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Introduction

1. General Idea. In this paper formal operators and bracketings devices are
essentially the same; so are well formed formulae and correct bracketings.

A well known theorem of symbolic logic (Post languages, etc.) and universal
algebra characterizes well formed formulae among (linear) strings of symbols for
variables and operators in terms of a system of numerical inequalities, one of them
an equality.1

A better idea is to consider circular formulae. By bending formulae into
oriented circles, or cycles, in particular well formed formulae into so-called unit
cycles, one overcomes the asymmetry between head (left) and tail (right) end.
Unit cycles have a simpler characterization than well formed formulae and are
readily enumerated. The "welding point" can be recovered, as each unit cycle
determines a unique cutting place such that the stretched out string is a well
formed formula.

2. Resume. The basic results of this paper are

THEOREM 1. Each string of symbols satisfying L — a = 1, or, what is the
same, a = m + n has one and only one cyclic permutation for which it is a well
formed formula; that is a = m + n is a necessary and sufficient condition for a
cyclic formula to be that of a well determined well formed formula.

Here L = n + m + 1 is the length of the string, n the number of variables
xu---,xn; m + 1 the number of operators g0,--- gm of "arities" a0, ••-,am respec-

1 The so-called Polish or Lukasiewicz notation, often somewhat misleadingly said to be
"bracketfree" or "to rid us of the nuisance of brackets", provides a redundancy-free method of
bracketing.
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[2] Well-formed formulae 155

tively; a = Z7=oay t n e t o t a l arity of the string. The theorem assures that each
unit cycle admits a unique cut determining a well formed formula. This gives a
simple method of producing well formed formulae, indeed all well formed
formulae. The essential tools for assuring the unity of the cut are Lemma 2, which
asserts the fundamental bracketing property, and its corollary—the natural partial
order of brackets by inclusion. As a further corollary one obtains

THEOREM 2. The number of distinct well formed formulae

where F is the set of operations and mf the number of times the operator f appears
among the operators g}.

Theorem 1 has two distinct proofs: The first one, based on building up well
formed formulae from shorter ones has already been described above. The other
one is essentially a proposition about sequences of integers and their partial sums
(Proposition 2) which, by the way, has obvious generalizations to finite sums of
reals (Proposition 3) and integrals (Proposition 4); this method effectively deter-
mines the unique place of the cut, that is, the cyclic permutation in Theorem 1,
by using the existence of partial sums having an extremal property.

3. Interpretation and Extensions. Traditionally F in (•) would be interpreted
as the set of "fundamental" operations (the / 's not listed among the g-3 having
multiplicity ms = 0); or, as the set of fundamental operations appearing among
the gj (all mf ^ 1). However, the limitation to fundamental operations is irrelevant—
everything applies to all operations, fundamental or derived (composed) ones,
without distinction. Moreover, the interpretation as operations, i.e. as mappings
/ : A" -* A of the a-th power of a carrier (support) A into A (a = af is the arity
of / ) , is irrelevant too. Our theory is one of abstract groupings, packings, or,
synonymously, of bracketings as purely formal operations.

Extension of these methods to languages with richer logical content, admit-
ting a greater variety of symbols (predicates, quantifiers, allowing for the special
role of " = ", etc.) is desirable and seems feasible. Further combinatorial and
number theoretical results and applications to systems of linear inequalities,
convex polyhedra etc., may be implied. One may also venture the suggestion of
an analogue in theoretical physics: particle formation, by packing of sub-particles,
and splitting of particles, considering well formed formulae built up from shorter
ones as analogues of stable particles composed from smaller ones.

4. Background.—Formula (*) and many of its numerous interpretations,
e.g. enumerating trees, in particular some of its special cases (binary bracketings
or trees, or, what is the same, non-associative "powers") are not new. What
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seems to be new is the surprisingly simple Theorem 1, its elegant conceptual proof,
as well as the more general interpretation.

This paper was motivated by the search for a simpler argument to replace the
ingenuous, but long and difficult proof of a formula for the number of faces of
given form of polyhedra ^ n due to Mme de Fougeres ([3], section 3, Theorem 2).

The idea of circular permutations was conceived independently and earlier,
perhaps for the first time, by Silberger [7]2 in connection with the special problem
of enumeration of binary bracketings. The method of partial sums with an extre-
mal property implying also cyclic permutations, appears, probably for the first
time in Raney's [5]3 proof of formula (*). The history of special cases and inter-
pretations of this problem goes back for more than 200 years, at least till Euler.
Closed enumeration formulae were first proven, mostly by function-theoretical
methods, in the 19th century (Binet, Catalan, Lame, Rodriguez). Cayley and
Schroder considered certain variations on this problem. Formula (*) was obtained
for the first time by Erdelyi and Etherington in 1940 [2] (by function-theoretical
means). Further references can be found in the books and papers listed in our
bibliography and in standard reference works.

2. Cyclic formulae

1. Notations. One denotes: x,x1,---,xn variables (constants which are the
same as nullary operations, included) which are symbols of "arity" 0 (or valency
or weight 1), chosen from a set X;

{"•»/.•••}= F = Ua e N- Fa the set of functions or operations, Fa the set of
those of arity a (N' = {1,2,•••})4; go,---,gm are m + 1 not necessarily distinct
feF;

Y = X U F set of symbols y, from which yu •••,yL are chosen; ay arity of

y; s = sL = s^ = yx •••yj---yLe YL a (linear) string of length L, yJyL its head/

end (first/last symbol) S = ULeNYL set of str ings5; L = n + m + I; aj = ag.,

*Lf=1ay. — YJf=oaj = a the total arity of s;

v : S^Z (integers) is the valency of strings defined by v(y) = 1 — ay, v(s)
= l^1v(yj) = L-a.

Operators act on symbols to their right; e.g. the distributive law for rings
x • (y + z) = (x • y) + (x • z) will be written • x + yz = + • xy • xz.

2. Some Preliminaries on Well Formed Formulae. A well known theorem
of symbolic logic (Post Languages) and universal algebra (for example [1],

2 The author is obliged to Professor J. Isbell for calling his attention to this recent paper.
3 The author is obliged to Professor Don Knuth for this reference, as well as that to

his recent book [4].
4 Putting X = Fo one replaces W by N = [0, 1, 2, ••• ] and obtains Y=F.
s Including the empty string s0.
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p. 118; [6] , pp . 152-157, p . 207) characterizes the subset W, W <= S, of meaningful

words (derived functions, polynomials) or well formed formulae (expressions
substitutable for variables) by

se Wov(sj) ^ 0 (1 g . / < L), v(sL) = 1.

This is a characterization by initial segments. Dually, their complements or
final segments satisfy v(CsJ) = v(yJ+1 •••yL) ^ 1 for all j = 0,1 •••, L — 1 with
Cs° = s = sL and v(s) = 1.

Defining a function u = u,:JL-*Z(JL = (1,---,L)) assigning j+->us(j)
= v(sj) one reformulates this characterization as

PROPOSITION 1. seWous(j) takes the maximum value 1, and this only
once at the "end" j = L.

Call a sequence z1 ••-,zL of integers ^ 1 with sum = 1 a unit sequence, and
call it well balanced if all properly partial, i.e. initial sums are ^ 0. One refor-
mulates

P R O P O S I T I O N \'. SSWO viyj, •••, v(yL) is a well balanced unit sequence.

3. Cycles. Bend s into an oriented cycle t with addition and subtraction of
indices in JL mod L. Substrings (segments or arcs) of length / g L are strings

s j - 1 + ' = j v . t t - i + i . t h e "full" arcs s/"1 (Vi ^ L) having length L.
The common valence of i>(sj~x) for all i is the valency y(f) of t. All cycles con-

sidered shall have positive valency v{t) > 0. If v{i) = 1 call t a unit cycle.
If s j"1 + 'e Wcall s'i~1+/ an elementary unit (e.u.).

LEMMA 1. Each yt of t is head of a uniquely determined elementary unit
s\' (of length l( = V - i + 1 ^ 1).

PROOF, a) yteX => yt = s/is the desired elementary unit with /f = 1.

b)y,eF<*v(yd < U t^! ' 1 ) ^ 1 => 3/(1 < / g

COROLLARY 1. t is covered by elementary units.

COROLLARY 2. i+->i' defines a well defined function JL-*JL.

LEMMA 2. (Fundamental bracketing property): Elementary units do not
overlap (properly); that is two distinct elementary units are either disjoint or
one is contained in the other.

PROOF. Assume e.u. s\',sJ/ i <j, overlap properly, that is i < j ^ V < j ' .
This implies i^sf'1), v(s'/) ^ 0 and, therefore, the contradiction 1 = vis'-) =

T 1 } '
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The following reformulation of this proof is even simpler and more concep-
tual : An intersection of two properly overlapping elementary units is simultan-
eously a final and an initial segment, that is of weight ^ 1 and ^ 0 which is
absurd.

REMARK. There can be two intersections at once.

COROLLARY 3. Among the L distinct full arcs s ' " 1 there is at most one
elementary unit.

PROOF. Any two among them overlap (even twice).

A necessary condition for t to have a full elementary unit is v(t) = 1; by
Corollary 3 there can be at most one. One proves that indeed there always is one.

Consider the system of all elementary unit arcs of t ordered by inclusion.

COROLLARY 4. t is partitioned by its maximal elementary units.

COROLLARY 5. v(t) = L — a = number of maximal elementary units of t.

COROLLARY 6. f(0 = L — a = 1 *> li | s-"1 e W.

This proves

THEOREM 1. v(t) = 1 o t has a full elementary unit (of course, only one).
As L = n + m + 1 and L — a = l=>a = n + m, v(t) ==loa = n + m. This
gives the version of this theorem in the introduction. Other versions are:

THEOREM lA. Each unit cycle admits one and only one cut that is, deter-
mines a unique head at i such that s = s't~

l is a well formed formula. In other
words:

For each string s = yt • • • yL with D(S) = 1 there exists one and only one
cyclic permutation such that s,'"1 = J V J ' I J ' I •••yi-i.^W.

How to find j? If the cut falls between yj-iy^yiJi included, then yJ_leX
and yj e F. If there is only one such place this one is it. Otherwise one can try
such places one after the other. Proposition 2 in the next section gives an indepen-
dent characterization and direct determination of i.

4. Arithmetical Version and Generalizations. An elementary arithmetical
version of theorem 1 is

THEOREM 1B. Every unit sequence admits one and only one cyclic permuta-
tion making it well balanced.

Proposition 1 and version B of Theorem 1 suggest the stronger Proposition 2 with
an even simpler proof.
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PROPOSITION 2. Let z = zu ••-,zL be a unit sequence, i — 1 the lowest index

at which its (initial) partial sums take their maximal value: then Zj,---,zL,zu

••-, z^i is the unique well balanced sequence among the cyclic permutations of z.

PROOF. P u t M = Z y = \ z ; . Then S * = 1 z y < Mfor all k < i - l , I * = 1 z y < M

for all k.

Therefore Z5_,z7 = E ' - i Z y - M £ 0 i ^ k ^ L

k k l< 0 k <? i — 1

j=l j = l 7 = 1 l - 1 ' K — J — 1 .

One obtains the uniqueness, as above from the fundamental bracket property

(Lemma 2), that is, by Corollary 3; or independently, as follows:

For / # / the sequence zh---,zL,zu •••,zl_1 will not be well balanced because

for l<i: J.lj-m\zj = XjZlzj - S j ' l z y > 0,

for / > i : I.f=lzj + "L%\zj = 1 - I.'j~m\zj + I ' / . \ z 7 ^ 1.

An obvious, but weak generalization is

PROPOSITION 3. Let r t , •••, rL be a sequence of real numbers with positive

sum s > 0 and i — 1 the first index at which the partial sums take their greatest

value. Then all properly partial sums of the cyclic permutation

ri> ' " > r L > r i > • ' • > r i - i

are < s; that is, its sequence of partial sums takes the smallest possible greatest

value namely s, and this only once namely as the total sum.

REMARKS. The first L — i + 1 partial sums are even ^ 0. The i of the proposi-

tion is well defined, but there is no point in emphasizing uniqueness as no general-

ization of well balanced has been formulated. If all r, are integral multiples of s

and ^ s; one falls back to Proposition 2. Otherwise new, possibly richer pos-

sibilities arise.

An even wider generalization is

PROPOSITION 4. Let v be a real function in the interval a ^ x ^ a + L with

well defined integral

-f.
Ja

V(x) = vfor allxa^x^a + L
Ja

and s = V(a + L) > 0; let b, a < b ^ a + L, be the first ( = smallest) x at which

V(x) reaches its greatest value. Put
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lv(x) for b £x ^a + L

and

U(x) = f u b ̂ x ^b + L.
Jb

r < s for x < b + L (even)

Then U(x) = -i g 0 for x ^a + L

^ = s for x = b + L.

PROOF. Obvious.

3. Enumeration of well for Jied formulae

1. First derivation.—Consider xu •••,xn as n distinct points in cyclic order
determining n places, place p being the open arc from xp_t to xp (for p = 1
from xn to Xj). The operators g0, •••, gm are points in these places: g0 is in one of n
possible places, dividing in into two new places; gt in one of the n + 1 places
determined by xt, •••,xn and g0, dividing again one of them into two; etc.; finally
gm can be placed in any of n + m places determined by xu •••,xn and g0, •••,gm-i.
One has therefore

(1) n(n + l)...(n + m)= f\ (n+J)

possible arrangements of cyclic formulae with m + 1 operators with respect to
the fixed cycle (xu •••,xn).

Cycles, distinct only by permutations of places of repeated appearances of
the same operator, are identical. i f / e F appears ms times among the
= m + 1, T.feFafmf = a), the number of distinct cycles is

j=O feF

If a = n + m, the cycles are unit cycles, each determining a unique well
formed formula with a certain x,(i = 1, ••-,«) as its first variable eX. Therefore
Nl"o -ffm> the number of well formed formulae with indeterminates x , , - - , xn

in this order, i.e. with i = 1, is 1/w of (2):

THEOREM 2.

w <)-^= n (
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2. Alternative derivation of formula (*). The number of strings in
L = n + m + 1 distinct symbols xu---,xn,g0,•••,gm = (n + m + 1)!

The n variables are interchangeable as their notation or enumeration is in-
different; so are the ms operators g} equal/. Therefore there are only (n + m + 1)!
/nlllffiy! distinct strings. One and only one among the n + m,+ 1 cyclic permuta-
tions of each string is a well formed formula. Therefore one has precisely

Kto = (» + m)\ln\Umf\ = f[ (» + ./)/ U ™t\
j=l feF

distinct well formed formulae as above.

3. Applications of (*). Formula (3) is nearly identical with that of Theorem
2 of [3];

(••) /io
nU = f[ (n + 2+j)lf[tj\

j = l J = 0

where t} is the number of dk = j , that is, L"=o ts = i + 1 and Z"= v tj = n — i.
(**) is (•) with F = {/ \j = 2 ,3 , -"} , / just the "universal" y-ary operation
(ignoring the unary identity map/i) . In (**) n is replaced by n + 2, m by i, mJ+2

by f,, and gk by dk with ak = dk + 2.

REMARK. One interprets the universal j-ary operation fj as "j-ary brackets"
(this, indeed, is meant in [3]), i.e. the formation of j-uples. One extends the
carrier A to A UA xA U ••• = U / L ^ ' = %;fL is extended from A to %, and so
are all fj.

One obtains the number of binary bracketings kn by putting F = { /} , / = f2

the universal binary operation,

2 m f = mf = m + 1, a = 2mf = n + m-» n + m = 2n — 2,

that is

m + l = n — 1 times
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