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Abstract. Pesticide applications are essential for peanut production to control
insects, weeds, and other plant pathogens and for a profitable operation. We use a
stochastic frontier analysis/primal system approach to test the hypothesis of the
overuse of fungicides among peanut farmers. With nationally representative data
available from the Agricultural and Resource Management Survey, we find
evidence that U.S. peanut growers used excessive amounts of fungicides to prevent
fungal infections. If those farmers adopt a new cultivar resistant to fungal
pathogens, they could reduce the total cost of chemicals up to 36.2%. The
reduction in fungicide use would have spillover environmental benefits.
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1. Introduction

An important issue that threatens U.S. peanut production, particularly
Runner peanuts, is the susceptibility of this crop to several types of fungal
pathogens.1 In particular, Aspergillus (flavus, fumigatus, and parasiticus), a
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and using the ARMS data. The findings, conclusions, and recommendations of this work are those of the
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1 Runner peanut is the predominant cultivar and represents 80% of the entire U.S. production (4.17
billion pounds in 2014), followed by Virginia (15%), Spanish (4%), and Valencia (1%) (see the American
Peanut Council, 2015).
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group of fungi, are responsible for producing aflatoxins, which are carcinogenic
mycotoxins. Specifically, A. flavus, the most dangerous hepatocarcinogen known
to man, has been associated with an increased risk of liver cancer and is
commonly found in peanuts (Hedayati et al., 2007). Although the rates of
primary liver cancer are highest in places where peanuts are a mainstay in
the diet (e.g., Asia and Africa), each year more than 15,000 men and 6,000
women are found to have primary liver cancer in the United States (National
Cancer Institute [NCI], 2011; Wu and Khlangwiset, 2010). In 2011, the number
of new cases of liver cancer was projected to reach over 26,000 persons along
with approximately 20,000 deaths (NCI, 2011). To reduce the level of aflatoxin
exposure and the risk of liver cancer, the U.S. Food and Drug Administration
(FDA) maintains a tightly controlled screening program of the food supply
including peanut products (FDA, 2015). To mitigate the presence of the A.
flavus mold, peanut producers use large amounts of chemicals to prevent fungal
growth.

The use of chemical factors therefore has a positive effect on social welfare
by reducing the risk exposure to a human carcinogen that may be present
in edible peanuts; on the other hand, the excessive use of pesticides may
also have a negative effect on social welfare by degrading the quality of the
ecosystems surrounding peanuts farms and by risking adverse impacts on human
health. For example, Carsel et al. (1988) simulate the level of mass fluxes of
aldicarb, an insecticide commonly used by peanut growers in North Carolina, to
the groundwater, and they assessed a concentration level between 0.01 and
0.1 kg ha−1 within a radius of 120 m downgradient2 from the application
point. Pesticide residuals can be transported and can be a serious threat for
public health when they reach water bodies that are sources of drinkable
water.

1.1. Potential Benefits of a Biotech Solution

With the implications of chemical overuse in peanut production, this research
provides analysis to test the hypothesis that peanut farmers overuse certain
chemicals. With evidence of this overuse of chemical inputs, we exploit this
information to identify the area of research that may generate the greatest benefit
to farmers. Based on the input use, we suggest that a genetic manipulation that
lowers the demand of the overused input may be one avenue to improve farmer
welfare. For example, if farmers overuse herbicides, then the adoption of a new
cultivar with enhanced traits that are more resistant to weeds, thus reducing the
need for herbicides, will increase the welfare of farmers. The benefits will occur
by lowering the cost of this chemical factor in addition to reducing the induced
cost increase attributable to the allocative inefficient use of herbicides.

2 Downgradient is a term used in water sciences that indicates the direction of groundwater flows.
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In the past decade, genetic engineering has offered a potential remedy to
help peanut producers successfully defeat the problem of fungal pathogens.
For example Jonnala, Dunford, and Chenault (2005) analyze the differences
between three transgenic peanut lines (resistant to fungal pathogens) in the
southwestern United States. From comparison with the parent line, they found
that genetic modification did not cause substantial unintentional changes in the
nutritional value of peanuts. Genetically engineered (GE) peanuts may provide
fungal resistance without any significant difference in quality.

Price et al. (2003) argue that the adoption of agricultural biotechnologies
for cotton, soybean, and corn has increased the U.S. total welfare by US$750
million. The world benefit from adopting herbicide-tolerant cotton is shared
by consumers (57%), U.S. farmers (4.1%), biotech firms (4.6%), seed firms
(1.6%), and other producers from the rest of the world (32.6%). The use of GE
crops in agriculture may have environmental benefits such as improved water-
use efficiency through modification for arid climate crops or abatement of non-
point-source pollutants through reduced input use (Godfray et al., 2010). This
is the case with GE crops that have a high resistance to pests and reduce the
need for pesticides. GE peanuts, still in the development stage, may represent a
promising alternative that may reduce the costs of inputs and increase crop yield
and productivity (Fernandez-Cornejo and Caswell, 2006).

Holbrook and Stalker (2002) provide a review of hybridization efforts that
agronomic scientists have accomplished with Arachis hypogaea. The authors
report several studies that addressed the issue of breeding peanuts with resistance
to root-knot nematode, fungal pathogens, and drought. Despite the large
qualitative and quantitative variation in genotypic variations of the cultivar in
U.S. domesticated peanuts, only a few of their genetic traits have been studied
(Knauft and Wynne, 1995; Murthy and Reddy, 1993; Wynne and Coffelt,
1982).

Few studies reported the economic losses of peanut producers because of
fungal pathogens or soil-borne diseases that could be mitigated if a GE cultivar
was available to the farmers. For example, Lamb and Sternitzke (2001) argue that
the average annual cost of aflatoxin borne by all segments of the southeast peanut
industry is approximately US$25.8 million. Isleib, Holbrook, and Gorbet (2001)
report that breeding programs, which improved the resistance of domesticated
peanuts to Sclerotinia blight, root-knot nematodes, and tomato spotted wilt
virus, increased producer welfare by more than US$200 million over a 20-year
period.

Although Lamb and Sternitzke (2001) present an accounting estimation of
the costs of plant disease based on 4 years (1993–1996) within a single region,
Isleib, Holbrook, and Gorbet (2001) calculate farmers’ benefits by comparing
the advantage of the increased yield obtained from the resistant cultivar with the
old yield. Isleib, Holbrook, and Gorbet (2001) also account for reduced costs
of pesticides. None of the researchers use a neoclassical economic framework
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for estimating the potential benefit deriving from improved genetic traits, and
they ignore climatic variability that may also affect the crop yield of both
traditional and new cultivars. The current literature is missing a large-scale
positive economic analysis of the potential benefits deriving from the use of
GE peanuts.

In the current study of U.S. peanut production, we conduct an economic
analysis of technical and allocative inefficiency of chemical inputs. From the
analysis, we identify efficient chemical input use, and we suggest research
priorities in agricultural biotechnology based on inefficient input use. To our
knowledge, this is the first study that addresses this question in the peanut
sector.

2. Theoretical Considerations

Hanson, Hite, and Bosworth (2001) study the potential economic benefit of
biotechnology in the fishery sector. The authors evaluate the value of various
forms of farm-raised catfish in the attempt to help geneticists determine the
inherited traits on which breeders should focus their research. They use a
complete demand system to simulate different welfare scenarios from the
potential genetic manipulations that increase the quantity and cut of catfish
available in the market.

Replicating this methodology to estimate a complete demand system of
chemical production factors used by peanut farmers may be economically sound,
but the approach cannot take agronomic principles into account. For example, a
grower would not substitute between nitrogen and fungicide because these two
factors serve two very different tasks and thus belong to different branches of
the purchasing decision tree. Furthermore, lack of substitution among chemical
factors in agricultural economics is supported by several authors (Ackello-Ogutu,
Paris, and Williams, 1985; Frank, Beattie, and Embleton, 1990; Grimm et al.,
1987; Paris, 1992; Paris and Knapp, 1989). These researchers propose crop
response functions to chemical factors that exhibit a plateau effect, which occurs
after a threshold in the nutrient application rate. After this point, additional
nutrient applications do not increase plant growth as hypothesized by von
Liebig’s law of minimum.

Frank, Beattie, and Embleton (1990) suggest the Mitscherlich-Baule (MB)
response function as a way to address the plateau of chemical use in agricultural
production. For example, an indirect profit function that accounts for production
plateaus can be obtained by substituting the MB for peanut yield3 in a profit

3 The crop yield equation is y = β0
∏J

j=1{1 − exp[−β2j−1(β2j + xj )]}, where y is crop yield, xj is the
jth chemical factor, β0 is the yield plateau, and β2j−1 and β2j are nonlinear coefficients of the MB response
function.
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maximization problem as a function of chemical factors and then solving a
simple optimization problem. From the first-order necessary condition and the
implicit function theorem, the profit maximizing value of endogenous chemical
factors, as functions of input and output prices, can be substituted into the profit
function to derive an indirect profit function. The indirect specification may then
be used to derive elasticities of substitution.

However, mathematical derivation of the indirect profit function based on
the MB specification does not have a closed form. Although a second-order
Taylor approximation reduces the production function to a quadratic form,
the approximation consistently misspecifies the original MB form. The error
approximation is relevant considering that we expand the Taylor series up to
the second order as we are interested in finding elasticities of substitution in the
current research. Therefore, estimating a demand system for chemical production
factors, based on misspecified functional forms, would not be the appropriate
strategy to make policy recommendations.

2.1. An Alternative Approach

Because direct estimation of the substitution elasticities of inputs (nutrients and
pesticides) in peanut production is flawed, an alternative approach to study
input use of peanut farmers is to assess their inefficient use. For example,
producers may overuse labor in input application,4 which is systematically tied
to overuse of a particular chemical input, say herbicide, because they believe
that using large quantities of this factor can help them eliminate unwanted
weeds.

Schmidt and Lovell (1979) define allocative inefficiency as a failure to allocate
inputs in the right proportions given the input prices. In a production process
that has allocative inefficiency, the marginal revenue product is not equal to
the marginal resource cost. Technical inefficiency occurs when producers fail
to maximize the output given a bundle of inputs. In reference to allocative
efficiency, Kumbhakar and Lovell (2000, p. 152) state that “in a wide variety of
environments farmers use excessive amounts of fertilizers and pesticides relative
to other inputs.”

Kumbhakar and Wang (2006) extend the primal system approach of Schmidt
and Lovell (1979) by using the more flexible transcendental logarithmic
functional form of the stochastic frontier. The authors argue that if the
input endogeneity is considered during the implementation of the econometric

4 Labor and nutrients, in general, are complementary factors. However, different nutrients’
application techniques may have different associated labor costs. For example, it is logical that there
is no substitution between water and labor; farmers can select an irrigation technique that requires less
labor (see Nieswiadomy, 1988).
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problem, then the output-oriented or input-oriented technical inefficiencies are
the same.

The primal system technique consists of estimating simultaneously a
parametric self-dual production function

ln y = ln f (x) + v − u (1)

and the first-order conditions of a cost-minimization problem that can be
implicitly formulated as

fj

f1
= wj

w1
eηj ∀j = 2, . . . , J , (2)

where y is the level of production; x is a vector of inputs; v is a vector of
unobserved farmers’ heterogeneities; u is the vector of technical inefficiencies; fj

and f1 are the marginal products of input j and input 1, respectively; wj and
w1 are prices of input j and input 1, respectively; and ηj is a vector of allocative
inefficiencies.

The cost-minimizing condition for a profitable producer is that the marginal
rate of technical substitution of input j with respect to input 1 should equal the
price ratio wj and w1. This condition occurs if the allocative inefficiency term
equals zero

(
ηj = 0

)
. However, this condition is violated if ηj �= 0. Assuming

limited substitutability between chemical factors, if the allocative inefficiency for
the input pair (j , 1) is ηj < 0, then wje

ηj < wj that consists of an overuse of
input j with respect to input 1. In other words, the farmer will reduce the use
of input 1 in favor of input j . Cost analysis in a stochastic frontier framework
would provide results that are less biased by including the inefficiency terms that
raise the costs of production.

3. Econometric Model

The analytical expression that allows the econometric estimation of technical
and allocative inefficiency using the primal approach is formulated assuming
a cost function c(w, y) and using Shephard’s lemma to derive the conditional
demand of factor xj(wj, y). In logarithmic form, it follows that

∂ ln c
(
wj , y

)
∂ ln wj

= ∂c
(
wj , y

)
∂wj

wj

c
(
wj , y

) = wjxj

c
(
wj , y

) = sj ⇒ wj = sj c
(
wj , y

)
xj

.

(3)
This result is used to substitute the new expression of wj in equation (2) to

obtain
fj

f1
= wj

w1
enj = sjc(wj , y)

xj

x1

s1c(wj , y)
enj ⇒ sjx1

s1xj

= wj

w1
enj ⇒ sj

s1

= wjxj

w1x1
enj ∀j = 2, ..., J. (4)
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Taking the logarithm of equation (4), we get

ηj = ln sj − ln s1 − ln
(
wjxj

) + ln (w1x1) ∀j = 2, . . . , J , (5)

where sj are cost shares of the input xj given the input price wj .

Econometric estimation of the primal system described by equations (1) and
(5) can be performed under the assumption that the error components have
the following distributions as suggested by Kumbhakar and Lovell (2000): v ∼
N

(
0, σ 2

ν

)
is a vector of normally distributed random noises that capture specific

heterogeneities of peanut farmers; u ∼ N + (
0, σ 2

u

)
is the vector of technical

inefficiencies half-normally distributed; η = (η2i , η3i , . . . , ηJi ,) ∼ N (0, �) is the
vector of allocative inefficiencies for the ith peanut farmer; and ηj is assumed to
be independent of v and u for simplicity.

The joint density function of the three error components is calculated by
multiplying their probability density functions. Consequently, the log-likelihood
function for the ith peanut farmer is

ln Li = ln 2π − 1
2

ln σ 2 + ln φ
(εi

σ

)
+ ln �

(
−εiλ

σ

)

− 1
2

ln |�| − 1
2

η′
i�

−1ηi + ln |Ji | , (6)

where the error components v and u and the related standard deviations are
reparameterized as ε = v − u, σ = σ 2

u + σ 2
ν , and λ = σu/σν , and φ (·) and � (·),

which are probability density and cumulative density functions of a standard
normal variable, respectively. Note that the |J | is the determinant of the Jacobian
matrix of the transformation from (ε, η) to

(
ln x1, ln x2, . . . , ln xj

)
that serves to

address the endogeneity of input x under the cost-minimization assumption. In
other words, the determinant of the Jacobian is the degree of homogeneity or
the return to scale that may lower the production costs if the producers adopt
economies of scale.

The number of parameters to be estimated can be reduced if equation (6) is
concentrated with respect to �. Schmidt and Lovell (1979) show that the element
σjk of �, when equation (6) reaches its maximum, can be expressed as follows:

σjk = 1
N

∑
i
ηjiηki∀j , k = 2, . . . , J ; viz. (7)

� = 1
N

∑
i
ηiη

′
i∀i = 1, 2, . . . , n. (8)

Substituting equation (8) into equation (6) leads to the concentrated log-
likelihood function LLi(yi |xji , βj , σ , λ) as a function of the technical parameters
βj and the parameters σ and λ that allow one to recover the vector of
technical inefficiencies. In particular, technical efficiency can be calculated by the
exponential of the negative of the point estimates of ui , that is, T E = exp (−ui).
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The components of this vector can be recovered using the formula suggested by
Jondrow et al. (1982), which is

E {ui | (εi)} = σ ∗
[

φ (εiλ/σ )
1 − � (εiλ/σ )

−
(

εiλ

σ

)]
, (9)

where σ ∗ = σuσν/σ , and the allocative inefficiencies ηj for the input bundle
(j , 1) can be calculated from the residuals of the First Order Conditions (FOC)
in equation (5).

Knowing the allocative inefficiency would be enough to address the research
priority in biotechnology to produce a crop that has resistant traits that would
reduce the (over)use of the chemical input that is applied inefficiently. However,
to quantify the economic and environmental impact of the allocative inefficiency,
Kumbhakar and Wang (2006) suggest placing the estimated η into the input
demand equations. The demand equations can be derived by the simultaneous
solution of the primal system composed of equations (1) and (5). These equations
can be used to simulate the actual input demand increase attributable to the
inefficient use of inputs. That information can then be used to calculate the
potential welfare change for the farmers who adopt genetically modified peanuts.
The welfare change is the result of the elimination of the inefficiently used
chemical factor. An additional welfare change derives from a readjustment in
the use of the other inputs once the inefficient input is eliminated.

Overuse of chemical factors can occur systematically, and such systematically
inefficient farming behavior can be modeled by assuming the following
multivariate normal distribution of the allocative inefficiencies: η ∼ N (ρ, �) ,
where ρj = η̄j = 1

n

∑n
i=1 ηji∀j = 2, . . . , J and i = 1, 2, . . . , n.

4. Data and Empirical Model

The Economic Research Service (ERS) and the National Agricultural Statistical
Service (NASS) collect data on cost and returns on peanut production as
part of the U.S. Department of Agricultural (USDA) Agricultural Resource
Management Survey (ARMS). In 2004, NASS collected data regarding peanut
farming operations in three phases. A screening phase (Phase I) conducted in
summer 2004 served to identify peanut farmers in operation. In Phase II (fall
2004 and winter 2004–2005), NASS randomly selected a sample of peanut
farmers from Phase I and interviewed them concerning their production practices
and chemical use. Finally, in Phase III (spring 2005), a nationally representative
sample of peanut farmers provided information on costs and returns during the
crop year 2004. We merged the ARMS data with climate data such as average
temperature, average precipitation, and average dew point temperature (air
moisture less humidity) of each farm in the 2004 growing period. We calculated
these through a geospatial analysis on gridded data from the National Oceanic
and Atmospheric Administration, USDA, and PRISM Climate Group at Oregon
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State University. The final data set consisted of 389 observations. The climate
data serve as exogenous frontier shifters in the following model:

lnyi = β0 + β1 ln x1i + β2 ln x2i + β3 ln x3i + β4 ln x4i + β5 ln x5i

+β6 ln x6i + β7 ln x7i + δ1 ln z1i + δ2 ln z2i + δ3 ln z3i + vi − ui, (10)

where yi is the total physical production of peanuts expressed in pounds
and x1i is hired labor expressed in hours on farm i. Nitrogen, phosphate,
potash, insecticide, herbicide, and fungicide expressed in pounds correspond
with x2i , x3i , x4i , x5i , x6i , and x7i for each farm. The variables z1i , z2i , and
z3i are rainfall, temperature, and relative humidity (dew point) expressed in
millimeters and degrees Celsius. The Cobb-Douglas production function is the
most parsimonious first-order approximation of the true production function;
thus, we use it in our analysis.5 With labor (x1) as the numeraire, the first-
order condition of the cost-minimization problem produces the column vector
of allocative inefficiencies with wj , j = 1, 2, ..., 7 as prices of production factors
expressed in US$/lb.

η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

η2

η3

η4

η5

η6

η7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln β2 − ln β1 − ln (w2x2) + ln (w1x1)
ln β3 − ln β1 − ln (w3x3) + ln (w1x1)
ln β4 − ln β1 − ln (w4x4) + ln (w1x1)
ln β5 − ln β1 − ln (w5x5) + ln (w1x1)
ln β6 − ln β1 − ln (w6x6) + ln (w1x1)
ln β7 − ln β1 − ln (w7x7) + ln (w1x1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

The determinant of the Jacobian matrix of the transformation from (v − u, η)
to

(
ln x1, ln x2, . . . , ln x7

)
will be

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−β1 −β2 −β3 −β4 −β5 −β6 −β7

1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
1 0 0 −1 0 0 0
1 0 0 0 −1 0 0
1 0 0 0 0 −1 0
1 0 0 0 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= β1 + β2 + β3 + β4 + β5 + β6 + β7. (12)

5 Although the quadratic translog specification would be more economically appealing, in this case
it would require the estimation of 68 parameters considering all the interaction terms. The number of
parameters, including intercept, λ, and σ , is 2 + (

n2 + 3n + 2
)
/2. These parameters would be part of

the entries of the Jacobian matrix in equation (6), and such elements would also be nonlinear. In the
attempt to calculate the symbolic determinant of such a matrix on a new generation UNIX workstation
(Unix/Debian 6.0 Dual Core workstation with 2.8 GHz CPU and 8 GB RAM; Maxima Computer Algebra
System software), the computer system was not able to allocate all its resources to accomplish the task.
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The NASS survey design is a stratified sample frame based on characteristics of
farms (USDA-ERS, 2014). For each observation, the data set includes sampling
weights or expansion factors (Qi = 1/πi) that are based on the probability
(πi) of the farmers being selected within a stratum. Therefore, in order to
provide unbiased estimators, we use the weighted exogenous sampling estimator
(WESML) (Manski and Lerman, 1977). According to the authors, with reference
to this study, the quasi-log-likelihood function will be

QWML (β, δ, σ , λ) = Qi

{
ln 2π − 1

2
ln σ 2 + ln φ

(εi

σ

)
+ ln �

(
−εiλ

σ

)

− 1
2

ln |�| − 1
2

η′
i�

−1ηi + ln |Ji |
}

(13)

with i = 1, 2, . . . , n.
Cameron and Trivedi (2005) show that even if the sampling process

is affected by endogeneities, the WESML is still consistent. Because the
information matrix does not hold for the quasi-maximum likelihood estimator
(QWML), the asymptotic variance-covariance matrix can be calculated using the
sandwich estimator n−1 ∑n

i=1

(
Qi 	 H i

)−1 (
Q2

i 	 Gi G′
i

) (
Qi 	 H i

)−1 where n is
the sample size; G and H are the gradient and the Hessian of equation (13),
respectively; Qi is the sampling weight associated with each observation; and 	
is the element-wise Hadamard product (Cameron and Trivedi, 2005, p. 828).

ARMS does not report the price of single nutrients applied by the respondents;
therefore, we derived these data from ARMS: We thus projected the prices of
nutrients based on an ordinary least square model based on (1) total cost of
commercial fertilizer (nitrogen, phosphorus, and potash; N-P-K) applied, (2)
total acres treated with these products, (3) quantity applied per acre, and (4)
percentage analysis of plant nutrients applied per acre. We regressed fertilizer
expenditure (E) per unit of land (US$/acre) on the actual acreage treated6 with
the chemical components producing the estimates as reported in Table 1.7

Based on the Ordinary Least Squares (OLS) model, we project the expenditure
of each nutrient per acre by setting the use of the other inputs (AN, AP, or
AK) to zero. For example, phosphorus expenditure per acre is EP = 41.014
– 0.085AP. Finally, the nutrient price for each farmer is the ratio of the total
nutrient expenditure (US$) to the total pounds of nutrient applied; for example,
the price of phosphorus (US$/pound) for each farmer is calculated as PriceP =
(EP × AP)/P, where P is total pounds of phosphorus. Descriptive Statistics are
reported in Table 2.

6 The actual acreage treated with a specific nutrient is the product of the total acres treated and the
percentage of plant nutrient applied per acre.

7 E = β0 + β1AN + β2AP + β3AK, where AN, AP, and AK are acreages treated with nitrogen,
phosphorus, and potash, respectively.
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Table 1. Estimated Nutrient Expenditures

Coefficients

Intercept 41.014∗∗∗

(2.092)
Acres treated with nitrogen (AN) 0.045∗∗

(0.017)
Acres treated with phosphorus (AP) − 0.085∗∗

(0.042)
Acres treated with potash (AK) 0.077∗∗

(0.038)

F-statistics 6.22∗∗∗

Observations 389

Notes: Dependent variable is expenditure per unit of land (E). Asterisks ∗∗∗, ∗∗, and ∗ indicate 99%, 95%,
and 90% confidence interval, respectively. Standard errors are in parentheses.

Table 2. Descriptive Statistics

Variable Unit Mean Standard Deviation

Production lb. 839,158.580 1,180,553.940
Hired labor hr. 32.460 86.149
Nitrogen lb. 2,447.960 5,382.990
Phosphate lb. 2,164.480 3,012.960
Potash lb. 2,471.720 3,149.980
Insecticide lb. 138.460 297.241
Herbicide lb. 175.458 257.082
Fungicide lb. 195.972 304.414
Price labor US$/hr. 7.708 1.517
Price nitrogen US$/lb. 2.779 1.959
Price phosphate US$/lb. 1.274 1.991
Price potash US$/lb. 1.299 2.120
Price insecticide US$/lb. 10.208 3.373
Price herbicide US$/lb. 38.150 17.502
Price fungicide US$/lb. 60.396 27.727
Precipitation mm 120.985 24.124
Dew point Celsius 16.148 2.735
Temperature Celsius 22.126 1.310
Sample size 389

Notes: Nutrients and pesticides refer to the actual weight of the active chemical component. The actual
active component of the commercial pesticides has been calculated using the specific gravity of each
chemical component as reported by the “AccuStandard Pesticde Standards Reference Guide.” Prices of
nitrogen, phosphate, and potash have been simulated through an OLS model.

5. Results

The quasi-log-likelihood function (equation 13) is optimized using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method for nonlinear optimization available
in the optimization library of the Ox Matrix language (Doornik and Ooms,
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Table 3. Stochastic Frontier Analysis

Estimates with Systematic
Parameter Estimates Error in Allocation

Constant 8.134∗∗∗ 8.134∗∗∗

(0.022) (0.022)
Hired labor 0.455∗∗∗ 0.453∗∗∗

(0.003) (0.003)
Nitrogen 0.243∗∗ 0.242∗∗∗

(0.115) (0.114)
Phosphate 0.284∗∗ 0.284∗∗

(0.134) (0.133)
Potash 0.260∗ 0.259∗

(0.136) (0.135)
Insecticides 0.275∗∗∗ 0.274∗∗∗

(0.043) (0.042)
Herbicides 0.268∗∗∗ 0.267∗∗∗

(0.077) (0.077)
Fungicides 0.234∗∗∗ 0.234∗∗∗

(0.077) (0.077)
Precipitation − 0.241∗∗ − 0.240∗∗

(0.105) (0.104)
Temperature 3.832∗∗∗ 3.833∗∗∗

(0.068) (0.068)
Dew point − 1.666∗∗∗ − 1.666∗∗∗

(0.061) (0.061)
σ 1.242∗∗∗ 1.237∗∗∗

(0.178) (0.177)
λ 0.208∗ 0.205∗

(0.087) (0.087)
Log-likelihood −206,763 −191,445
Akaike information criteria 413,529 382,893
Observations 389 389

Notes: Asterisks ∗∗∗, ∗∗, and ∗ indicate 99%, 95%, and 90% confidence level, respectively. Standard
errors are in parentheses.

2006). The BFGS algorithm is widely used to numerically solve very complex
unconstrained problems such as equation (13) using a limited amount of
computer memory. Furthermore, this algorithm numerically approximates the
Hessian matrix of equation (13) with a positive-semidefinite matrix that is
updated at each step by an iterative procedure based on gradient evaluation.
Consequently, the cumbersome computation of the analytical Hessian matrix
(equation 13) can be avoided while ensuring a convergent solution of the
numerical optimization problem.

Table 3 presents the parameter estimates of the production function with and
without systematic errors in allocation. The parameter λ is statistically different
from zero at the 10% confidence level; therefore, the peanut production frontier
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Table 4. Model Statistics

Model with Systematic
Model Error in Allocation

Standard Standard
Mean Deviation Mean Deviation

Technical efficiency 0.645 0.056 0.653 0.055
ηN − 3.764 1.052 − 3.763 1.052
ηP − 3.602 0.754 − 3.600 0.753
ηK − 3.624 0.915 − 3.623 0.915
ηI − 1.910 0.929 − 1.911 0.929
ηH − 4.790 1.918 − 4.790 1.918
ηF − 5.058 1.012 − 5.056 1.011

Cost Increase with
Systematic Error

Cost Increase in Allocation

Technical Allocative Technical Allocative
Inefficiency Inefficiency Inefficiency Inefficiency

Mean 0.219 0.847 0.214 0.849
First quartile 0.186 0.612 0.182 0.614
Second quartile 0.218 0.701 0.213 0.703
Third quartile 0.249 1.101 0.243 1.103

Notes: There were 389 observations. Technical efficiency and cost increases are expressed in percentages.
Subscripts N, P, K, I, H, and F refer to nitrogen, phosphate, potash, insecticides, herbicides, and fungicides,
respectively.

is stochastic as also previously found by Nadolnyak, Fletcher, and Hartarska
(2006).8

In terms of the magnitude of the parameters, no substantial differences exist
between the model that includes systematic error in allocation and the model
that disregards them. However, given the lower Akaike information criteria, the
model representing the production function that accounts for systematic errors
better represents reality with minimum information loss. Additionally, given the
hypothesis that agricultural producers systematically overuse chemical inputs,
the model with systematic errors is a better choice.

Table 4 reports the model statistics also in case of systematic error in
allocation. On average, peanut farmers have a technical efficiency that is 65.3%.
Thus, output is below the optimum output level given the input use. The
hypothesis of overuse of chemical production factors is confirmed by the negative
sign of all the allocative inefficiency terms, η ’s. In particular, fungicides, by
the magnitude of their mean allocative inefficiency, appear to be the chemical
factor that is used in the least efficient way. In fact, at the mean value,

8 The authors conducted a stochastic cost frontier analysis in the peanut sector.
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Table 5. Overuse of Fungicide with Respect to Other Inputs

(wF/wi) × exp(ηF/ηi) wF/wi

Nitrogen 0.274 21.737
Phosphorus 0.233 47.406
Potash 0.239 46.508
Insecticides 0.043 5.917
Herbicides 0.766 1.583

(wF/wL) × exp(ηF) wF/wL

Labor 0.001 7.836

Note: Input price ratios are evaluated at the mean value of the variables.

wF exp (ηF ) = 0.38 < wF = 60.39, and the labor/fungicide ratio is lower than
the cost-minimizing condition.

The overuse of fungicides with respect to all the other inputs is also
confirmed by the fact that (wF /wi) exp (ηF /ηi) < wF /wi∀i = N, P, K, I , H and
(wF /wL) exp(ηF ) < wF /wL. Table 5 reports these inequalities evaluated at their
mean values.

A comparison of the results in Table 5 indicates that the price ratio of fungicide
to other input prices is on average always lower than the cost-minimizing ratios.

We derive input demand equations by solving simultaneously the estimated
system of equations (10) and (11) for each input. The input demand equations
in logarithmic form are

ln xj = γj + 1
r

∑7

k=1
βk ln wk − ln wj + 1

r
ln y + 1

r

∑7

k=2
βkηk − ηj

− 1
r

(v − u) − 1
r

∑3

l=1
δl ln zl; j = 2, ..., 7. (14)

ln x1 = γ1 + 1
r

∑7

k=1
βk ln wk − ln w1 + 1

r
ln y

+ 1
r

∑7

k=2
βkηk − 1

r
(v − u) − 1

r

∑3

l=1
δlzl, (15)

where equation (14) is demand for chemical production factors, equation (15) is
demand for labor, r = ∑7

k=1 βk = 2.013 is a measure of return to scale, and γj =
ln βj − 1

r
[β0

∑7
k=1 βk ln βk] (j = 1, 2, ..., 7) is a simplification term without any

particular economic interpretation. Note that in the previous demand equations,
components attributable to allocative (η) and technical inefficiency (v) are added
to the neoclassical demand for input (first part of equations 14 and 15 that
does not include η, v, and u). Furthermore, a higher r (return to scale) would
imply lower values of all the other components, ceteris paribus. According to our
estimates, there is evidence of economies of scale among the U.S. peanut farmers
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in 2004. This result is consistent with previous findings among the peanut farmers
in the southeastern region of the United States (Nadolnyak and Fletcher, 2005).

The actual demand change attributable to allocative inefficiency is given by[
ln xj |η = η̂]−[

ln xj |η = 0] = 1
r

∑7
k=2 βkηk − η̂j percent increase for the chemical

input xj and 1
r

∑7
k=2 βkηk percent for labor ( x1). The change in demand can be

positive or negative depending on the magnitudes and signs of the estimated
allocative inefficiencies (η̂j ). For the inputs, the change in demand from the
technical inefficiency is a demand increase that is equal to u

r
% = 0.21% in this

study. Behind the econometric assumption, there is also an economic explanation
for the demand increase attributable to the technical inefficiency. This is related
to the self-duality property of the functional form that was chosen to model
the production frontier. In fact, self-dual production functions allow us to
convert the output-oriented technical inefficiency (−u) in equation (10) into
input-oriented technical inefficiency u

r
in equations (14) and (15) by using 1

r
as a

conversion factor. The change of sign is consistent with the equivalence of these
two statements: “producing less than optimal output” and “using more than
minimum inputs.” In addition, economies of scale can mitigate the input demand
increase attributable to technical inefficiency because an inverse relationship
between such an input demand increase and the degree of homogeneity exists.

Another important result is that of the input demand equations also being
functions of the exogenous environmental factors, z, as is clearly demonstrated
by the last terms in equations (14) and (15). It is clear that these environmental
factors refer to climatic conditions of each farm during the growing period;
therefore, these are frontier shifters that exogenously affect the input demand.
Consequently, as for the output-oriented technical inefficiency, there exists a dual
role of the climatic factors as production frontier and input demand shifters. As a
result, it is possible to derive for each climatic variable the corresponding demand
elasticity from equations (14) and (15), that is, ∂ ln xj

∂ ln zl
= − δl

r
; j = 1, . . . ,7 and

l = 1, . . . ,3. The effects of the allocative inefficiencies and climatic conditions on
input demand are reported in Table 6.

Because of allocative inefficiencies, demand for production factors increased
between 0.71% and 2.15% except for labor (x1) and insecticides (x5), whose
demands decreased potentially by 2.91% and 1%, respectively. It also appears
that, holding other factors constant, farmers from relatively humid and rainy
areas would increase the use of each input by 1.2% and 8.3% per 10% increase
in rainfall and relative humidity, respectively. In contrast, farmers from warmer
areas potentially used 19% less inputs if the temperature during the growing
period was 10% higher than average.

In addition, following Kumbhakar and Lovell (2000, p. 149), from equations
(14) and (15) we derive an expression for the total costs of peanut production,
C = ∑7

j=1 wjxj . This expression includes the cost of technical and allocative
inefficiency as well as the impact of climate on production costs. The cost function
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Table 6. Allocative Inefficiency, Climate Conditions, and Input Demand

Input % Change

Labor (x1) − 2.91
Nitrogen (x2) 0.85
Phosphate (x3) 0.69
Potash (x4) 0.71
Insecticide (x5) − 1.00
Herbicide (x6) 1.88
Fungicide (x7) 2.15
Exogenous Frontier Shifter %� in Demand for All Inputs
Rainfall (z1) 0.12
Temperature (z2) − 1.90
Relative humidity (z3) 0.83

Notes: The change in demand for input j attributable to the allocative inefficiencies ηj = 2, . . . ,7 is
1
r

∑7
k=2 βkηk − η̂j , and the change in demand for labor (x1) is 1

r

∑7
k=2 βkηk . The increased demand

attributable to technical inefficiency is u
r

= 0.21% for each input. For each climatic variable, the
corresponding elasticity of demand for each input is calculated from equations (16) and (17) as
∂ ln xj /∂ ln zl = − δl

r
; j = 1, . . . ,7 and l = 1, . . . ,3.

in logarithmic notation, after algebraic manipulation, is given by

ln C = � + 1
r

ln y + 1
r

∑7

j=1
βj ln wj − 1

r
(v − u) − 1

r

∑3

l=1
δl ln zl + � − ln r,

(16)
where � = ln r − β0

r
− 1

r

∑7
j=1 βj ln βj and

� = 1
r

∑7

j=2
βjηj + ln

(
β1 +

∑7

j=2
βj ln βj − ln r

)
.

The derivation of the cost increase attributable to both technical and allocative
inefficiency is the percentage cost increase of allocative inefficiency,

100 · (� − ln r) = 100 ·
{

1
r

∑7

j=2
βjηj + ln

[
β1 +

∑7

j=2
βje

−ηj

]
− 2 ln r

}
,

(17)

and the percentage cost increase of technical inefficiency is 100 × u
r

%
(Kumbhakar and Wang, 2006, pp. 435–36).

In the current study, peanut farmers face a cost increase of 21.4% because of
technical inefficiency on average, and 50% of farmers see their costs increase by
70.3% because of allocative inefficiency. Those cost increases could be reduced
if peanut farmers appropriately reduced chemical input use. For example,
Nadolnyak, Fletcher, and Hartarska (2006) found that the experience and
managerial skill (proxied by education) of the peanut farmer increase technical
efficiency and reduce the associated costs.
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Isolating the effect of fungicides, if peanut farmers could cultivate an
engineered crop that would avoid the use of this factor, then they would have
potentially reduced the total cost of chemical inputs up to 36.2%.

5.1. Environmental and Public Health Implications

Climate variables have a significant impact on the productivity of peanuts.
In particular, temperature appears to be an important growth factor as also
confirmed by field experiments conducted by Cox (1979). Farmers whose farms
are located in areas that had on average a temperature of 2°C higher could expand
their production by 250,000 pounds in the 2004 growing period, ceteris paribus.
Farms located in wet areas appear to be less productive. Based on the results of
this study, a 10% increase in rainfall would decrease on average the production
of peanuts by 2.4%. A similar negative impact of water was found by Wright
et al. (1986) in Virginia. These authors attributed the decrease in peanut yield to
the excess of water that may increase the proliferation of soil-borne disease. In
line with the previous result, but to a different extent, this research also finds a
negative and more severe impact of an increase in relative humidity (dew point).
Cotty and Jaime-Garcia (2007) found evidence that warm and humid climates
are particularly favorable for Aspergillus infections and aflatoxin contamination
that may explain the decline in productivity of those areas.

According to USDA-NASS (2015), the most common fungicides used in
2004 by peanut farmers from Alabama, Florida, Georgia, North Carolina,
and Texas were chlorothalonil and tubeconazole. In particular, the first was
used in a range of between 54% and 90% of the total fungicides used, the
latter between 2% and 21%. Both these active ingredients have been classified
as potential carcinogens by U.S. Environmental Protection Agency, Office of
Pesticide Programs (2013). Therefore, we further investigate the potential harm
of these classes of fungicides by computing their environmental impact using
the environmental impact quotient (EIQ) equation developed by Kovach et al.
(1992). The authors derived a measure called field use environmental impact
quotient (FUEIQ), which is based on application rates and percentage of active
ingredients and allows one to perform an accurate comparison of pesticides and
pest management strategies. Disregarding the FUEIQ of tubeconazole, which is
in the safe zone between 10.1 and 20.2,9 in Table 7 we report the environmental
impact analysis of chlorothalonil, which is also the most used fungicide by U.S.
peanut producers.

From the EIQ analysis, it appears that in Alabama, Florida, and Georgia,
which are also particularly humid areas, the application rate of chlorothalonil
is more than twice that of North Carolina and Texas. As a consequence, the
excessive use of chlorothalonil should raise some concerns for the environmental
quality of the agroecological areas of those states (FUEIQ >100).

9 The safe zone is 0 < FUEIQ < 25; FUEIQ >100 poses high risk to applicators and the environment.
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Table 7. Chlorothalonil Use in U.S. Peanut Production and Environmental Impact Quotient
(EIQ)

EIQ EIQ EIQ
State Applicationa Shareb Ratec FUEIQd Consumer Worker Ecological

Alabama 803,000 90% 4.39 164.3 48.3 87.8 356.7
Florida 704,000 84% 5.56 208.1 61.2 111.2 451.8
Georgia 1,856,000 82% 3.25 121.6 35.8 65.0 264.1
North Carolina 89,000 54% 1.37 51.3 15.1 27.4 111.3
Texas 91,000 59% 1.38 51.6 15.2 27.6 112.1

a Total application of chlorothalonil in pounds.
b Percentage share of chlorothalonil of the total use of fungicides.
c Average application rate expressed in pounds/acres.
d Field use EIQ (FUEIQ).
Notes: FUEIQ has been calculated by the authors using the EIQ online calculator of New York State
Integrated Pest Management (http://www.nysipm.cornell.edu/EIQCalc/input.php). An FUEIQ >100 poses
high risk to applicators and the environment.
Source: USDA-NASS (2015).

The results of this research are clear: U.S. peanut farmers overused fungicides
based on 2004 data. The impact of allocative inefficiency of fungicide on the
demand for other inputs was derived from equations (16) and (17). This analysis
shows that the inefficient use of fungicides would also increase in general the
demand for other chemical factors (except for insecticides) between 0.70% and
2.15% per farmer. Furthermore, in humid areas the use of chemical factors can
potentially increase by 5.14% per farmer for each degree Celsius increase in
dew point temperature.10 Therefore, in general, the overuse of chemical factors
can be seen as an environmental externality that is connected to the inefficient
use of fungicides.

The magnitude of this finding is not extremely severe for the case of non-
point-source pollution derived by the induced overuse of fertilizer; however,
considering also the potential for increased use of chemical inputs in more humid
areas, the cumulative effect of some pesticides released in the environment over
time, and the aggregate contribution of all peanut farmers in the United States,
the inefficient use of fungicides can have a significant negative impact on the
quality of ecosystems. Between 1992 and 2001, pesticides and their degradates
were found in 4,380 water samples derived from agricultural, urban, and mixed-
use land streams across the nation (Gilliom et al., 2007).

Agricultural biotechnological research should pay attention to genetic traits
of peanuts to make this cultivar resistant to fungal pathogens. In addition to
farmers’ welfare improving by cutting the cost of fungicide, an increase in social

10 Given the estimated dew point elasticity of demand of 0.83, results that change �(1°C) = 0.83 ×
6.19% = 5.14% change in each input. The mean dew point temperature is 6.148°C, and 1°C = 6.19%
of the mean dew point temperature.
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welfare would be derived by reducing the usage of other chemicals that may
affect the soil and water quality of those areas in proximity of peanuts farms.
A cultivar that is genetically manipulated to be resistant to fungal pathogens
would also induce the farmers to reduce the usage of other chemicals, thereby
decreasing environmental contamination.

5.2. Limitations to the Study

It should be made clear that the current study considers the entire aggregate
class of fungicides. Peanuts are known to be affected by more than 40 fungal
diseases (Podile and Kishore, 2002, pp. 131–60); therefore, the potential costs
savings attributable to the adoption of a GE cultivar reflects an aggregation of
the total cost of fungicide control of a consistent number of fungal diseases.
Therefore, the cost estimates of allocative inefficiency should be considered as
an upper boundary of damage control for fungal diseases. Furthermore, GE
technologies may be effective for controlling only damage associated with a
specific event (e.g., diseases, pests, droughts, etc.). Therefore, the real value of
genetic modification depends on the relative share of the total economic injury of
each fungal disease that could be avoided if an engineered crop could be adopted.
Given these limitations, we recommend that a future disaggregated productivity
analysis in the U.S. peanut sector should be restricted only to the chemical class
of fungicides to study the overuse of a particular active ingredient with respect to
the others. Such an analysis will allow understanding of precisely the particular
class of fungal pathogen that should be the research focus of geneticists. A more
detailed analysis that also includes the ecotoxicological impact deriving from the
overuse of a specific class of fungicides in the peanut sector is a future research
avenue that can be explored in an interdisciplinary effort.

Admittedly, the data for this study are from 2004. An ideal data set would
be panel data of the cost of production of peanut farmers to capture yearly
fluctuations, but these data do not exist. Despite this, the completeness of the
ARMS data makes use of these data ideal for our analysis, and these data
reflect peanut production and costs after the elimination of the peanut quota.
Our main hypothesis is that producers overuse fungicides. It should thus be
noted that annual fungicide use by U.S. farmers has not changed significantly
in the past 50 years (Fernandez-Conejo et al., 2014), and there have been no
additional restrictions on fungicide use since the amendments to the Federal
Insecticide, Fungicide, and Rodenticide Act, which date back to 1972 (Federal
Environmental Pesticide Control Act) and 1996 (Food Quality Protection Act).
Hence, we believe that our hypothesis of systematic overuse of fungicides among
U.S. peanut farmers is still a valid concern.

6. Conclusions

A consistent amount of agricultural output is known to be lost every year
to insects, weeds, and other plant pathogens. The use of pesticides is a
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common agricultural practice that, combined with other inorganic chemical
factors such as nutrients, produces environmental externalities. Furthermore,
Kumbhakar and Lovell (2000, p. 152) suggest that farmers overuse chemical
inputs. Thus, technologies that lower this input use could produce benefits to
farmers and the environment. In particular, appropriate genetic engineering
may lower production costs, mitigate output loss, increase productivity, and
lessen environmental externalities. For example, Falck-Zepeda, Traxler, and
Nelson (2000) provide evidence that biotechnology indeed increased the
economic welfare of producers and consumers. By extension, advances in genetic
engineering in the peanut sector, which are in their infancy, may yield similar
benefits.

This study is the first to suggest that innovations in peanut cultivars, for
example through genetic engineering, could yield economic and environmental
benefits. The benefits derive from a reallocation of input use. Our analysis
suggests that peanut farmers overuse chemical inputs, specifically fungicides,
so that targeted genetic traits to lower the need for fungicides could generate
economic and environmental benefits. In particular, in this research we used a
cross-sectional sample of U.S. peanut farmers to test the hypothesis of overuse
of chemical factors with respect to labor.

A primal system approach of a stochastic frontier analysis revealed that U.S.
peanut farmers overused fungicides more than any other input. The overuse of
fungicide could be a particular need of peanut farmers to defeat crop infestations
from mycotoxin-producing fungi. Although this research does not explain the
overuse of fungicides, future research could be directed toward understanding
the reasons for the overuse. Additionally, future analysis may help explain how
the misuse of fungicides also induces an increase in demand for other chemical
factors.

If peanut farmers could have adopted a GE cultivar resistant to the fungal
pathogens that produce the largest economic damage, they could have potentially
reduced on average the total cost of chemicals up to 36.2% and the demand for all
other factors up to 2.15%. Given the evidence of systematic overuse of fungicides
in U.S. peanut production, we recommend that future genetic research should
focus primarily on the class of fungal pathogens. Considering the cumulative
effect of pesticides in the environment, reducing the use of these factors can be
a further contribution toward the increase in social welfare by improving the
quality of ecosystems in proximity to the farming areas.
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