

Xi—x=U=-2r+th+r)+[(t-Dh+r]
and so x; — x is the sum of / elements of A. Hence
xi=x+(xi—x)e(+ 1DAU{x}) Ch(AU{x)}).

Therefore, the only possibility for extending A to a maximal asymptotic nonbasis is
by adjoining B, a subset of {xi, x», ...}. However, if there are an infinite number of x;
missing from B, then A U B will be a nonbasis which is not maximal. If there are only
a finite number of x; missing from B, then A U B will be a basis. In neither case will
A U B be a maximal asymptotic nonbasis. This completes the proof of Theorem 1.2.
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