SOME C*-ALGEBRAS WITH OUTER DERIVATIONS, II

GEORGE A. ELLIOTT

1. In this paper we shall consider the class of C^* -algebras which are inductive limits of sequences of finite-dimensional C^* -algebras. We shall give a complete description of those C^* -algebras in this class every derivation of which is inner.

THEOREM. Let A be a C^* -algebra. Suppose that A is the inductive limit of a sequence of finite-dimensional C^* -algebras. Then the following statements are equivalent:

(i) every derivation of A is inner;

(ii) A is the direct sum of a finite number of algebras each of which is either commutative, the tensor product of a finite-dimensional and a commutative with unit, or simple with unit.

2. Remark. There are two consequences of the above result which may hold more generally. Let A be a C^* -algebra which is the inductive limit of a sequence of finite-dimensional C^* -algebras, and suppose that every derivation of A is inner. Then

(1) every derivation of each quotient of A by a closed two-sided ideal is inner, and

(2) A is the direct sum of a commutative algebra and an algebra with unit. It is known (see [9]) that (2) need not hold without some additional restriction for a C^* -algebra A having only inner derivations, but it is conceivable that the restriction of separability is strong enough (see [4]). Added in proof. This is the case; see Akemann, Elliott, Pedersen, Tomiyama, Amer. J. Math. (to appear).

3. LEMMA. Let A be a C*-algebra which is the inductive limit of a sequence of finite-dimensional C*-algebras, and suppose that every derivation of A is inner. Then every primitive quotient of A is simple with unit.

Proof. By [4, 2], every primitive quotient of A has a unit. This is also established in the course of the following proof that every primitive quotient of A is simple.

Let P be a primitive ideal of A, and suppose that I is a closed two-sided ideal of A containing P. We must show that I is equal to P or to A.

There exists an increasing sequence $A_1 \subseteq A_2 \subseteq \ldots$ of finite-dimensional sub-*C**-algebras of *A* with union dense in *A*. By [1, 3.1], $\bigcup_n I \cap A_n$ is dense in *I*. Denote the unit of $I \cap A_n$ by e_n , $n = 1, 2, \ldots$, and set $e_{n+1} - e_n = f_n$; f_n is a projection permutable with each element of A_n .

Received August 28, 1972 and in revised form, October 31, 1972.

If all except finitely many f_n are in P then $\bigcup_n I \cap A_n$ has a unit modulo P. By continuity this is also a unit for I modulo P. Hence by primitivity of P, I = P or I = A.

Suppose that infinitely many f_n are not in P. We shall arrive at a contradiction. Passing to a subsequence of $A_1 \subseteq A_2 \subseteq \ldots$, we may equally well suppose that no f_n is in P. If $\lambda = (\lambda_n)$ is a bounded sequence in \mathbf{C} , then for each $x \in A$ the series

$$\sum_{n=1}^{\infty} \lambda_n (f_n x - x f_n)$$

is convergent. Indeed, if k is large enough that $||x - x_{\epsilon}|| < \epsilon (2 \sup_{n} |\lambda_{n}|)^{-1}$ for some $x_{\epsilon} \in A_{k}$, then

$$\left\|\left[\sum_{n=k+1}^{k+p}\lambda_{n}f_{n}, x\right]\right\| = \left\|\left[\sum_{n=k+1}^{k+p}\lambda_{n}f_{n}, x-x_{\epsilon}\right]\right\| < \epsilon,$$

where [a, b] = ab - ba. Therefore by the hypothesis that every derivation of A is inner, for every bounded sequence $\lambda = (\lambda_n)$ in **C** there exists $y_{\lambda} \in A$ such that

$$\sum_{n=1}^{\infty} \lambda_n (f_n x - x f_n) = y_{\lambda} x - x y_{\lambda}, \quad x \in A.$$

Representing A/P faithfully as an irreducible C^* -algebra of operators, we find that for each bounded sequence $\lambda = (\lambda_n)$ in **C**, the image \dot{y}_{λ} of y_{λ} in A/Pdiffers from the operator $\sum_{n=1}^{\infty} \lambda_n \dot{f}_n$ by a scalar. Since for each bounded sequence $\lambda = (\lambda_n)$ in **C** we have

$$\left\|\sum_{n=1}^{\infty} \lambda_n \dot{f}_n\right\| = \sup_n |\lambda_n|,$$

it follows that the set of operators

 $\{\dot{y}_{\lambda}|\lambda = (\lambda_n) \text{ a bounded sequence in } \mathbf{C}\}$

is not norm separable. This contradicts the separability of A.

4. LEMMA. Let A be a C*-algebra which is the inductive limit of a sequence of finite-dimensional C*-algebras, and suppose that every derivation of A is inner. Then every primitive ideal of A of infinite codimension is a direct summand.

Proof. Let P be a primitive ideal of A of infinite codimension. We must show that P + P' = A, where P' is the annihilator of P. If $P + P' \neq A$, then, since by 3, A/P is simple, P' = 0. Therefore it is enough to show that $P' \neq 0$.

There exists an increasing sequence $A_1 \subseteq A_2 \subseteq \ldots$ of finite-dimensional sub- C^* -algebras of A with union dense in A. Denote by e_n the unit of $P \cap A_n$, and by g_n the complement of e_n in A_n . The increasing sequence $(A_1 + P)/P \subseteq (A_2 + P)/P \subseteq \ldots$ of sub- C^* -algebras of A/P has union dense in A/P. Since A/P is of infinite dimension it follows that the dimension of $(A_n + P)/P$ tends to infinity. Since $(A_n + P)/P$ is isomorphic to $A_n/A_n \cap P$ which in

https://doi.org/10.4153/CJM-1974-018-6 Published online by Cambridge University Press

turn is isomorphic to g_nA_n , n = 1, 2, ..., we have dim $g_nA_n \to \infty$. Hence, passing to a subsequence of $A_1 \subseteq A_2 \subseteq ...$ we may suppose that dim g_nA_n is strictly increasing.

Suppose that P' = 0. Then for each n = 1, 2, ... there is an $m = m(n) \ge 1$ n + 1 such that $e_m g_n A_n$ is isomorphic to $g_n A_n$. Passing to a subsequence of $A_1 \subseteq A_2 \subseteq \ldots$ (e.g., $A_1 \subseteq A_{m(1)} \subseteq A_{m(m(1))} \subseteq \ldots$) we may suppose that m(n) = n + 1; that is, that $e_{n+1}g_nA_n$ is isomorphic to g_nA_n , $n = 1, 2, \ldots$ Fix $n = 1, 2, \ldots$ Since dim $g_n A_n > \dim g_{n-1} A_{n-1}$ there is a projection $f'_n \in g_n A_n, 0 \neq f'_n \neq g_n$, such that f'_n is permutable with each element of $g_{n-1}A_{n-1}$. Since the quotient map $A \to A/P$ is injective on g_nA_n , the image of f'_n in A/P is a nonscalar projection. By 3, A/P is simple; the image of f'_n in A/P is therefore noncentral. Hence, for some $m' = m'(n) \ge n, f_n'$ is noncentral in $g_{m'}A_{m'}$. Replacing f_n' by $g_{m'}f_n' \in g_{m'}A_{m'}$ and passing to a subsequence of $A_1 \subseteq A_2 \subseteq \ldots$ (e.g., $A_1 \subseteq A_{m'(1)} \subseteq A_{m'(m'(1))} \subseteq \ldots$; here we are assuming that m'(k) has been defined for all k = 1, 2, ..., we may suppose that m' = n; that is, that f'_n is noncentral in $g_n A_n$. This entails that $||f'_n x_n - x_n f'_n|| = 1$ for some $x_n \in g_n A_n$ with $||x_n|| = 1$. Since $g_n e_{n-1} = g_n e_n = 0$, we have $f_n'e_{n-1}A_{n-1} = 0$. Therefore f_n' is permutable with each element of A_{n-1} . Set $e_{n+1}f_n' = f_n$. Then $f_n \in A_{n+1}$ and f_n is permutable with each element of A_{n-1} . Since $e_{n+1}g_nA_n$ is isomorphic to g_nA_n , we have $||f_nx_n - x_nf_n|| = 1$. Moreover,

$$f_n = f_n g_n e_{n+1} = f_n g_n e_{n+1} (e_{n+1} - e_n) = f_n (e_{n+1} - e_n).$$

Let $\lambda = (\lambda_n)$ be a bounded sequence in **C**. Then the same remark as in 3 shows that for each $x \in A$ the series

$$\sum_{n=1}^{\infty} \lambda_n (f_n x - x f_n)$$

is convergent. Hence there exists $y_{\lambda} \in A$ such that

$$\sum_{n=1}^{\infty} \lambda_n(f_n x - x f_n) = y_{\lambda} x - x y_{\lambda}, \quad x \in A.$$

With $\lambda = (\lambda_n)$ a bounded sequence in **C** denote by δ_{λ} the derivation of *A*: $x \mapsto y_{\lambda}x - xy_{\lambda}$. Then for n = 1, 2, ...,

 $\begin{aligned} ||\delta_{\lambda}|| &\geq ||\delta_{\lambda}(x_n)|| \geq ||(e_{n+1} - e_n)\delta_{\lambda}(x_n)(e_{n+1} - e_n)|| &= ||\lambda_n(f_nx_n - x_nf_n)|| = |\lambda_n|. \end{aligned}$ Moreover, $||\delta_{\lambda}|| \leq 2||y_{\lambda}||$. Thus,

$$\sup_{n} |\lambda_{n}| \leq 2 ||y_{\lambda}||.$$

Since A is separable the set

 $\{y_{\lambda}|\lambda = (\lambda_n) \text{ a bounded sequence in } \mathbf{C}\}$

is norm separable. From the preceding inequality it follows that the linear space

 $\{\lambda = (\lambda_n) \text{ a bounded sequence in } \mathbf{C}\}\$

is separable in the norm $||\lambda|| = \sup_n |\lambda_n|$. This is known not to be true, and the supposition P' = 0 is therefore inconsistent with the hypotheses.

5. LEMMA. Let A be a C*-algebra which is the inductive limit of a sequence of finite-dimensional C*-algebras, and suppose that every derivation of A is inner. Then there are only finitely many primitive ideals of A of infinite codimension.

Proof. Suppose that infinitely many primitive ideals P_1, P_2, \ldots of A have infinite codimension, and denote by I_1, I_2, \ldots the annihilators of P_1, P_2, \ldots . Then by 4, for each $n = 1, 2, \ldots A = P_n + I_n$. Since by 3 each I_n is simple, if $n \neq n'$ then $I_n I_{n'} = 0$.

There exists an increasing sequence $A_1 \subseteq A_2 \subseteq \ldots$ of finite-dimensional sub- C^* -algebras of A with union dense in A. For each $n = 1, 2, \ldots, I_n$ has infinite dimension, so $I_n \cap A_n \neq I_n$. Since I_n is a direct summand of A, there exists a noncentral projection f_n in I_n which is not in $I_n \cap A_n$, and which is permutable with each element of A_n .

Claim. The sequence of inner derivations of A determined by $\sum_{n=1}^{k} f_n$, $k = 1, 2, \ldots$, converges simply to an outer derivation of A. Convergence follows from the fact that f_n is permutable with each element of A_n , $n = 1, 2, \ldots$, and that the f_n are mutually orthogonal projections (they belong to orthogonal ideals). Suppose that the limit, δ , clearly a derivation of A, is inner, determined by $y \in A$. For each $n = 1, 2, \ldots$, since I_n is simple and f_n is a noncentral projection in I_n , there exists $x_n \in I_n$ of unit norm such that

$$||\delta(x_n)|| = ||f_n x_n - x_n f_n|| > 1/2.$$

Since f_n is permutable with each element of A_n , x_n also may be chosen to be permutable with each element of A_n . On the other hand, there exists y_0 in some A_{n0} such that $||y - y_0|| < 1/4$. Then we have

 $||\delta(x_{n_0})|| = ||yx_{n_0} - x_{n_0}y|| = ||(y - y_0)x_{n_0} - x_{n_0}(y - y_0)|| < 2(1/4) = 1/2.$ This is a contradiction, whence δ must be outer.

6. LEMMA. Let A be a C^{*}-algebra which is generated by its projections. Suppose that Prim A is separated, and that A has a unit. Then the centre of A is generated by its projections.

Proof. By [6, Theorem 4.1], the functions $t \mapsto ||x + t||$ on Prim A with $x \in A$ are continuous. Since A is generated by its projections the functions $t \mapsto ||e + t||$ with e a projection in A separate points of Prim A. By [2, 8.16], for every projection e in A there exists a central projection e' such that e' + t = ||e + t||, $t \in \text{Prim } A$. It follows that the centre of A is generated by its projections.

7. *Remark.* In 6 it is not necessary to assume that A has a unit. The assumption that Prim A is separated, however, cannot be omitted (W. Green, private communication).

8. Proof of Theorem 1. (ii) \Rightarrow (i). Since a derivation is zero on central

C*-ALGEBRAS

idempotents it is enough to consider the cases that A is either commutative, the tensor product of a finite-dimensional algebra and a commutative algebra with unit, or simple with unit. The first case is covered by [11, Corollary 2.2], the second by [3, 1] (for example), and the third by [8].

 $(i) \Rightarrow (ii)$. By 3, 4 and 5, A is the direct sum of finitely many simple algebras with unit together with an algebra having only finite-dimensional primitive quotients. By [4, 3], the direct summand of A with only finite-dimensional primitive quotients is a finite direct sum of homogeneous algebras of finite order each of which is either commutative or with unit. By [6, Theorems 4.2, 4.1, 3.3 and Lemma 4.3], together with [5, Theorem 3.1] and 6 above, each direct summand of A which is homogeneous of finite order is either commutative or the tensor product of a finite-dimensional algebra and a commutative algebra with unit.

9. Application. Let G be a countable, locally finite discrete group. Suppose that every derivation of the C^* -algebra of G is inner. Then the commutator subgroup of G is finite.

To see this it is enough by [7, Theorem 1] to show that the left regular representation of G is not of type II. Since G is locally finite, the left regular representation of G determines a faithful representation of $C^*(G)$, the C^* -algebra of G (this can be seen directly or by using the fact that G is amenable). Again because G is locally finite, $C^*(G)$ satisfies the hypothesis of 1. Since $C^*(G)$ has a one-dimensional quotient (corresponding to the trivial representation of G), by 1, $C^*(G)$ has a nonzero commutative direct summand. So, therefore, also does the von Neumann algebra generated by the left regular representation of G.

This answers negatively a question of Sakai (see [10, Problem 3]).

References

- 1. O. Bratteli, Inductive limits of finite dimensional C*-algebras, Trans. Amer. Math. Soc. 171 (1972), 195-234.
- 2. J. Dauns and K. H. Hofmann, *Representations of rings by sections*, Mem. Amer. Math. Soc. 83 (1968).
- 3. G. A. Elliott, Derivations of matroid C*-algebras, Invent. Math. 9 (1970), 253-269.
- 4. ——— Some C*-algebras with outer derivations, Rocky Mountain J. Math. 3 (1973), 501-506.
- 5. J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233-280.
- 6. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951), 219–255.
- 7. ——— Group algebras in the large, Tôhoku Math. J. 3 (1951), 249-256.
- 8. S. Sakai, Derivations of simple C*-algebras, J. Functional Analysis 2 (1968), 202-206.
- 9. Derivations of simple C*-algebras, III, Tôhoku Math. J. 23 (1971), 559-564.
- 10. ——— Derived C*-algebras of primitive C*-algebras (to appear).
- I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.

The Institute for Advanced Study, Princeton, New Jersey