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Abstract. In order to analyse generic or typical properties of dynamical systems we consider the space Y 
of all C1-vector fields on a fixed differentiable manifold M. In the C1-metric, assuming M is compact, Y 
is a complete metric space and a generic subset is an open dense subset or an intersection of a countable 
collection of such open dense subsets of "T. Some generic properties (i.e. specifying generic subsets) in Y 
are described. For instance, generic dynamic systems have isolated critical points and periodic orbits 
each of which is hyperbolic. If M is a symplectic manifold we can introduce the space J f of all Hamiltonian 
systems and study corresponding generic properties. 

1. Copernican Astronomy as a Natural System 

Nicolaus Copernicus designed his model of the Solar system to achieve the greatest 
simplicity, within his physical and philosophical axiomatic framework. He sought to 
eliminate the unnecessary hypotheses of the Ancients concerning coincidences and 
correlations of planetary orbits by explaining these orbits in terms of his heliocentric 
kinematics. He wrote, "I correlate all the movements of the other planets and their 
spheres or orbital circles with the mobility of the Earth." 

Much current research in the mathematical theory of dynamical systems proceeds 
in this same spirit - to eliminate the special situations depending on coincidences and 
correlations and to concentrate on the mathematically typical or generic cases. Of 
course, what is considered typical depends on the range of possibilities permitted. For 
instance, Copernicus allowed only uniform circular motions; but within the framework 
of Kepler-Newton geometry all circular orbits would be discarded as ungeneric 
ellipses. 

The Copernican model of the Solar system consists on the central star Sol sur­
rounded by a family of planets in concentric circular orbits. Of course, Copernicus 
perturbed the basic circular orbits by epicycles, and Kepler and Newton later intro­
duced more intricate elliptical perturbations, but the fundamental conceptual picture 
remains that of the Sun encircled by its family of planets. 

A different conceptual framework for the Solar system views this astronomical 
system as basically a double star, with components of Sol and Jupiter moving in 
almost circular orbits around their common center of mass. More detailed structure 
includes Saturn as a third star (or proto-star gas ball), and further the gas balls Uranus 
and Neptune, each moving in ever large circular orbits about the system mass center. 
Moreover each of these stars carries its own planetary system - namely Mercury, 
Venus, Earth and Mars about Sol, the Jovian satellites about Jupiter, and the other 
corresponding satellite systems accordingly placed. 

Whether we accept the Copernican model or the multi-star model of the Solar 
system is a philosophical choice rather than a scientific decision in our current state 
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of astronomical knowledge. In fact, the two physical models are kinematically, even 
dynamically equivalent - they differ only in the psychological emphasis arising from 
the renaming of Jupiter as a star rather than a planet. In some future era when there 
exists a comprehensive theory of planetary and stellar evolution and structure, it may 
be possible to select one of these two physical models as the prefered and established 
description. In terms of such an evolutionary stellar theory one of the above models 
might appear as 'more natural, simpler, and more typical' within the framework of 
the theory. If the Copernican model is vindicated then the evolutionary theory would 
have explained why there should be two types of solar planets, inner terrestrial planets 
and outer gaseous giants. If the multi-star model becomes accepted, then the evolu­
tionary theory would be expected to predict that most stars develop planetary systems 
in a natural way. But until a coherent astronomical theory of planetary systems is 
developed, there is no way of selecting one of these models as simpler or more natural 
than the other. 

The purpose of this philosophical discussion on the methodology of mathematical 
astronomy has been to underline the importance of the concept of natural or generic 
properties of dynamical systems. Accordingly much of the research of the past decade 
in the mathematical theory of ordinary differential equations has concentrated on the 
discovery and examination of such generic properties, with the attempt to discard 
ungeneric systems displaying any special 'coincidences and correlations'. 

2. Fundamentals of Global Differentiable Dynamics 

In order to present an exposition of the modern theory of generic dynamical systems, 
as conducted by many pure and applied mathematicians during the past decade, we 
shall briefly review some of the fundamental concepts of global differential geometry 
and analysis. 

We consider dynamical systems described by vector differential equations of first 
order, say 

dxi/dt = vi(x\ x2,..., xn), i= l , 2,..., n, 

since any higher order differential equations can be reduced to this form. For sim­
plicity of exposition we take time-independent or autonomous differential systems. 
But we emphasize that there is no supposition that these dynamical systems are 
conservative, or even arise from any Newtonian mechanical problem. At the end of 
this paper we shall mention some quite recent results that pertain to conservative 
Hamiltonian dynamics, but at present we make no such assumptions. 

In the theory of local dynamical systems we study differential equations in an open 
subset of the real number space Rn; whereas in global dynamics the space is a general 
differentiable mapifold Mw. We specify a global dynamical system as a tangent vector 
field vonMn; and in any local chart (x1,..., xn) on Mn we denote the dynamical system 
v by its components t/(x\..., xn), say 

(v) dx ' /d r^x 1 , . . . , xw), i= l , 2,..., n, 
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or 
(v) x = v(x). 

There are two basic motivations for studying differential systems on general differ-
entiable manifolds. 

(i) Mathematical motivation. It is of interest to study differential systems within 
the most general context for which the concepts of differentiation and mathematical 
analysis are meaningful. Thus we take the ambiant space Mn to be of arbitrary finite 
dimension w, and locally differentiably equivalent to Rn. That is, Mn is a differentiate 
n-manifold (separable, metrizable C°°-manifold without boundary), for instance Rn, 
or the n-sphere Sw, or the n-torus Tn. 

(ii) Physical motivation. Physical dynamical systems are often described by first-
order vector differential equations involving the displacements, velocities, angles, 
and other generalized coordinates. If the generalized coordinates are unrestricted 
real variables, then the space in which the system evolves in time is some real vector 
space Rn. However, frequently the generalized coordinates are restricted by constraint 
or energetic equalities, or account for some angular periodicities of the physical 
configuration, and in these cases the space of the system is some differentiable mani­
fold Mm. 

For instance, an ordinary planar pendulum has a configuration space of a circle S \ 
and a velocity-phase space of a product cylinder S1 x R1. A spherical pendulum has a 
configuration space of a sphere S2, and a velocity-phase space that is the tangent bundle 
TS2. The configuration space of a rigid rotor is the rotation matrix group SO (3), 
which is diffeomorphic to the real projective space P3, and the velocity-phase space 
is the 6-manifold TP3 (which incidently is the product P3 x R3). 

Besides the greater generality and applicability, the main advantages of the global 
viewpoint for dynamics are: 

(i) The notation and methodology of global differential geometry (involving mani­
folds, vector fields, trajectory curves, etc.) are highly suited to the requirements of the 
problems of dynamics. Old problems can be carefully phrased and solved, and new 
problems and concepts are suggested. For example, a careful discussion of the spheri­
cal pendulum requires knowledge that the tangent bundle TS2 is not the product 
S2 x R2. New concepts of structural stability and genericity arise naturally when 
various dynamical systems are compared globally. 

(ii) The global viewpoint emphasizes the unified family of all the trajectories as a 
portrait of a given dynamical system, rather than singling out special trajectories by 
their initial data. This is particularly important in physical systems where we wish to 
classify and compare the diverse modes of asymptotic behavior of the trajectories of 
the system. 

Let Mn be a differentiable manifold and let v be a tangent Cr-vector field on Mn. 
Then in overlapping charts (x1,..., x") and (x1,..., xn) on an open set of Mn, the com­
ponents of v are, 

(v) x' = i/(x) and xz = i?(x), 
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where the contravariant vector transformation law holds for the C-functions 
(r=l , 2,..., oo) vl and v\ 

vl = (dx'/dx7) vj, (sum on j), i = 1,..., n. 

A solution or trajectory of this vector field or differential system v is a C1-curve, 

I->A4":t-tPt, (/ open interval in K), 

whose tangent vector at each point coincides with the vector of the field v. 
The usual local existence, uniqueness, regularity results are valid. That is, for each 

initial point P0eMn there exists a unique trajectory Pt of v through P0 at t=0 (and 
defined on some maximal time duration I). If Mn is compact (and we shall assume this 
henceforth for simplicity of exposition), the maximal interval I is all R. In this case the 
solutions of v define a Cr-flow or action of R on Mn. That is, there is a C-map, 

<P:RxMn->Mn:(t,P0)->Pt, 

and for fixed teR, 

*t'Po-+Pn 

is a Cr-diffeomorphism of Mn onto itself, and the group property holds for all times tu 

<Ptlo<Pt2 = <Pti+t2, <f>0 = Ident i ty . 

Every trajectory of v on Mn is either 
(i) a point P0, 

(ii) a C-diffeomorphic image of a circle S1, 
(iii) a bijective regular C-differentiable image of a line Rl. 

The case (i) is a critical point where v vanishes at P0, case (ii) corresponds to a 
periodic solution or closed orbit, but case (iii) can lead to curves that are not topological 
lines, say for an irrational flow on the torus Tn. 

An invariant set I of v on Mn is a subset that is the union of whole trajectories oft;. 
That is, a subset I c M " is invariant for the flow of v in case each trajectory initiating 
in I remains forever in I. Of course, a critical point or a closed orbit is necessarily an 
invariant set. Also, for each initial point P0 in the compact manifold Mn, the past 
(negative) and future (positive) limit set of the trajectory Pt 

«(Po)= O T 7 ^ and co(P0)= n U * [ , 

are each compact connected invariant sets. Clearly cc(P0) and co(P0) depend only on 
the trajectory Pt and not on the initial point P0. If P0eco(P0) then Pt is called future 
recurrent or Poisson stable, and P0 is recurrent if it is both past and future recurrent. 
A rather weaker property is regional recurrence of P0 - namely each neighborhood 
U of P0 in W has a trajectory Ut that meets U for some arbitrarily large past and future 
times. The set Q of all regionally recurrent points, usually called the nonwandering 

https://doi.org/10.1017/S0074180900070315 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900070315


MODERN DYNAMICAL SYSTEMS THEORY 15 

set, is a compact invariant set containing all critical points, periodic orbits, and 
recurrent trajectories of the dynamical system v. 

An invariant set I for the flow v in Mn is called future stable in case: for each 
neighborhood Woi I in Mn there exists a subneighborhood WxaW such that P0e Wx 

implies that PteW for all future times t>0. If in addition co(P0)c:I then the set I is 
future asymptotically stable (and analogues statements hold for past times). 

We illustrate these concepts of recurrence and stability by some examples of in­
variant sets for flows in vector spaces and cylinders. 

Example 1. x = Ax for xeRn and A real constant matrix. If the matrix A is non-
singular, with complex eigenvalues Al9 A2,..., K not zero, then the origin x=0 is the 
unique critical point. 

If no eigenvalue of A is pure imaginary, that is Re A7#0, then the origin x = 0 is 
called a hyperbolic critical point. Define the attractor (stability) set of all points 
PeRn for which co(P)=0, and similarly the repellor (instability) set by a(P)=0. Then 
the attractor set is a linear subspace whose dimension equals the number of eigen­
values whose real parts are negative. Also x = 0 is asymptotically stable just in case 
the attractor space is all Rn. 

Now consider a C1-differential system v on a differentiable manifold Mn. Let P0 

be a critical point for v and take a local chart (x) centered at P0 to write the differ­
ential system 

(v) x = Ax H—. 

We define P0 to be a hyperbolic critical point of v in case no eigenvalue of A is pure 
imaginary. In this case we define the attractor and repellor sets and prove that these 
are each C1-differentiable submanifolds of M", in fact they are each regular bijective 
images of vector spaces of the appropriate dimensions. 

Example 2. x = Ax and 0=1 , where xeRn~l and OeS1. Here the manifold Mn = 
= JR"~1 x S1 is a cylinder. There are no critical points but the circle, x=0 , O^0< 1, 
is a periodic orbit a. The Poincare map around this periodic orbit a is given by 
x0-*eAx0, and its eigenvalues fil,...,fin^l are the (nontrivial) characteristic multi­
pliers, and/i„ = l. 

If none of the characteristic multipliers has a modulus of unity, |/*,| ^ 1 for all 
1 <7<n — 1, then the periodic orbit is defined to be hyperbolic. Again we define the 
attractor set by co(P)ca and the repellor set by a(P)c=a, and it is clear that these 
are each cylinders of dimensions specified by the moduli of the characteristic multi­
pliers. 

Now consider a (^-differential system vona differentiable manifold Mn. Let a be 
a periodic orbit of v with Poincare map of a transversal section yielding the charac­
teristic multipliers ^1 , . . . , / in_1 . If all |jij|#l then a is a hyperbolic periodic orbit. 
Again the attractor and repellor sets are C^-submanifolds which are regular bijective 
images of either cylinders or generalized nonorientable Mobius bands, depending on 
the moduli and arguments of the complex characteristic multipliers. 
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3. Generic Properties of Dynamical Systems 

Let Mn be a compact differentiate manifold. Denote by if the set of all dynamical 
systems, that is, C^vector fields on Mn. In order to make precise our ideas of per­
turbation and approximation of dynamical systems in if we specify the C1-topology 
in if. Namely, two vector fields u and v in if are nearby one another in case their 
vector components, and also the corresponding first partial derivatives, are nearly 
equal, 

|M*(JC) —w'(jc)|<e, 

and 
dul dvl\ 

<e, 1,7 = 1,..., n. 

Here the components are expressed in some fixed finite collection of local charts 
covering Mn. Define the metric distance ||M — !>||I between the vector fields u and v 
in if as the infimum of all such bounds s>0 for which the above inequalities hold 
globally on Mn. Then it is known that if is a complete metric space, in fact a Banach 
space as defined by that distinguished Polish mathematician of the past generation. 

For the study of perturbations of differential systems the open sets of if are im­
portant. Recall that a set 0 is open in if in case any small perturbation of a member 
of 0 always yields a member of (9. For approximation theory of differential systems 
the dense sets of if are important. Namely, a set 2 is dense in if in case each member 
of if can be approximated by members of 3>. 

We define a generic set ̂  of if, or refer to a generic property specifying ^, when 
^ is a countable intersection of open and dense subsets of if. It is a standard theorem 
of Baire that a generic set of a complete metric space TT is dense in if. We think of 
a generic subset ^ of if as comprising almost all the members of if, with the com­
plement if— <& being a negligible collection of differential systems. With this termi­
nology we can now state some results concerning the generic properties of dynamical 
systems. 

DEFINITION. Let if be the metric space of all C1-vector fields on a compact differ-
entiable manifold Mn. 

Define the subset 9X of if to consist of all differential systems v'mif for which: 
ve9x has only a finite number of critical points and each of these is hyperbolic. 

Define the subset &2 of if to consist of all differential systems v'mif for which: 
ve &2 has> f°r e a c h integer A/> 1, only a finite number of periodic orbits with period 
less than N, and each of these orbits is hyperbolic. 

THEOREM. <S1 is open and dense in if. ^ 2 *s generic in if. 
We remark that it is then immediate that #u as well as the intersection (Slr\<S1, 

is generic in if. In this sense almost all differential systems in Y have isolated and 
hyperbolic critical points and periodic orbits. 
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4. Generic Properties of Hamiltonian Dynamical Systems 

Locally we specify a Hamiltonian differential'system, 

dx' dH dyt dH 
dt dyt dt dx1 

by a real differentiate Hamiltonian function H(x1,..., x", yu..., yn) in a real number 
space R2n. A differentiable coordinate transformation (x, y)->(x, j>) allows us to write 
the differential system in the Hamiltonian format, 

dx1 dH dy( dH 
-7T=J^> ~^7=~"^rr '=l>->n, dt dyt dt ox1 

where H(x, y) = H(x(x, y), y(x9 y)), in case the transformation is canonical (or sym-
plectic). That is, the Jacobian matrix T=d(x, y)/d(x, y) satisfies everywhere the sym-
plectic condition, 

TJV = J, with J = 

This discussion shows that a global theory of nonlinear autonomous Hamiltonian 
systems can be formulated on a differentiable manifold M2n which is covered by a 
family of canonical charts interrelated by canonical coordinate transformations. Such 
a manifold M2", with the family of canonical charts, is called a symplectic manifold. 
Each real differentiable function H on a symplectic manifold M2n specifies a C^-vector 
field on M2n which has the required Hamiltonian format in each canonical chart 
(x, y) of M2". 

Let M2n be a compact symplectic manifold and denote by Jf the set of all real 
differentiable functions on M2n. Use the C00-topology on <#*, wherein two Hamilto­
nian functions Hx and H2 are nearby in case the values of a finite set of partial de­
rivatives are approximately equal everywhere on M2n (normalize each H in Jif to 
have a minimum value of zero on M2n, since augmenting H by a constant does not 
modify the corresponding Hamiltonian differential system). In this case Jf is a com­
plete metric space and we can seek generic Hamiltonian systems in 2tf. Note that 
Jf itself is negligible in the space f of all vector fields on M2n, but we agree to com­
pare vector fields only within the fixed space Jf in order to find generic sets of 2tf. 

The mathematical theory of generic Hamiltonian systems of Jf on a compact 
symplectic manifold M2n is only in the preliminary stages of study and research. 
Some of the major mathematical discoveries of the past few decades can be formulated 
in these terms, but many problems remain unsolved. We close this short review by 
listing several properties which are valid for a generic set of Hamiltonian in Jf. 

(1) Only finitely many critical points, each with nonzero eigenvalues. But there 
exists a critical point with all eigenvalues pure imaginary, and rationally independent 
in the usual sense. 

0 / 
- / 0 
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(2) Noncountably many periodic orbits. But only a countable number of degen­
erate periodic orbits (having more than two characteristic multipliers of unity). 

(3) Noncountably many almost periodic orbits each dense in some toral sub-
manifold. 
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