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Sedimentation of spheroids in Newtonian fluids
with spatially varying viscosity
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This paper examines the rigid body motion of a spheroid sedimenting in a Newtonian
fluid with a spatially varying viscosity field. The fluid is at zero Reynolds number, and
the viscosity varies linearly in space in an arbitrary direction with respect to the external
force. First, we obtain the correction to the spheroid’s rigid body motion in the limit of
small viscosity gradients, using a perturbation expansion combined with the reciprocal
theorem. Next, we determine the general form of the particle’s mobility tensor relating its
rigid body motion to an external force and torque. The viscosity gradient does not alter
the force/translation and torque/rotation relationships, but introduces new force/rotation
and torque/translation couplings that are determined for a wide range of particle aspect
ratios. Finally, we discuss results for the spheroid’s rotation and centre-of-mass trajectory
during sedimentation. A steady orientation arises at long time whose value depends on
the viscosity gradient direction and particle shape. These results are significantly different
than when no viscosity gradient is present, where the particle stays at its initial orientation
for all times. We summarize the observations for prolate and oblate spheroids for different
viscosity gradient directions and provide plots for the orientation and centre-of-mass
trajectory versus time. We also provide guidelines to extend the analysis when the viscosity
gradient exhibits a more complicated spatial behaviour.

Key words: stratified flows

1. Introduction

Fluids with inhomogeneous viscosity fields are ubiquitous around us. For example, certain
biological fluids like mucus and extracellular microbial polymers are mixtures of fluids
with different viscosities (Berg 2004), and therefore, exhibit variable viscosity, either
with (Esparza Loépez et al. 2021) or without sharp viscosity gradients (Du et al. 2012).
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Figure 1. Illustration of spheroid orientation and trajectory during sedimentation in (a) Stokes flow (zero
Reynolds number), (b) fluid with finite inertia and (c¢) polymeric fluid with normal stresses (large elasticity
number). This paper investigates the behaviour when viscosity stratification is present, i.e. case (d).

Similarly, gradients in temperature, salinity or concentration may induce spatial variation
in viscosity, most commonly observed in marine ecosystems (Arrigo et al. 1999). Finally,
suspensions of particles in Newtonian fluids (both active and passive) may be treated at
the continuum level as fluids with viscosity varying with local volume fraction (Hatwalne
et al. 2004; Rafai, Jibuti & Peyla 2010).

In this paper we examine an idealized problem of a single spheroid sedimenting in a
spatially varying viscosity field. We discuss the dynamics that are observed, and how they
differ from other situations studied in the literature. By now, it is well known that in Stokes
flow, a spheroid in gravity does not change its orientation due to the particle symmetry
and the reversibility of the Stokes equations. If the orientation starts out neither parallel
or perpendicular to the gravity direction, the particle will move in a straight diagonal line,
the direction of which is determined by the resistances parallel and perpendicular to the
particle’s orientation vector (figure 1a). These dynamics will change only when symmetry
breaking is present in the system. One way in which symmetry breaking occurs is if fluid
inertia is present (Cox 1965; Khayat & Cox 1989; Auguste, Magnaudet & Fabre 2013), or if
the suspending fluid has normal stresses due to the presence of polymers (Kim 1986; Galdi
2000; Galdi et al. 2011). For example, small fluid inertia generates a torque that orients the
spheroid’s longest axis perpendicular to the external force — the so-called ‘broad side on’
configuration (Dabade, Marath & Subramanian 2015). Conversely, fluid viscoelasticity
orients the spheroid such that its longest axis is along the force direction, i.e. an ‘edge
wise’ configuration (Kim 1986; Dabade et al. 2015). These effects markedly change the
particle trajectory as well as the sedimentation speed (figure 1), since the particle’s drag
coefficient is a function of orientation and is minimized when the longest axis is along the
force direction.

Another way in which symmetry breaking could occur is if there is a stratified fluid,
i.e. variations in density, viscosity or other fluid properties that alter the force and torque
on the particle (More & Ardekani 2022). This area of research is relatively modern, and
most of the efforts have examined the effect of density stratification on particle dynamics
including both solid particles (Doostmohammadi, Dabiri & Ardekani 2014; Ardekani,
Doostmohammadi & Desai 2017) and liquid droplets (Mandel et al. 2020). When density
increases along the gravity direction, it is found that the drag on a sphere is enhanced
as confirmed by theory (Mehaddi, Candelier & Mehlig 2018), experiments (Lofquist &
Purtell 1984; Yick er al. 2009) and simulations (Hanazaki, Konishi & Okamura 2009;
More et al. 2021). The buoyancy force also leads to continuous deceleration and absence of
a terminal velocity (Doostmohammadi et al. 2014). For anisotropic particles like spheroids,
there has been some research to understand their settling behaviour in density stratified
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fluids. Using a reciprocal theorem based approach, Varanasi & Subramanian (2022)
showed that the hydrostatic torque due to buoyancy originating from density stratification
tends to rotate the particle in a broad side on configuration (similar to inertia), which
had earlier been also shown by Dandekar, Shaik & Ardekani (2020). In the cited papers,
it was assumed that the fluid density is not altered by the presence of the particle, and
gives rise to a so-called ‘hydrostatic torque’. However, the particle itself can alter the
density field, and this additional effect can modify the particle torque (More et al. 2021;
Varanasi & Subramanian 2022). For example, density is often linked to a scalar field like
temperature, which depends on a convection—diffusion equation. Depending on the Péclet
number, the density around the particle may or may not be coupled with the fluid flow.
In the low-Péclet-number limit, this additional torque is opposite to the hydrostatic torque
(More et al. 2021; Varanasi & Subramanian 2022).

Despite the advances in understanding microhydrodynamics of particles in density
stratified fluids, there is a relative lack of literature examining viscosity-stratified fluids,
even though there is recent evidence suggesting that these effects would be more important
than those due to variations in density in a variety of applications (Jacquemin et al.
2006; Dandekar & Ardekani 2020). For example, viscosity gradients are present in the
swimming of micro-organisms, and it is of much interest to biologists to understand
how organisms move in such complex environments (Hatwalne et al. 2004; Sokolov &
Aranson 2009; Rafai er al. 2010; Sengupta, Carrara & Stocker 2017; Liebchen et al.
2018), as well as roboticists who design microrobots in such fluids (Nelson, Kaliakatsos
& Abbott 2010; Palagi et al. 2013; Kim et al. 2016; Li et al. 2017a; Zhuang, Park & Sitti
2017; Asghar et al. 2020). Some questions that arise are: how does a spatially varying
fluid viscosity affect the common swimming speed, propulsion and efficiency (Gagnon &
Arratia 2016)? Do microswimmers orient themselves in preferable positions in response
to the viscosity gradients (Takabe er al. 2017)? The common approach is to leverage a
prototypical swimmer model (for squirmers, see Datt & Elfring 2019 and Shaik & Elfring
2021; for a swimming sheet, see Dandekar & Ardekani 2020 and Eastham & Shoele 2020;
for Purcell’s swimmer, see Qin & Pak 2023; for cilia, see Palagi ef al. 2013 and Asghar
et al. 2020) and then couple it to the Stokes flow field with a variable viscosity.

Currently, work has been performed on the motion of a single sphere in a viscosity
varying fluid (Datt & Elfring 2019), but the effect of particle shape has yet to be
considered. We note that the authors in the cited paper found that viscosity gradients give
rise to force/rotation and torque/translation coupling for the sphere’s motion, which would
otherwise not exist if the viscosity gradient were absent. This type of coupling is likely to
give rise to unique rotational dynamics for orientable particles, which we investigate in this
paper. We note that similar to the case of density stratified flows, the motion of the particle
may induce changes in viscosity in the fluid around the particle that could lead to novel
hydrodynamic phenomena. For the case of spheres, as shown by Shaik & Elfring (2021),
the changes in viscosity induced by particle motion do not lead to qualitative changes in the
particle dynamics. Thus, in our paper, we do not account for changes in viscosity induced
by the motion of the particle and only consider a spatially varying, time invariant viscosity
field. However, later in § 5.4, we expound the probable strategy to incorporate the changes
in viscosity due to particle motion, in the low-Péclet-number (Pe) limit.

With this motivation in mind, in this paper we examine a problem of a single spheroid
sedimenting in a Newtonian fluid with a spatially varying viscosity field. The viscosity
field varies linearly in space, and its gradient points in an arbitrary direction with respect
to the direction of sedimentation (external force). Section 2 outlines the particle geometry
and equations of motion. Section 3 numerically solves for the particle’s rigid body motion
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in the limit of weak viscosity gradient using the reciprocal theorem. Section 4 uses the
principles of symmetry to obtain a general expression for the particle mobility tensor
relating the particle’s rigid body motion with the force and torque on the spheroid.
The force/translation and torque/rotation relationships are unaltered due to the presence
of a viscosity gradient, but the viscosity gradient gives rise to new force/rotation and
torque/translation coupling terms that depend on three undetermined coefficients. We
determine the values of these coefficients numerically, and thus, are able to solve the
rigid body problem for an arbitrary set of forcing, viscosity gradient direction and particle
geometry. Section 5 discusses some illustrative examples, wherein the orientations and
trajectories of settling spheroids are analysed for different directions of the viscosity
gradient. We find that depending on the viscosity gradient direction, particle shape (prolate
versus oblate spheroid) and particle aspect ratio, the spheroid can take on different
steady orientation angles. The section concludes on how to extend the analysis to more
complicated situations, followed by § 6 which summarizes all results.

We note that although this work primarily focuses on passive particles in
viscosity-stratified fluids, the results here will likely be important in a variety of contexts
beyond this work. For example, scientists are interested in quantifying the swimming
of particles in viscosity varying fluids, and the mobility relationships developed here
can be used for such applications. Furthermore, understanding the rotation behaviour
and velocity field from a single, orientable particle can help understand their far-field
hydrodynamic interactions in a dilute suspension, which is important in understanding
concentration instabilities that arise in fibrous suspensions (Koch & Shaqgfeh 1989, 1991;
Nicolai et al. 1998; Herzhaft & Guazzelli 1999; Butler & Shaqgfeh 2002; Kuusela, Lahtinen
& Ala-Nissila 2003; Shin, Koch & Subramanian 2006, 2009; Vishnampet & Saintillan
2012). The force/rotation and torque/translation couplings shown in our paper have also
been very recently shown in sedimentation of spheroids with non-uniform density, where
the centre of mass of the particle does not match its gravitational centre (Nissanka, Ma &
Burton 2023) and, therefore, we expect that the theory developed in this paper may also
aid in the understanding of the sedimentation of such mass polar spheroids as well. We
will not comment on this point further, noting that the work acts as a stepping stone for
these more complicated problems when viscosity gradients are present.

2. Problem statement
2.1. Problem geometry

The schematic of our system is shown in figures 2 and 3. We consider a torque-free
spheroid under an external force F in a Newtonian fluid with a constant viscosity gradient
V1. The force is in the positive 3-direction. The viscosity gradient V5 can be co-linear
with the force (figure 2, where Vn is in the %3-direction) or perpendicular to the
force (figure 3, where Vpn is in the +41-direction). The spheroid has three semi-major
axes of lengths (a, b, ¢), with a b = c¢. The initial centre of mass of the spheroid is
(xo1, X02, X03) = (0,0, 0).

We define the spheroid’s orientation vector p as the direction along its unequal axis
(i.e. the a axis). Two different cases arise. A prolate spheroid has p along its longest axis,
while an oblate spheroid has p along its shortest axis. Another way to parameterize the
particle shape is through an aspect ratio parameter Ag and equivalent radius R. Here, Ag
is the ratio a/b, while R is the radius of an equivalent sphere with the same volume.

Ag = g, R = (abe)' /3. @.1)
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Figure 2. Schematic of (a) a prolate and (b) oblate spheroid falling under an external force acting in the
3-direction. The viscosity gradient is along the 3-direction (parallel or anti-parallel). The particle’s orientation
vector p makes a polar angle « € [0, 7] with respect to the sedimentation direction.

(@) (b)

Figure 3. Schematic of (a) a prolate and (b) oblate spheroid falling under an external force F acting in the
3-direction, while the viscosity varies spatially in the 1-direction. The particle’s orientation p makes a polar
angle o € [0, 7] with respect to the 3-direction, and makes an azimuthal angle ¢ € [0, 27) in the 1-2 plane.

The two systems of parameterization are connected by the following relationship:
a=RAY’, b=c=RA;". (2.2a,b)

Evidently, a prolate particle has its aspect ratio parameter Ag > 1, while an oblate
particle has its aspect ratio parameter Ag < 1. Figures 2 and 3 describe the polar and
azimuthal angles o € [0, 7] and ¢ € [0, 27) for the particle orientation. The next section
discusses the equations of motion and the rheology of the fluid.

2.2. Equations of motion and fluid rheology

The fluid surrounding the particle is incompressible and Newtonian. The fluid also has
negligible inertia — in other words, the Reynolds number based on the particle’s largest
length scale Re = (ofULyqx)/no =~ 0. Here, pf is the density of the fluid surrounding the
particle, U is the translation speed of the particle, L,,,, = max(a, b) is the largest axis of
the particle and ng is the fluid’s viscosity at the origin if the particle were absent.
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When these conditions hold, the momentum and mass balance equations in the fluid are
given as

80‘,]' _ av,-

=0, — =0, 2.3a,b
0x; x; (2.3a.0)

where o;; is the stress tensor and v; is the velocity field. Einstein summation convention is
assumed, i.e. repeated indices are summed. The stress tensor takes the form

ojj = —pdij + n(x)vj, (2.4)

where p is the pressure, y;; = dv;/dx; + 0v;/0x; is twice the strain rate tensor and 7 is the
viscosity of the medium. In this problem, the viscosity is independent of the strain rate but
exhibits a spatial dependence. The viscosity field is

n(x) = no (1 + g&-x). (2.5)

Here ng is the viscosity at the origin and Vn = (179/R) ,8;1 is a constant viscosity gradient
with dimensionless magnitude 8 and unit direction d.

The goal of the problem is to solve (2.3), (2.4) and (2.5) for the stress and velocity
around the particle. The equations have to be solved with the boundary conditions

vi— 0, |xi| = oo, (2.6a)
v = Ui + €rwj(xi — x;"),  xi €S, (2.6b)

where (U;, w;) are the rigid body velocities of the particle, S, is the particle surface, x;" is
the centre of mass and € is the Levi-Civita symbol. An additional constraint is that the

particle’s external force and torque are specified. These are

F; = —f oyn;idS, T;= —/ €kt (xx — x;")oyn; dS, (2.7a,b)
N

S[’ P

where n; is the outward-pointing vector on the particle surface. For this problem, 7; = 0.

In this problem, we specify the viscosity field to have a constant gradient, while for other
problems, the viscosity field is often found by solving a scalar quantity like temperature or
concentration that is a solution to a convection—diffusion equation around the particle. For
such problems in the limit of a small Péclet number (one-way coupling), the results will
be very similar to the problem formulated here, albeit with minor quantitative differences.
A more detailed discussion will be provided at the end of the paper (§ 5.4).

2.3. Non-dimensionalization, dimensionless numbers and perturbation expansion

Unless otherwise noted, all quantities from here on out will be written in non-dimensional
form. Lengths will be scaled by the average particle size R, forces by its magnitude F
and viscosities by its value at the origin 7. Velocities will be scaled by the Newtonian
sedimentation velocity U = F/6mnoR, times by f. = R/U, strain rates and rotational
velocities by y. = 1/1., stresses and pressures by 1n¢y,, and torques (if present) by FR.
The dynamics of the spheroid will depend on the following dimensionless quantities —
the particle aspect ratio parameter Ag, the particle orientation p (characterized by angles
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o and ¢) and the non-dimensional viscosity gradient V7 (characterized by magnitude j
and direction &):

b N
AR = —; p=/|[sinacos¢,sinasing,cosa]; Vn=pd. (2.8a—c)
a

In dimensionless form, the viscosity of the fluids in figures 2 and 3 are
n=1%px3, n=1+px, (2.9a,b)

where the first equation, namely 1 = 1 & fx3, corresponds to the situation where the
viscosity gradient is parallel (+3-direction) or anti-parallel (—3-direction) to the external
force, and the second equation, namely n = 1 4 Bx|, corresponds to the case where the
viscosity gradient is perpendicular to the external force. For a general viscosity gradient
V1, the particle motion will be a superposition of the solutions for the two cases listed
above. We will examine particle dynamics in the limit of a small viscosity gradient:

Re < B < 1. (2.10)

The above condition indicates that one can neglect fluid inertia and perform a regular
perturbation expansion in . We will solve for the rigid body motion up to O(f), both
numerically and semi-analytically using symmetry arguments listed in the next sections.

3. Numerical solution to particle dynamics

3.1. Reciprocal theorem
We determine the rigid body motion of the spheroid by performing a perturbation
expansion in the non-dimensional viscosity gradient 8 < 1. We perturb the dependent
variables as

. 0 0) - 0 0 0
{vi, p, 0ij, vij, Fi, Ui, i} = {vi( ),p(o),o,-; ), yi](- ),Fl-( ), U,~( ), a)l( )

1 IR 1 1 1
and solve for the momentum and mass balances (2.3)—(2.7) at each order in S. At

leading order, the spheroid sediments in a zero-Reynolds-number fluid with a constant,
non-dimensional viscosity n = 1 and a non-dimensional external force F = 1:

920 ap© v
: =0, a)’c' =0, Fi=63 T;=0. (3.2a—d)
l

0X) 0X, 0x;

The solution to the above problem is given in many classical texts (for example, see
Kim & Karilla 2005). The velocity field is presented in Appendix A, while the rigid body
motion satisfies the classical resistance relationship

RF U RF [0} U(O) F

RIU RTe )\ ,O0 )= \T) (3.3)
Here (RFY, RF® R™U RT®) are the resistance tensors for a spheroid, which are given in
Appendix B. The external force and torque are given in (3.2).
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At the next order of approximation O(f), the momentum and mass balance equations
become Stokes flow with an extra fluid body force b;:

82vl~(1) aph dull
_— b = O’ —l = 0, 3.4 ,b
X1 0X) ox; +or 0x; (3.4a.5)

Here the body force is due to the spatially varying viscosity field:

at* N 0
b; = 8_;1_, = (d -2y, (3.5a,b)
/

In (3.5), Iijx is the extra stress tensor and J)l.j(.o) is twice the rate of strain tensor from the

leading-order velocity field.

We employ the reciprocal theorem to solve for the translational and rotational velocity
for the O(B) problem. This theorem has a storied history in the Stokes flow community, as
it is often used to solve for the rigid body motion of particles in Stokes flow with a fluid
body force. The derivation is stated in Appendix C and we present the main results below.
In brief, the translational and rotational velocities follow a resistance relationship similar
to (3.3), except the forces and torques are replaced by an effective viscosity-stratified force

and torque:
RFU RFa) U(l) FYs
(RTU RTw) ' (w(l) =\7v ) (3.6)

The viscosity-stratified force and torque are given as

vt)jans avrqt
FY = — / Loy, TV =- / —Lrgrdv, (3.7a,b)
V()Mt x.] Vout xj

where the integrals are evaluated over the volume V,,; outside the particle. The quantities
v and vj?" are the Stokes flow velocity fields around a spheroid in the k direction due
to unit translation or unit rotation in the i direction. These quantities are derived from the
same velocity fields listed in Appendix A.

3.2. Numerical implementation

The volume integrals in (3.7) are difficult to evaluate analytically. A custom-made
MATLAB code was written to calculate the spheroid’s rigid body motion. This code is
similar to the approach used in our prior papers to investigate the motion of ellipsoids in
weakly viscoelastic fluids (Wang, Tai & Narsimhan 2020), except that here the extra stress
is modified to account for the viscosity gradient. First, we transform from the laboratory
frame to the particle frame of reference where the origin is at the particle’s centre of mass
and the Cartesian coordinate axes align with the particle’s principle axes. We then evaluate
the volume integrals in (3.7) for the viscosity-stratified force and torque, using an elliptical
coordinate system and performing Gaussian quadrature via Legendre polynomials. A mesh
convergence study showed that 60 elements in the radial direction, 80 elements in the polar
direction and 100 elements in the azimuthal direction yielded a sufficiently accurate mesh
for our analysis. We then solve the matrix equations (3.3) and (3.6) for the rigid body
motions at O(1) and O(B), and transform back to the laboratory frame. The particle’s
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0.10
—— Theory
0.0010
« Simulation 0.08
0.0005
0.06
w, 0 X
.04
—-0.0005 0.0
~0.0010 0.02
0
-0.10 -0.05 0 0.05 0.10 -0.10 -0.05 0 0.05 0.10
B B

Figure 4. Code validation for a sphere sedimenting in a fluid with a prescribed viscosity gradient in the (@) y
direction and (b) x direction. For all the cases, the external force is a unit vector acting in the x direction, while
the external torque is T = 0. The radius and fluid viscosity are a = 1 and ng = 1, respectively. The results of
the theory are from Datt & Elfring (2019), expanded in § 3.2.1. Results are shown for (a) F o< X, Vn o By and
(b) F x x, Vi « Bx.

centre of mass and orientation are evolved by solving the rigid body dynamics

dxm dp
—u P_ , 3.8a.,b
dr a P (3-8a.6)

We use a forward Euler scheme with A¢ = 0.01. More details are found in our prior
publications (Wang et al. 2020; Anand & Narsimhan 2023).

3.2.1. Verification of code

For the case of a sphere sedimenting in a linear, imposed viscosity gradient, we refer to
the work by Datt & Elfring (2019). Specifically, Eqs.(7,8) in Datt & Elfring (2019) are the
resistance relationships for the external force F and torque T on a sphere of radius a in
a fluid with a constant viscosity gradient V1, with translational velocity U and rotational
velocity . For convenience, these equations are reproduced in dimensional form here:

F = 6mtanoU — 21’V x o, (3.9)
T =2na’Vn x U + 8nnpa’w. (3.10)

We employ the above equations ((3.9) and (3.10)) to validate our theory for two different
cases namely, spatial variation of viscosity in y direction (i) and spatial variation of
viscosity in x direction (ii), as illustrated below.

(i) Spatial variation in the y direction: For a torque-free (" = 0) sphere sedimenting
in the x direction where the dimensional viscosity gradient is along the y direction
Vn = B(no/a)y, the above equations give us

Fy

U: s U:U :O’ 311 ,b
*T Rano6— 0582 0T ¢ G- Hab)

Fy
—w, =0, o =025 . 3.12a,b
@x =@y @z B ned®6 — 0562 (3-12a.6)

The analytical result for w; in (3.12) is compared against the results of the numerical
simulation and the comparison is shown in figure 4(a) showing an accurate match.
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(ii) Spatial variation in the x direction: Similarly, for a torque-free sphere sedimenting
in the x direction where the dimensional viscosity gradient is along the x direction
Vn = B(no/a)x, the above equations give

Fy
x = , Uy=U;=0, (3.13a,b)
6TTan)
wy = wy = w, =0. (3.14)

We compare the results of the simulation against (3.13) in figure 4(b) where a good
match is seen. The relative error in the simulation with respect to the simulation
results is <1 %.

4. Semi-analytical theory
4.1. Introduction and motivation

The simulations described in the previous section solve the rigid body motion of the
particle, but are computationally intensive. At each time step, one has to evaluate six
volume integrals in (3.7) to obtain the viscosity-stratified force and torque. Furthermore,
a new time sweep has to be performed if one examines a different viscosity gradient
direction and magnitude.

An alternative approach to obtain the same dynamics is to develop a semi-analytical
theory based on the symmetry of the problem. Such a theory will give the general form of
the particle’s motion in terms of three undetermined constants, which in turn can be found
by performing simulations at three specific configurations. The result of this analysis is that
one can cheaply obtain the particle’s motion for an arbitrary set of particle orientations,
forcing and viscosity gradients.

What we are doing is essentially finding the general form of the mobility tensor
when a viscosity gradient is present. Thus, the analysis below will not only give general
information about the force/rotation coupling of these orientable particles, but can also
give results for the case when a torque is applied; for example, the torque/translation
coupling. A description is given below.

4.2. General form of mobility tensor

The governing momentum and continuity equations (2.3)—(2.7) are linear in the external
force and torque (F, T). Thus, the translational and rotational velocities (U, w) are also
linear in these quantities and obey the following relationship:

<g> B (J;IT g) ' (?) (4.1

Here, (4, B, D) are mobility tensors that are non-dimensionalized by (U/F, U/FR,
U/FR?) = (1/6mnoR, 1/6mnoR?, 1/6mnoR>), respectively. In a constant viscosity fluid,
these tensors are only a function of the particle shape and orientation, characterised by the
aspect ratio parameter Ar and the orientation vector p. If a viscosity gradient is present,
the tensors will also be a function of the non-dimensional viscosity gradient Vi = ,821.
Note that the off-diagonal terms of the matrix in (4.1) are transposes of each other as can
be proved by the reciprocal theorem (not shown here). Additionally, the mobility tensors
(A4, D) are symmetric for an arbitrary shaped particle in a viscosity-stratified fluid, as
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has been shown with due rigour with aid of the reciprocal theorem in earlier literature
(Oppenheimer, Navardi & Stone 2016).
In the limit of 8 < 1, we expand the mobility tensors in a Taylor series as follows:

0 0 0 1 1 1
(Ay. By, Dy} = (A} B D} + Ay, B D). (4.2)

At leading order (O(1)), the tensors are the same as those for the particle in a
constant viscosity fluid. These quantities are well characterized and formulas are given
in Appendix B for a general ellipsoid. Specifically, for the case where the particle has an
orientation vector p, they take the form

0
AP = c185 — pip) + c2pipj, (4.3a)
0
ng) = c3(8; — pipj) + capip;s (4.3b)
(0)
By’ =0, (4.3¢)

where c1, ¢2, ¢3 and ¢4 are functions of the aspect ratio parameter and are given in
Appendix B.

At O(f), the motion will be linear in V7. Thus, in non-dimensional form, the mobility
tensors take the following structure:

ALY = ad, (4.4a)
DY) = Byixdl. (4.4b)
B} = Migdy. (4.4¢)

Here d, is the direction of the viscosity gradient. Therefore, the problem of finding the
1) p) H@DH
i B o Dj

For a spheroid, these third-order tensors depend on the orientation product p;p;, since
fore-aft symmetry dictates that changing p; to —p; will not alter the results. Noting that
(@jjk, Bjjk) are third-order true tensors, and such tensors cannot be formed from p;p;, we

obtain the result

mobility matrices (A ) reduces to the problem of finding ok, Bk and M.

ajik = Bk = 0. 4.5)

The above relationship means that at O(B) the force/velocity coupling and

torque/angular velocity coupling are unchanged. However, as we will see next, the

force/rotation coupling and torque/velocity coupling will change. Here Bj; is a pseudo

tensor since it connects a pseudo vector (angular velocity) with a true vector (force).

Therefore, My; is a third-order pseudo tensor, which depends on the orientation product
pip;. The general form of M;j is given below as

M = Ai€jjk + Aopi€jkgPg + A3Pj€ikgPq + AaPk€ijgPy (4.6)
where A1, A2, A3, A4 are dimensionless coefficients that depend only on the aspect ratio
parameter Ar. One can show that without loss of generality 42 = 0 (see Appendix D) and,
therefore, the problem reduces to finding the coefficients A1, A3, A4. In other words, (4.6)
reduces to

Mij = Ai€jjk + A3pj€ikgPq + A4Pk€ijgPq- 4.7
We note that at the time of this paper being prepared for publication, another paper solving

a similar problem arrived at a similar formulation for the mobility tensor (see Eq. 27 in
Gong, Shaik & Elfring 2023).
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Figure 5. Simulations carried out to estimate the parameters (11, A3, A4) in the third-order pseudo tensor M
given by (4.7). The orientation angles («, ¢) are defined in figures 2 and 3, respectively.

In summary, the mobility relationships up to O(B) reduce to

Ui = AYFy + BMjadiT;, (4.8a)
w; = BMugdiFj + D'T;, (4.8b)

where AE.O), Dl(.o) are the known mobility tensors for a spheroid without a viscosity
gradient, given by (4.3), while Mjj is the cross-coupling term given by (4.7). The unknown
coefficients for the tensor M are (A1, A3, A4), which are functions of the aspect ratio
parameter A for the spheroid. We also note, from (4.7) in conjunction with (4.4¢), that
A1, A3, A4 are related to the eigenvalues of B and, in some cases of the orientation of the
viscosity gradient vector, are exactly equal to the eigenvalues of B. For a more detailed
discussion on this interpretation, please refer to Witten & Diamant (2020). The next
section discusses how we determine these coefficients.

4.3. Determining coefficients Ay, A3, A4 for the mobility matrix M (force/rotation and
torque/translation coupling)

Figure 5 outlines the simulations we perform to obtain the coefficients (11, 43, A4) for M
in (4.7). We examine a torque-free particle (7; = 0) and quantify its angular velocity w; for
the three specific geometries listed below. We note that the angular velocity can cause two
effects — it can change the spheroid’s orientation or it can keep the orientation the same

but spin it along its axis. The rate of change of the orientation is given by
dpi
= CikeiPk (4.9)
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while the rate of spinning is

2 = wipi. (4.10)

These quantities are computed for the cases below.

®

(i)

(iii)

Case A: Vi x F = 0. Here, we examine the situation in figure 5(a) where the

external force and viscosity gradient are in the same direction, i.e. F = d = 3. The
particle has its orientation in the x—z plane with an angle o with respect to the
force direction, i.e. p = [sin«, 0, cosa]. Using (4.7), (4.8D) and (4.9), one finds the
angular velocity to be

da 1 .
w) = — = 5,3(/13 + A4) sin(2x). (4.11)

Thus, performing one simulation at a specific polar angle and viscosity gradient
magnitude (say ¢« = /4, f = 0.1) allows us to obtain (43 + A4). To test this theory,
we carried out simulations of prolate spheroids undergoing sedimentation at aspect
ratios Ag = 3 and Agr = 5. The simulations were performed for different angles o
and non-dimensional viscosity gradient 8 = 0.1, and they found that for a given
aspect ratio, the quantity 2((de/dt)/B sin(2c)) was constant for all values of «
(equal to 0.0649 for Ag = 3 and 0.0656 for Ag = 5). This behaviour is consistent
with the expression listed above.

Case B: Vi - F =0, p x F = 0. We examine the situation in figure 5(b) where the
external force and viscosity gradient are perpendicular to each other, i.e. F = Z,
d = %. The particle has its orientation along the force direction, i.e. p = [0, 0, 1],

which corresponds to the polar and azimuthal angles of « = ¢ = 0in figure 3. Using
(4.7), (4.8b) and (4.9), one finds the angular velocity to be

da

T o = =B + ). (4.12)

w) =

Performing one simulation at a specific value of 8 (e.g. 8 = 0.1) allows us to obtain
(A1 + A4).

Case C: Vi L F | p. We examine the case in figure 5(c¢) where the orientation,
viscosity gradient and force are all perpendicular to each other, i.e. F =z, d=%,
p = y. Here, the particle will spin but not change orientation. Using (4.7), (4.8b) and
(4.10), we find the spinning rate to be

2 =wy=—BA. (4.13)

Performing one simulation at a specific value of B (e.g. B =0.1) allows us to
obtain A;.

The three simulations listed above yield a linear system of equations for the coefficients
(41, A3, A4) that can be solved. Figure 6 shows the values of the coefficients for different
values of the aspect ratio parameter Ag, for both prolate and oblate spheroids. For
comparison, we have also plotted the As from Kamal & Lauga (2023), who invoked the
slender body theory to solve the problem of sedimenting slender bodies in inertialess flows
of Newtonian fluids with spatially varying viscosity. As can be seen from our plots, a good
match is observed between our results for prolate spheroids at high Ag and that given by
Kamal & Lauga (2023).
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Figure 6. Computed values of (41, 43, A4) for (a) prolate and (b) oblate spheroids for different values of aspect
ratio parameters Ag. The empty symbols denote the results derived in this paper, while the filled symbols, for
prolate spheroids, denote the results from Kamal & Lauga (2023), who used the slender body theory to derive
their results.

Once these coefficients are tabulated, one has a general form for the rigid body motion
(4.8) for spheroids that can be solved for an arbitrary viscosity gradient, orientation, aspect
ratio and external force/torque.

5. Results and illustrative examples

In § 4 we developed a theory to describe the rigid body motion of a spheroid in a spatially
varying viscosity field. In the limit of a weak or linearly varying viscosity field, the general

form of the translational and rotational velocities is given in (4.8), where Ag)) and Dg)) are
the standard mobility tensors for force/translation and torque/rotation in Stokes flow, and
M;j. is a newly introduced coupling tensor between force/rotation and torque/translation
that arises due to viscosity gradients. The tensor M;j is given in (4.7) in terms of three
coefficients (41, 43, A4) that are only functions of the spheroid aspect ratio parameter Ag.
These coefficients are estimated numerically using the reciprocal theorem (see § 3 and
figure 6).

In this section we investigate the spheroid’s dynamics for some special cases and discuss
the physics that arise. Details are below. Please note that all the results and examples are
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valid only up to the first order in B8 deviation from the constant viscosity, unless otherwise
mentioned.

5.1. Viscosity gradient is along or opposite the force direction

5.1.1. Governing equations

Let us examine the situation in figure 2 where the external force is in the positive z
direction, and the viscosity gradient is either parallel to the force (positive z direction)
or anti-parallel to the force (negative z direction). In this case, the particle orientation only
has one degree of freedom, namely the polar angle  measured from the z axis. Without
loss of generality, we state that p lies in the x—z plane, and thus, p = [sin«, 0, cos «]. From
our theory ((4.7), (4.8b) and (4.9)), the orientation angle obeys the equation

do 1 .
5 = T30 + ) sinQa), (5.1a)
= | tan(a)| = | tan(ap)| eP B FADE—0) (5.1b)

where = illustrates the cases where the viscosity gradient is parallel (+) or anti-parallel
(—) to the force and « is the initial angle at ¢t = #y. The translational motion of the particle
obeys
& e —ensina). L = ersinta+ e cos® (5.2a.b)
— = —(c2 —c1)sin(Qe), — =cysin“« + c2cos8” «, 2a,
a2 dr ! 2
where ¢1 and ¢; are the mobility coefficients for spheroid translation in Stokes flow (given
in Appendix B in dimensional form). Major conclusions are given below.

5.1.2. Particle takes a stable orientation depending on its shape and viscosity gradient
direction

Figure 7 plots the evolution of « with respect to time for prolate and oblate spheroids,
for the cases when the force F and viscosity gradient V» are parallel and anti-parallel
to each other. For each set of conditions, two curves are given — one arising from the
symmetry-based theory (dashed curve (5.1a)), and another from full numerical simulations
where the reciprocal theorem is used at every time step (solid curve). The overlap is
indistinguishable, thereby validating our theory. The second observation we make is
that irrespective of the initial orientation and viscosity gradient direction (parallel or
anti-parallel), both prolate and oblate spheroids evolve to a steady configuration of «. This
observation is very different than what is observed in Stokes flow where the orientation
stays at its initial angle at all times (Leal 2007).

Figure 8 summarizes the steady orientations observed for different particle shapes
and viscosity gradient directions. When the external force and the viscosity gradient are
parallel to each other, the prolate spheroid adopts a stable configuration where the projector
is perpendicular to the external force, while the oblate spheroid orients itself such that the
projector is along the same direction as the external force. In both of these cases, the
spheroid (whether prolate or oblate) has its shortest axis oriented along the direction of
the viscosity gradient. On the other hand, when the spheroid is falling in the direction of
decreasing viscosity (i.e. F and V7 are anti-parallel), the prolate spheroid attains a stable
configuration where the projector is oriented along the force direction, whilst the oblate
spheroid orients the projector perpendicular to the force direction. In both these cases, the
longest axis of the particle (whether prolate and oblate) will be along the force direction.
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Figure 7. Orientation angle « versus time for prolate and oblate spheroids when the external force F and
viscosity gradient Vn are parallel or anti-parallel to each other. The left figures (a,c) correspond to prolate
spheroids with Ag = 5, while the right figures (b,d) correspond to oblate spheroids with Ag = 1/5. The top
row (a,b) is the case when the F and V7 are in the same direction, while the bottom row (b,d) is the case when
they are in opposite directions. The solid curves are from full numerical simulations based on the reciprocal
theorem, while the dashed curves are from the symmetry-based theory (solving (5.1a)). The dimensionless
viscosity gradient is § = 0.1.

(a) (b)
Stable Unstable Stable Unstable
equilibrium equilibrium equilibrium equilibrium
F F||Vn
7
F F| V7

Figure 8. Steady configurations attained by (a) prolate and (b) oblate spheroids when the external force F
and viscosity gradient V) are co-linear. The top row is for the case when the external force and the viscosity
gradient are in the same direction, while the bottom row is when they are in the opposite direction.
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Figure 9. Illustration of unequal torques created on a prolate spheroid when the force and viscosity gradient
are co-linear. The left figure (a) is when the viscosity gradient and force are in the same direction, while the
right figure (b) is when they are in opposite directions. This schematic is shown in the particle’s frame of
reference.

To provide a physical understanding of this behaviour, we refer to figure 9. Here, as
observed from the reference frame of the particle, the flow around the prolate spheroid
bifurcates into two parts about the stagnation point and engenders both a clockwise
and counterclockwise hydrodynamic torque. Figure 9(a) illustrates the magnitude of the
torques for the case when the viscosity gradient is in the same direction as the force, while
figure 9(b) illustrates the case when the viscosity gradient is in the opposite direction. The
pictures illustrate that the unequal torques push the particle toward the stable orientations
discussed above.

Lastly, we note that figure 8 summarizes the unstable, steady orientations that can occur
for different combinations of viscosity gradient and particle shape. These orientations only
exist if the initial condition is at a specific angle, and can only be observed in exceptionally
rare cases.

5.1.3. Particle translation is different than in Stokes flow

Beyond orientational kinematics, we are also interested in the translation of the spheroid.
In a constant viscosity fluid with zero inertia, it is well known that the particle stays at
its initial orientation (Leal 2007). If the initial angle is ¢ = 0, 1/2, or T, the particle
will sediment vertically, while if « is not these values, the particle will drift in a straight,
diagonal path. The direction in which the particle sediments is dictated by the resistances
parallel and perpendicular to its orientation vector p.

When a viscosity gradient is present, the translational velocity U obeys the same
differential equation as the Stokes flow case 5.2), since we found that the viscosity gradient
does not alter the force/translation coupling (see (4.8)). Thus, on the surface, it appears
that the particle trajectory may seem unchanged due to the presence of a spatially varying
viscosity field. However, upon closer inspection, we see that the differential equation,
(4.8), depends on the particle’s orientation angle «, which itself is altered due to the
viscosity gradient as discussed in the previous section. Thus, the viscosity gradient plays
an indirect role in altering the translational dynamics.

Figure 10 plots the trajectories of oblate and prolate spheroids for different values
of the initial orientation angle . For o9 #0, /2 and 7, we observe motion in the
sedimentation direction (3-direction) as well as a cross-stream drift (1-direction). For the
case when no viscosity gradient is present, the particle moves in a straight, diagonal
path. When a viscosity gradient is present, the trajectory is no longer a straight line.

983 A28-17


https://doi.org/10.1017/jfm.2024.136

https://doi.org/10.1017/jfm.2024.136 Published online by Cambridge University Press

V. Anand and V. Narsimhan

a b
@ ®
A (X():T[/4
o ap=T1/3 R
9 5 Se 0 e 100 -
~§\ ‘\
. a
l 10 AR l 200 e
\\é N \q \\\
\\§\ \‘ L\A
15 =S 300 >
0 1 2 3 4 0 -20 40 -60 -80 —100
X1 X1

Figure 10. Particle trajectories for (a) prolate and (b) oblate spheroids when the external force and viscosity
gradient are in the same direction (F = z, Vi = Bz). The dashed curves correspond to when no viscosity
gradient is present (8 = 0), while the solid curve is when a viscosity gradient is present (8 = 0.1). Different
colours and symbols correspond to different initial starting angles «g. The prolate spheroid has Az = 5 while
the oblate spheroid has Ag = 1/5.

The cross-stream drift eventually stops when the spheroid reaches a stable orientation,
beyond which the spheroid sediments vertically in the 3-direction. Since the spheroid
ceases to drift once the stable orientation is reached, a spheroid whose initial orientation
is further away from its stable orientation will drift further than a spheroid whose initial
orientation is closer to its stable orientation. Therefore, for a prolate spheroid, a particle
with initial orientation og = /4 will drift further than one with o9 = 7/3, since the
stable orientation is o = /2 (see figure 10a). Conversely, for an oblate spheroid, the
particle with an initial orientation og = /3 will drift further than one with og = 7 /4,
since the stable orientation is at « = 0.

5.2. Viscosity gradient is perpendicular to the external force

5.2.1. Governing equations

We now examine the situation in figure 3 where the external force is in the positive z
direction (F = z), and the viscosity gradient is perpendicular to the force (Vi = BXx).
The spheroid’s orientation can point in any direction, and we state it takes the form
p = [sinxcos @, sinw sin ¢, cos«], where o and ¢ are the polar and azimuthal angles,
respectively. From our theory ((4.7), (4.8b) and (4.9)), the orientation angles evolve as

da

5 = P-4 sin? & + A4 cos® @) cos ¢, (5.3a)
do .
i B(A1 + A4) cota sin ¢, (5.3b)

where A1, A3 and A4 are the force/rotation mobility coefficients determined in § 4. The
translation of the particle obeys the following:

& 1( ) sin(2a)

— = —(¢» — ¢1) sin cos

Pl ¢ — c1) sin(Qa P,

d

d_f = S(c2—cp)sinQa) sing, | (5.4)
d
Bl c1sin® o + ¢3 cos? a.
dr

Here c¢; and c; are the mobility coefficients for particle translation in Stokes flow (given
in Appendix B in dimensional form). Major conclusions are given below.
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Figure 11. Orientation angle « versus time for (a) prolate (Ag = 5) and (b) oblate (Ag = 1/5) spheroids when
the external force and viscosity gradient are perpendicular (F = z, Vi) = Bx). The dimensionless viscosity
gradient is B = 0.1, and the particle initially starts in the plane of F and V5 (i.e. ¢o = 0). Solid curves
are from full numerical simulations based on the reciprocal theorem, while the dashed curves are from the
symmetry-based theory (solving (5.3)).
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Figure 12. Schematic explaining the absence of steady orientations at « = 0 and o = /2 for (a) prolate and
(b) oblate spheroids when the external force and viscosity gradient are perpendicular. This schematic is shown
in the particle’s frame of reference.

5.2.2. Particle can take a steady orientation different than the force and viscosity
gradient directions

We first discuss the case when the particle starts in the same plane as F and V7 — in other
words, ¢g = 0. From (5.3b), we see that d¢/dr = O for this angle, so the particle stays
at ¢ = 0 and only the polar angle « will change. Figure 11 plots « versus time for both
prolate and oblate spheroids, for the specific case of Ag = 5 and A = —1/5, respectively.
First of all, we note that the results from the symmetry-based theory (solid curve, (5.3)) are
virtually indistinguishable from the full numerical simulation (dashed curve), indicating
the validity of our theory. Secondly, for all starting conditions, we observe the particle
converges to one steady orientation. However, this steady orientation is not « = 0, o =
 or o« = /2, which was the case when the force and viscosity gradient vectors were
co-linear.

We elucidate this point more clearly in figure 12. Here, we observe that neither
o =0,7/2 nor m are steady configurations because the counterclockwise torque is
different than the clockwise torque at these specific angles. Some general trends are
described below for prolate and oblate particles.
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Figure 13. Orientation angles «(f) and ¢ () for (a) prolate and (b) oblate spheroids when the external force
and viscosity gradient are perpendicular (F = z, Vi) = Bx). The dashed curves show the evolution of ¢, while
the solid curves show the evolution of «. For all cases, the initial orientation is given by the ordered pair
(¢0, ) = (7t/3, m/4) and the dimensionless viscosity gradient is § = 0.1. The results show that ¢ — 0 or =,
and hence, the particle becomes co-planar with F and V1.

(i) For prolate spheroids, we observe from figure 12 that the difference between the
counterclockwise and clockwise torques is smaller for « = 0 and 7 (where the long
axis is along the force direction) compared with « = 7/2 (where the long axis is
along the viscosity gradient direction). Therefore, the steady orientation is closer to
o = 0 and 7 than to @ = 1/2, and continues to approach « = 0 or 7 as the aspect
ratio increases. In the limiting case of needle-like particles where A — oo, the
steady orientation reaches o = nm. Between the two configurations of « =0+ A
and ¢ = m — A (where A is a positive constant depending on aspect ratio), o =
T — A is the stable configuration, while @« = 0 + A is unstable (see figure 11a).

(i1) For oblate spheroids, the difference in hydrodynamic torques is larger at « = 0
compared with o = /2, because in the former case the longer axis is oriented along
the viscosity gradient direction. Therefore, for oblate spheroids, the equilibrium
orientation configuration is closer to o = m/2 than to o = 0. In the limiting case
of a thin disc where Ag — 0, the stable orientation is at « = 7/2. Between the
two configurations of o« = 1t/2 £ & (where &£ is a positive constant depending on
the aspect ratio), o« = 1/2 — & is the stable orientation, while ¢« = /2 + £ is an
unstable orientation (see figure 11b).

The results discussed above illustrate the dynamics when the initial particle orientation
is co-planar with F and V7, i.e. ¢9 = 0 or ¢ = m. Figure 13 plots the orientation angles ¢
and « over time when the starting angle is no longer co-planar with F and V1, i.e. ¢g #0
or t. We see that at long times, the angle ¢ — 0 or 7, i.e. the orientation ends up in the
same plane as F and V. The angle o also converges to the same result as before. Thus, we
conclude that the steady orientation angles discussed previously are stable to out-of-plane
perturbations.

5.2.3. Stable orientation for different aspect ratios
Figure 14 plots the steady orientation angles for prolate and oblate spheroids for different
aspect ratio parameters. The steady orientations occur when do/dt = 0 and d¢p/dt = 0 in
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Figure 14. Stable orientations «j, for (a) prolate and (b) oblate spheroids of different aspect ratio parameters
Apg when the external force and viscosity gradient are perpendicular to each other (F =z, Vi = x, B = 0.1).
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Figure 15. Particle trajectories for spheroids with (@) Ag = 5 and (b) 1/Agr = 5 when the external force and
viscosity gradient are perpendicular (F = z, Vi = Bx). The dashed curves correspond to when no viscosity
gradient is present (8 = 0), while the solid curve is when a viscosity gradient is present (8 = 0.1). Different
colour curves correspond to different initial starting angles o.

(5.3), which corresponds to the criterion

A A
¢ =nm, A —A3 sin’ +/l4coszoz =0=sin"a = ﬁ, (5.5a)
A3+ A4
A A
0ty (5.5b)
A3+ A4

Here (A1, A3, 44) are the mobility coefficients for force/rotation coupling that were
calculated in §4, which are only functions of the aspect ratio parameter Ag. Figure 14
shows that for a wide range of Ag, the above criterion is satisfied and a steady angle o,
exists. The stable orientation o, for a prolate spheroid is closer to m compared with an
oblate spheroid, while the oblate spheroid has a stable angle closer to /2.

5.2.4. Translation dynamics

Figure 15 shows the spheroid’s translation trajectories for the case when the force and
viscosity gradient are perpendicular to each other for both prolate and oblate spheroids.
For both these spheroids, when the particle has a stable orientation (Ag = 5), the particle
at long times will move in a straight, diagonal line, i.e. sediment downwards and also have
a component along the viscosity gradient direction. This diagonal motion qualitatively
looks similar to the motion when the spheroid is in a constant viscosity fluid (Leal
2007). However, in a constant viscosity fluid, the angle of motion is determined by the

983 A28-21


https://doi.org/10.1017/jfm.2024.136

https://doi.org/10.1017/jfm.2024.136 Published online by Cambridge University Press

V. Anand and V. Narsimhan

(a) (b)
T /2
157t/16 s 0=7/8 o O0=7/4 wO=1/3 T1/16
Tr/8 31/8
137/16{ ® . S57t/16| w
3 3/4] e . " " - - " " " " /4| u = ] ] n . L . .
117/16 ° . ° . ° i ° ° 371/16 ° . . ° . . . . .
ST/81 a A A A A A A A " a /8| a " A a A A A A A A
97/16 /16
w2 4 6 8 10 073 4 6 8 10
AR I/AR

Figure 16. Stable orientation angles «;, for (a) prolate and (b) oblate spheroids when the viscosity gradient
V1 and the external force F are inclined at an angle 6 to each other.

particle’s initial angle, whereas in this case, all particles will eventually move with the
same trajectory, regardless of starting angle.

5.3. General case: general direction for viscosity gradient

5.3.1. Governing equations

We now consider the most general case where F and V5 are neither parallel or orthogonal
to each other, but are inclined at an angle 6 to each other. The external force points in the
positive z direction F = z, while the viscosity gradient is

Vi = Bd = Bcos 6z + B sin Hx. (5.6)

Similar to before, the orientation vector is p = [sin « cos ¢, sin « cos ¢, cos o], where «
and ¢ are the polar and azimuthal angles. To determine how these angles evolve over time,
we note that the dynamics is a linear superposition of the cases described previously. In
other words,

do do .

— = —| cos@ + —| sind, (5.7a)
e dr, A

d d d

dg _ do cosf + i sin @, (5.7b)
& ar, dr |,

where (da/df)| and (do/dr) | are the variations in the polar angle from viscosity gradients
parallel and perpendicular to the external force, given by (5.1a) (using the positive sign)
and (5.3a), respectively. The corresponding terms (d¢/d¢); and (d¢/df) | are the same
quantities for the azimuthal angle, which is zero for (d¢/d¢)| and (5.3b) for (d¢/dr) | . The
equation for particle translation is the same as (5.4).

5.3.2. Steady orientation angles

If a steady orientation angle exists, it will be in the plane spanned by F and V1 as discussed
previously, i.e. ¢ = 0. We set ¢ = 0 and determine the conditions under which de/df = 0
in (5.7a). The criterion for a steady orientation angle is

$(A3 + A4) sin(2a) cos @ — (A1 — Az sin® & + A4 cos® &) sin @ = 0. (5.8)

For illustration, figure 16 plots the steady orientation angles «y, for different values of
the angle 6 between the external force F and V5. We observe that o, varies between /2
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and 7 for prolate spheroids and between 0 and /2 for oblate spheroids. As discussed
in the previous sections, these limits are the stable orientations for very high aspect ratio
spheroids when the viscosity gradients are parallel and perpendicular to the external force.
For example, as & — 0, we see oz, — 1/2 for prolate spheroids and O for oblate spheroids,
which are the stable orientation for these particles when the viscosity gradient is parallel
to the external force.

5.4. Discussion of applicability of model and incorporating disturbance viscosity

In this paper we assumed the viscosity field around the particle is a linear function of
space and is independent of the flow and the particle geometry. In reality, however, the
viscosity field has a more complicated spatial dependence, as it is linked to a scalar
field like temperature or concentration that depends on the aforementioned quantities (see
Oppenheimer et al. 2016 for the related problem of a hot sphere in a temperature coupled
viscosity field). In this section we make suggestions on how to incorporate these effects
into the analysis and what changes can be expected to the main results.

For illustrative purposes, let us consider a particle in a fluid subject to a temperature
gradient VT far away from the particle. The fluid’s viscosity depends linearly on
temperature, i.e. 1 —no = (dn/dT)(T — Tp), and thus, the viscosity field also varies
spatially around the particle. If the thermal Péclet number is small and the temperature
profile is steady, the temperature field will satisfy Laplace’s equation inside and outside
the particle (see Dassios 2012 for details):

viTout — o, VAT = (. (5.9a,b)

This equation is subject to the following boundary conditions: (a) T° — Ty + VT - x
far away from the particle (|x| — o0), and (b) on the particle surface, the temperatures
and fluxes are continuous, i.e. 7" = T° and (n - VT?“) = k.(n - VT™), where k, is the
conductivity ratio between the particle and fluid phase. Once one solves the temperature
profile, one can obtain the viscosity field n(x) and then solve for the particle motion in
this field. The rigid body motion will still follow the same procedure discussed earlier
in the paper, i.e. one performs a perturbation expansion for the viscosity and finds the
correction to the rigid body motion via the reciprocal theorem using an extra stress tensor
rije.x =nx) — no)yij(.o). The mobility tensors described in §4 will take the same form,
except the numerical values for the force/rotation mobility coefficients (A1, A3, 44) will
be different. For the special cases when one neglects the presence of the particle in the
transport equation, or if the conductivity ratio is k. = 1, the viscosity field will be linear
everywhere, and we recover the results described earlier in the paper. Otherwise, and
in general, the viscosity field will have a more complicated spatial and even temporal
dependence, emanating from the motion of the particle. Such a viscosity field, which
is coupled with the particle motion, posits at least a theoretical possibility of a more
complicated orientational dynamics than that presented in this paper. However, based on
the work carried out previously by Shaik & Elfring (2021) for spheres, we speculate that
such a motion-coupled viscosity field will not introduce any novel effects but only bolster
the trends in orientational dynamics discussed in our paper. Of course, this hypothesis will
need to be tested, via a full fledged analysis. The outlines of such an analysis have been
presented in this subsection already. A key mathematical ingredient of such an analysis, if
taken up later in a different paper, will include the solution to Laplace’s equation around an
ellipsoidal particle. In Appendix E we outline how one solves Laplace’s equation around
an ellipsoidal particle.
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6. Conclusion

In this paper we study a spheroid sedimenting in a Newtonian fluid with a viscosity field
that varies linearly in space. We employ the principles of linearity, reversibility, symmetry
to delineate the mobility relationships for this problem. In the limit of small viscosity
gradients, we find that the force/velocity and torque/rotation couplings remain unchanged
from the Stokes flow limit. However, the viscosity gradient gives rise to an additional
force/rotation and torque/velocity coupling, which is characterized by a third-order tensor
M ji.. The reduced analytical form of this tensor is given by (4.7), up to three undetermined
coefficients. The values of these coefficients are determined numerically, under the aegis
of a reciprocal theorem-based simulation, for a wide range of particle aspect ratios.

Illustrative examples and specific results of our theory are discussed next. Unlike
in Stokes flow where the particle orientation stays at its initial orientation during
sedimentation, we find that viscosity gradients alter the orientation over time. When the
viscosity gradient is along the external force direction, both prolate and oblate spheroids
reach a stable orientation where the longest axis is perpendicular to the viscosity gradient.
When the viscosity gradient is opposite to the external force, the spheroids reach a stable
orientation where the longest axis is along the viscosity gradient. We also show that for
most initial orientation angles, the spheroid acquires a drift in a direction transverse to
its (main) sedimentation direction until its orientation stabilizes, at which point it moves
downward.

When the viscosity gradient and the external force are perpendicular, the plane defined
by the viscosity gradient and force is a plane of stability, and the spheroid, irrespective
of its initial orientation, will eventually become co-planar with the force and the viscosity
gradient. For the limiting case of a needle-like particle, the prolate spheroid will orient
its projector in the direction of the force, while conversely, for the limiting case of a flat
disc, the oblate spheroid will orient its projector in the direction of the viscosity gradient.
Finally, we note in the general case when the viscosity gradient and external force are
neither parallel or perpendicular to each other, the dynamics of the particle is a linear
combination of the cases discussed above.

Throughout the analysis, we have neglected the coupling between the viscosity field and
the flow or particle motion. Guidelines for incorporating this coupling are presented, using
ellipsoidal harmonics to solve the Laplace equation in a low Péclet limit. However, based
on previous literature (Shaik & Elfring 2021) we believe that such an analysis may not
yield any novel results not yet accounted for.

We have taken a perturbative approach to solving this problem, where only the terms
first order in viscosity gradient are accounted for. Due to the limitation of the perturbative
approach, the analysis here is valid for the following two cases: (a) when the viscosity
gradient is weak, so that the terms of 0(,32) can be neglected; (b) when the viscosity
gradient is linear, but not necessarily weak, so that the terms of O(B?) are identically
zero. For this second case, where the viscosity gradient is linear, but not weak, we
expect that the steady state behaviour — namely the stable orientation of the spheroids
— will remain unchanged. Stronger, but still linear, viscosity gradients will change the
rate at which the stable orientation is attained, but not the value of the steady orientation
per se. Additionally, a spheroid is a typical axisymmetric particle with no isotropy but
fore-aft symmetry. The mechanisms of hydrodynamic torque acting on the spheroid and
the resultant stable orientation as discussed in this paper may therefore prove useful in
understanding the dynamics of other orientable particles, which are common in nature and
in the industry. The current problem may also be a stepping stone towards the analysis of
more complex systems, for instance, flows with linear and quadratic components, or with
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density (in addition to viscosity) stratification, among others. Lastly, we have shown the
existence of torque/translation coupling, in addition to the force/rotation coupling, due to
the linear viscosity gradient. This coupling opens the exciting possibility of controlling the
motion (translation) of the spheroid by subjecting it to external torque, say via a rotating
magnetic field (Morozov & Leshansky 2014; Li et al. 2017b).
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Appendix A. Disturbance velocity for an ellipsoid in Stokes flow

Consider a reference frame at an ellpsoid’s centre of mass with axes aligned along the
particle’s principle axes. From Kim & Karilla (2005, p. 55), the Stokes velocity field
around the ellipsoid from external force and torque is

3 2 2
G a; 9-G
Y | 85Go — x4 L0, (Ala)
16m70 - 0x; 2 0x;0x;
§ T x V), | 8;G G G PG Alb
V= (T x )J gor = 0Xx; + Zaxiaxj ( )

647[770

In these formulas, no summation is assumed for repeated indices unless explicitly stated.
To obtain formulas for v/* and v[?" in the reciprocal theorem, we substitute into (A1) the
force and torque that comes from unlt translation and rotation, respectively.

In the above expressions, the expression for G, is

[e's) x2 y2 ZZ n dr
Gu(x,v,2) = -1 —, A2
2, 2) /A <a2+t+b2+t+c2+t )M) (A2)

with A(t) = /(@ + 1)(b% + 1)(c? + 1) and A(x, y, z) being the positive root of

x2 y2 Z2

+ + =1. A3
al+t b2+t 2+t (A3)

Appendix B. Resistance formulae for an ellipsoid in Stokes flow

Let us consider a reference frame with the origin at the centre of mass of an ellipsoid and
the Cartesian axes aligned along the principle axes.

We denote the ellipsoid’s semi-axes as (ay, a2, az) = (a, b, ¢). In dimensional form,
the resistance tensors RFU and RT® are diagonal, while the cross-coupling term
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RF® = RTV = 0. The diagonal elements are

RFU_ 1200V 1o _ 410V (@3 + a3)

n =-__ 2 1
X0 +ajad?

" (Bla,b)
a2a; + a3as

where V = (4nt/3)ajara;z is the particle volume and (xo, o1, aoa3) are elliptic integrals
defined as

3 o dr
X0 = HV/(; m, (B2)
@ = iv/oo __d (B3)
4 Jo (@2 +0DA@D

A) = \/ (@} + 1)(d3 + )(d} +1). (B4)

The other elements of the diagonal tensors are obtained by index cycling.

The mobility matrix is the inverse of the resistance matrix, and hence, given by the
inverse of the diagonal elements above. For the special case when the particle is a spheroid
with a1 # ap = a3, the coefficients ¢ — ¢4 for the mobility matrix in (4.3a) and (4.3b) are

1 1 1 1
Cl = W’ C2 = W’ C3 = T’ C4 = T (Bsa_d)
R, R Ry Ry

These coefficients have analytical formulae (see p. 64 and 68 in Kim and Karilla). Using
the notation in this paper, we obtain the following for prolate and oblate spheroids.

(1) For prolate spheroids,

(I 16 5

= —, Yp=—¢[2e+ (3 — DL, B6
1 E—— A 3e[e+(e )L] (B6a)
L1 x = 20eras (B6b)
) = —_—, = —e|—2e e R
2 6mtnoa X 473
__ 1 I YR N 2
c3 = , Yc==e'Q2—e)2e++e)L] ", (B6¢)
8mnoa Y¢ 3
c4 = ! i, Xc = L—Le3(1 —eHR2e— (1 —eHL!, (B6d)
8mnoa’ Xc 3

where e = /1 — b?/a? is the spheroid’s eccentricity and L = In((1 + e)/(1 — e)).
To get the non-dimensional form used in the paper, we multiply ¢; and ¢, by

6mnoR = 67no(ab®)'/3, and multiply ¢3 and ¢4 by 6mnoR> = 67n0ab>.
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(i1) For oblate spheroids,

11 8
c| = —, Ya=-[2+1DHC—ev1 -7 (B7a)
6mtnob Ya 3
11 4
cy = — Xy = -2 - 1)CHev1 -2 (B7b)
6Tn0b Xa 3
11 2
c3 = —, Ye==02-Aev1—e2—(1-2HC"', (B0
8mnob3 Y 3
11 2
= — Xc==[C—ey1—e2]7!, B7d
c4 Sonob® X¢ c 36 [ e e-] (B7d)

where e = /1 — a2/b? is the spheroid’s eccentricity and C = cot™!(+/1 — €2/e).
To get the non-dimensional form used in the paper, we multiply ¢; and ¢ by
6mnoR = 67[770(ab2)1/3, and multiply ¢3 and c4 by 611770R3 = 6nnoab2.

Appendix C. Reciprocal theorem and O(f) solution
To delineate the O(B) correction to the particle kinematics, i.e. obtain the solution for

(Ui(l), a)l.(l)), there are two approaches possible. The brute force approach is to solve
the velocity and stress field around the particle, and then integrate the stress on the
particle’s surface to find the viscosity-stratified force and torque. However, this approach
is tedious and analytically intractable for complicated geometries. Instead, we circumvent
the calculation of the velocity and the stress field around the particle and directly obtain
the viscosity-stratified force and torque using the reciprocal theorem (Leal 1980).

First, we note that the fluid stress field at O(B) has two parts:

1 - (1
of =y — p sy + g, (C1)

)

One is the Newtonian part given by ))ij(.l — p(l)&-j. The other part is viscosity stratified,

denoted as ‘L';x and given by
A (0
T = Ay, (€2)

We note the important observation that the viscosity-stratified stress at O(f) depends on
the strain rate at leading order.

In the spirit of the reciprocal theorem, we define an auxiliary problem wherein the same
particle, at the same location and same orientation, is sedimenting in a Newtonian fluid
with a constant (spatially invariant) viscosity. The quantities pertaining to the auxiliary
problem are denoted by the aux superscript. Therefore, the external force and the torque
acting on the particle in the auxiliary problem is given by F{**, T{** and its rigid body
motion is given by U, o{"*. The flow field around the particle is v{"**, while the stress

i
field is oija.“x , expressed as

Gl:?ux _ yi;mx _pauxaij. (C3)

Since the stress field of the auxiliary problem and that of the O(B) problem are
divergence free:

oo aux 80’~(-1)
—=—1 =, (C4)
0x; 0x;
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or
do PO
vV — T, (C5)
axj 8Xj

Using the product rule, the above equation reduces to

(1) _aux aux (1) (1)
avi O.ij _ avi O'ij _ auxavi M 8v;mx (C6)
0x; o 0 a0 o
] ] ] ]

We now substitute the expressions U“”x = y;”x p**8;; and al.](.l) = yl(l) p(DBij +

ij
rl';x '@ {0 the right-hand side. Usmg the identities 9v;/0x; = dv*/dx; =0 and

v (@i /0x;) =y (9vf" /0x;), we obtain

1 1
avl.( )crl.;’”x 8vf’”xoij( ) ex.(0) OV Juie
— = -7 ) (C7)
0x; 0x; Bx]'

Next, we integrate the above equation over the volume outside the particle and use the
divergence theorem. This procedure yields

vt
/nj M) aude /njva“x l(l) dS+/ jx 0 ——dV, (C8)
s s v 8xj

where S is the surface of the particle and n; is the normal to the particle surface pointing

&)

inside the fluid. On particle surface, v; * and v{"*** are rigid body motion, i.e. v<1> U; M4

e,]ka)( )xk and v"" = UM + e,]kcoj“”xxk. Substituting these expressions into the surface
integrals yield
v
)] ) ex,(0)
— Fey® — e = / o0 2 g (C9)
1% Xj
Note that when deriving the above expression, we made use of the fact that the force and

torque acting on the particle at O(B) is zero (F i(l) = Ti(l) = 0). Lastly, let us write the
auxillary force and torque as a linear combination of the rigid body velocities using the
resistance tensors for the particle:
quux — R(fUquux + Rffwwjlux,
T = RVUM™ + R o™ (C10b)

(C10a)

Here in the above equation, the resistance tensors satisfy the following symmetry
relationships: RfY = (RFY)T, RT® = (RT®)T and RF® = (RTY)T. We also write the

auxillary velocity field in the volume integral for (C9) as a linear combination of the rigid
body motions:

1

X — trans Uaux + lrkothux. (C 1 1)

Here vi’,f’ and v’ are the velocity fields in the i direction induced by unit translation or

rotation in the k direction. Substituting (C10) and (C11) into (C9) and eliminating U{**
and o yields the final result, (3.6), stated in the paper.
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Appendix D. Simplification of mobility tensor M
Here, we show that (4.6) is equivalent to (4.7). To that end, we rewrite (4.6) as

Mijr = 1 €jjk +A2 pi€jkgPq +A3 Pj€ikgPq +A4 Pk€ijgPq - (D)
—— —— ~—— ——
Term 1 Term 2 Term 3 Term 4

Without any loss of generality, we assume a particular orientation of the projection vector
pi namely p; = §;1 (and so on). Therefore, (D2) may be written as

M = A1 € +A2 8i1€jk1 +43 §j1€ik1 +A4 Sp1€4j1 - (D2)
~—— —— S—— ——
Term 1 Term 2 Term 3 Term 4
Say,
1
Ml.(j ) — Term 1 = €ijk (D3a)
M;.Z) = Term 2 = §;1€jx1, (D3b)
Ml.(j3) = Term 3 = §j1€1, (D3c)
Ml(;]? =Term4 = Skleiﬂ. (D3d)
To expand the different tensors, term by term, we find that the only non-zero terms in
Ml.(j}{) are
(1 1 (1)
My = M3, = My =1, (D4a)
(1) _ D ()
M3y = M3y = My3 = —1. (D4b)

Similarly, the non-zero terms in Mﬁ) are given as

2
M =1, (D5a)
2 .
M3, =—1; (D5b)
and the non-zero terms in Ml.(ji) are given as
3
MY, = —1, (D6a)
3) .
My, =1, (D6b)

whilst the non-zero terms in M;.A,? are given as

4

M) =1, (D7a)
@

M) = —1. (D7b)

From the visual inspection of (D4), (D5), (D6), (D7), we obtain the following
relationship:

M _ 4,2 (3) (4)
Mi/.k = Ml.jk + Ml.jk + Ml.jk , (DY)
which means out of the four terms Mlg.llc), Mﬁ), Ml.(ji) and Mg,t), only three are linearly

independent, and therefore, without loss of generality, we can remove Mi(ji) (= Term 2)
from (D2) (or (4.6)), which leads to, with a slight change in notation, (4.7).
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Appendix E. Solving Laplace equation around an ellipsoid with a far-field
temperature gradient

Here we outline how to solve Laplace’s equation around an ellipsoidal particle. We use
ellipsoidal harmonics, a technique widely used in electrostatics, and the results in Sten
(2006) directly apply here. Let us consider a frame of reference where the Cartesian
coordinate system (x, y, z) aligns with the semi-major axes (a, b, ¢) of the ellipsoid, with
a > b > c. If the far-field temperature is

aT oT

o T
T®x)=Tp+ —x+ —y+ —z, (ED)
ox ay 0z

the solution outside the ellipsoid takes the following form:

3
T(x) =T®x) + Y BipFy(x). (E2)
p=1
In the above equation, ]—'f (x) = Ff (& )E’f (M)Elf (v) are decaying ellipsoidal harmonics

using the ellipsoidal coordinate system (&, u, v), where & = a denotes the surface of the
ellipsoid. The functions E’l’ and F‘ll7 are Lame functions of the first and second kind, defined

in Sten (2006). In (E2) the coefficients By, are
abc 1 (1 —k) oT

By =—— i - (E3a)
3 kh1+Ll(a)(k — 1) dx
abc 1 (1 —k) oT
B = — — (E3D)
3 n/ikZ =121+ L3 a) (k- — 1) 3y
b 1 1—k aT
By = =° 2 (E3¢)

3 R R+ L@k — 1) 92

where k = +/a? —c¢? and h = +/a? — b?. The geometric factors L}’2’3(a) take the
following form (Sten 2006):

00 dé:/
L2 (a) = abe / . (E4)
! o« EPEPVE? - E? - 1)
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