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The Closure Ordering of Nilpotent Orbits
of the Complex Symmetric Pair
(SO p+q, SO p × SOq)

Dragomir Ž. Doković and Michael Litvinov

Abstract. The main problem that is solved in this paper has the following simple formulation (which

is not used in its solution). The group K = Op(C) × Oq(C) acts on the space Mp,q of p × q complex

matrices by (a, b) ·x = axb−1, and so does its identity component K0 = SO p(C)×SOq(C). A K-orbit

(or K0-orbit) in Mp,q is said to be nilpotent if its closure contains the zero matrix. The closure, O, of

a nilpotent K-orbit (resp. K0-orbit) O in Mp,q is a union of O and some nilpotent K-orbits (resp. K0-

orbits) of smaller dimensions. The description of the closure of nilpotent K-orbits has been known for

some time, but not so for the nilpotent K0-orbits. A conjecture describing the closure of nilpotent K0-

orbits was proposed in [11] and verified when min(p, q) ≤ 7. In this paper we prove the conjecture.

The proof is based on a study of two prehomogeneous vector spaces attached to O and determination

of the basic relative invariants of these spaces.

The above problem is equivalent to the problem of describing the closure of nilpotent orbits in

the real Lie algebra so(p, q) under the adjoint action of the identity component of the real orthogonal

group O(p, q).

1 Introduction

Let G0 be an almost simple real Lie group (not necessarily connected), G0
0 its identity

component, and g0 its Lie algebra. The orbits of G0
0 in g0 under the adjoint action are

known as the adjoint orbits. If they consist of ad-nilpotent elements, then we refer
to them as the nilpotent adjoint orbits. It is well known that there are only finitely

many of them. In the representation theory of such groups it is important to know
the closures of the nilpotent adjoint orbits (see e.g. [2, Chapter 10]). The description
of these closures is known in almost all cases. We refer the reader to the monograph
[2] for many of the known facts and the important references. The cases where G0

is of exceptional type have been all treated by the first author in a series of papers
[5]–[10].

Surprisingly, there is an infinite series of classical groups for which the answer was

not known so far. This is the case of the groups G0 = O(p, q), with p, q ≥ 1. More
precisely, one should assume here that p or q is even. The point is that if one replaces
the group G0

0 = SO(p, q)0 with the full orthogonal group G0 = O(p, q), then the
description of the closure of nilpotent O(p, q)-orbits in the Lie algebra g0 = so(p, q)
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is known (see e.g. [11] for more details), and if both p and q are odd, then the O(p, q)-
orbits in g0 are the same as the adjoint orbits. A conjecture describing the closures of

the adjoint nilpotent orbits in so(p, q) has been proposed in loc. cit. and was verified
for min(p, q) ≤ 7. The main objective of this paper is to prove this conjecture.

Choose a Cartan decomposition g0 = so(p, q) = k0 + p0, let g = k + p be its
complexification, and let G = On(C), n = p + q, be the complexification of G0 =

O(p, q). Let K = Op(C) × Oq(C) be the normalizer of k in K, and K0
= SO p(C) ×

SOq(C) its identity component. By using the Kostant-Sekiguchi bijection (see [16],
[2], [17]) from nilpotent G0

0-orbits in g0 to nilpotent K0-orbits in p, which is known
to preserve the closure relation (see [1]), the closure ordering problem for nilpotent

G0
0-orbits in g0 is translated into the same problem for nilpotent K0-orbits in p. The

conjecture in [11] was formulated in this latter setting, and our proof will also use
the same setting. As a K-module, p is isomorphic to the module Mp,q, mentioned
in the abstract, but this simple reformulation of the problem is not conducive to its

solution.
In the next section we recall known facts about the parametrization of nilpotent

orbits of K0 in p. Almost all of this material is taken from [11].
In Section 3, which is very short, we recall the main results of [11] and state the

conjecture made there.
In Section 4 we describe two important prehomogeneous vector spaces (PVs)

(4.1) and (4.4) attached to a nilpotent K0-orbit in p. We also describe the method,
developed in the papers of the first author [5, Proposition 3.1], [8, Proposition 7.1]

and the joint paper [11, Proposition 1], which was used to determine the closure or-
dering of nilpotent adjoint orbits in noncompact real forms of exceptional complex
Lie algebras.

In order to be able to apply the same method, it is imperative to obtain the full list

of the basic relative invariants of the two PVs mentioned above. This is accomplished
in Section 5, with most of the proofs delegated to the appendix.

In Section 6 we give our proof of the conjecture.
In Section 7 we define, following a recipe of V. Kac [13], a relative invariant of

the prehomogeneous vector space (4.1) and obtain the prime factorization of it. The
zero set of this particular relative invariant is exactly the singular set of the PV just
mentioned.

In Section 8 we give several illustrative examples and state some open problems.

2 Parametrization of Nilpotent Orbits

In this section we give the basic definitions and state some well known facts which

will be used throughout the paper. For more details, examples, and motivation see
[2], [11].

Let V be an n-dimensional complex vector space, f : V × V → C a nondegener-
ate symmetric bilinear form and G = O(V, f ) the orthogonal group of (V, f ). Fix

an involution θ ∈ G (θ 6= 1), and denote by Va (resp. Vb) the +1-eigenspace (resp.
−1-eigenspace) of θ. Let p = dim(Va) and q = dim(Vb). As Va and Vb are or-
thogonal to each other, the restriction fa (resp. fb) of f to Va × Va (resp. Vb × Vb)
is nondegenerate. Denote by K the centralizer of θ in G, and by K0 its identity
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component. We have K = Ka × Kb with Ka = O(Va, fa) and Kb = O(Vb, fb),
and K0

= K0
a × K0

b with K0
a = SO(Va, fa) and K0

b = SO(Vb, fb).

The Lie algebra g = so(V, f ) of G consists of the linear operators u : V → V

satisfying f
(

u(x), y
)

+ f
(

x, u(y)
)

= 0 for all x, y ∈ V . This condition can be
also expressed as u∗

= −u, where u∗ denotes the adjoint of u with respect to the
form f . The Lie algebra k of K is the centralizer of θ in g, i.e., k = {u ∈ g :

u(Va) ⊂ Va, u(Vb) ⊂ Vb}. Thus k = ka ⊕ kb where ka = so(Va, fa) and kb =

so(Vb, fb). We denote by Ad (resp. ad) the adjoint representation of G (resp. g) on g.
As a K-module (under the restriction of Ad), g decomposes as g = k ⊕ p, where p =

{u ∈ g : u(Va) ⊂ Vb, u(Vb) ⊂ Va}.

Remark 2.1 Note that if θ is replaced by −θ, then k and p remain the same, but Va

and Vb get interchanged, p and q get interchanged, etc. In order to be able to use the
symmetry argument, i.e., to replace θ by −θ, we do not assume that p ≥ q.

The nilpotent G-orbits in g are parametrized by the Young diagrams with n cells
(or, equivalently, partitions of n) such that each row of even length occurs an even

number of times. We refer to such diagrams (resp. partitions) as the orthogonal Young

diagrams (resp. orthogonal partitions). An orthogonal Young diagram (or the corre-
sponding partition) is very even if it contains no rows of odd length. The nilpotent
G-orbits in g are connected, except those which correspond to the very even parti-

tions, in which case they have two connected components. The nilpotent G0-orbits
in g are exactly the connected components of the nilpotent G-orbits.

An orthogonal ab-diagram is an orthogonal Young diagram whose cells are filled
with letters a and b subject to the following two conditions:

(i) in each row the letters a and b alternate,

(ii) the rows of even length are split into pairs of rows of equal length and, in each
pair, one of the rows begins with the letter a and the other with b.

As we only use orthogonal ab-diagrams, from now on we shall refer to them as the ab-

diagrams. Two ab-diagrams are said to be equivalent if one can be obtained from the
other by permuting the rows. The collection of the equivalence classes of ab-diagrams

will be denoted by D. The subcollection consisting of (the equivalence classes of) ab-
diagrams having exactly n cells with p a’s and q b’s is denoted by D(p, q).

We consider equivalent ab-diagrams as being the same, i.e., we identify an ab-
diagram with its equivalence class. We write a concrete ab-diagram as a sequence of
its rows. A row of length 2k + 1 with a (resp. b) in the first cell is written as (ab)ka

(resp. (ba)kb). The pair of rows of even length 2k, one starting with a and the other
with b, is written as (ab)k, (ba)k. If X and Y are arbitrary ab-diagrams, then X + Y

denotes the ab-diagram obtained by writing Y below X and rearranging the rows

of this extended diagram. We say that two ab-diagrams are disjoint if they have no
common rows.

Denote by N the nilpotent variety in p, i.e., N = {u ∈ p : un
= 0}. The K-

orbits in N are parametrized by D(p, q) and those of K0 are precisely the connected
components of the K-orbits. Since [K : K0] = 4, a K-orbit in N may have 1, 2 or
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4 connected components. Let N/K (resp. N/K0) denote the set of K-orbits (resp.
K0-orbits) in N.

We now describe the correspondence between D(p, q) and N/K. Let u ∈ N.
Define a Jordan chain for u to be a sequence of nonzero vectors v1, v2, . . . , vk such
that u(vi) = vi+1 for 1 ≤ i < k and u(vk) = 0. We say that k is the length of this
chain, and that v1 (resp. vk) is the top (resp. bottom) vector of this chain. If moreover

each vi ∈ Va ∪ Vb then we say that this Jordan chain is graded. By replacing each
vi by the letter a if vi ∈ Va and by b if vi ∈ Vb, we obtain an alternating sequence
of these letters to which we refer as the type of this graded Jordan chain. A Jordan
chain for u is said to be maximal if it cannot be extended to a larger one. This is

the case if and only if the top vector of the chain is not contained in the image of u.
A graded Jordan basis for u is a basis of V consisting of graded Jordan chains for u

(necessarily maximal). They always exist. Let us choose one of them. Then we form
the Young diagram by creating a row of length k for each maximal Jordan chain of

length k, say v1, . . . , vk, contained in this basis. We temporarily fill the cells of this row
(successively from the left to the right) by the vectors v1, . . . , vk. Finally we replace
each of the vectors, say v, in the resulting diagram by the letter a if v ∈ Va and by b if
v ∈ Vb. We obtain an ab-diagram, say X, which is independent (up to equivalence) of

the choice of the graded Jordan basis for u. Then the K-orbit containing u is denoted
by OX . The trivial orbit {0} corresponds to the ab-diagram consisting of n rows of
length 1, with cells filled with p a’s and q b’s.

If O1,O2 are members of N/K (or N/K0) and O1 is contained in the closure of

O2, then we write O1 ≤ O2. This defines a partial order on N/K (resp. N/K0) called
the closure ordering. The closure ordering “≤” on N/K corresponds to a natural
combinatorially defined partial order on D(p, q), which we denote again by “≤”.
This combinatorial partial order is defined as follows.

If X ∈ D(p, q) denote by X ′ the diagram obtained from X by deleting the first
column. Set X(0)

= X and define recursively X(k+1)
= (X(k)) ′ for k ≥ 0. In particular,

X(1)
= X ′. For any such diagram Y , denote by na(Y ) (resp. nb(Y )) the number of

a’s (resp. b’s) in Y . For X,Y ∈ D(p, q) we write X ≤ Y if na(X(k)) ≤ na(Y (k)) and

nb(X(k)) ≤ nb(Y (k)) for all k ≥ 0. The relation “≤” makes D(p, q) into a partially
ordered set.

If X,Y ∈ D(p, q) are distinct and X ≤ Y then we write X < Y . If X < Y and
there is no Z ∈ D(p, q) such that X < Z < Y , then we write Y → X and say that

X is a child of Y , or that Y is a parent of X. We shall also refer to a pair (X,Y ), with
X → Y , as an elementary move X → Y . We define similarly the relation “<”, the
children, parents, and elementary moves in the partially ordered sets (N/K,≤) and
(N/K0,≤).

We point out that if X → Y is an elementary move and X = P + Z, Y = Q + Z,
then P → Q is also an elementary move. On the other hand, the converse of this
statement fails (we leave to the reader to supply a counter-example).

It is a known fact that the partially ordered sets (D(p, q),≤) and (N/K,≤) are

isomorphic, and that an isomorphism is provided by the map that sends X to OX .
The Hasse diagram of these two partially ordered sets is denoted by Γ(p, q). (See
Section 8 for an example.) Each X ∈ D(p, q) is represented by a node in Γ(p, q). If
X → Y for some X,Y ∈ D(p, q), then the node X is placed in Γ(p, q) higher than
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the node Y and these two nodes are joined by a line. The Hasse diagram of (N/K,≤)
is essentially the same as Γ(p, q). We just have to replace each node X ∈ D(p, q) by

the corresponding node OX ∈ N/K.

The set N/K (and N/K0) can be also parametrized by using the characteristics
introduced by Dynkin. In order to explain this, we fix a basis {a1, a2, . . . , ap} of Va

and a basis {b1, b2, . . . , bq} of Vb such that f (ai , a j) = δi+ j,p+1 for 1 ≤ i, j ≤ p and
f (bi , b j) = δi+ j,q+1 for 1 ≤ i, j ≤ q, where δi j is Kronecker’s delta and we identify

linear operators on V with their matrices with respect to this basis. Denote by ha the
Cartan subalgebra of ka consisting of the diagonal matrices. These diagonal matrices
diag(h1, h2, . . . , hp) satisfy hi + hp+1−i = 0 for 1 ≤ i ≤ p. The centralizer of ha in K0

a

is the maximal torus Ta which consists of all diagonal matrices in K0
a . Denote by Na

the normalizer of Ta (or ha) in Ka. The Weyl group of (ka, ha) is Wa = (Na ∩K0
a )/Ta.

We set W ∗
a = Na/Ta. Clearly Wa is a normal subgroup of W ∗

a and the quotient group
W ∗

a /Wa is trivial if p is odd, and has order 2 if p is even. We introduce the real form
(ha)R of ha consisting of the diagonal matrices as above with hi ∈ R. Define the closed

Weyl chamber Ca ⊂ (ha)R by the inequalities

(2.1) hi ≥ hi+1, 1 ≤ i ≤ k,

if p = 2k + 1 is odd, and by

(2.2) hi ≥ hi+1, 1 ≤ i ≤ k − 2

and

(2.3) hk−1 ≥ |hk|,

if p = 2k is even. If p is odd we set C∗
a = Ca while if p = 2k is even we define

C∗
a ⊂ (ha)R by inequalities (2.2) above and

(2.4) hk−1 ≥ hk ≥ 0.

Define similarly hb, Tb, etc., and set h = ha × hb, T = Ta × Tb, etc.

If OX is nontrivial, there exists a unique element HX ∈ C∗
= C∗

a × C∗
b such that

[HX , EX] = 2EX for some nonzero element EX ∈ OX . If OX is the trivial orbit, define
HX = 0.

Definition 2.2 We refer to this element HX as the characteristic of X (or of OX).

It is well known that different K-orbits in N have different characteristics. Denote

by (HX)a (resp. (HX)b) the component of HX in ha (resp. hb).

The eigenvalues (i.e., the diagonal entries) of (HX)a and (HX)b can be easily de-

termined. For this purpose insert in each cell of X an integer as follows: if a row has
length k then we insert successively in the cells of that row the integers

k − 1, k − 3, k − 5, . . . , 5 − k, 3 − k, 1 − k.
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Then the integers written in all a-cells (resp. b-cells) are the eigenvalues of (HX)a

(resp. (HX)b). The order in which these eigenvalues occur on the diagonal is deter-

mined uniquely by the condition that HX ∈ C∗.
The group W ∗/W permutes transitively the connected components of OX . The

element EX , as described above, is not unique but all such elements lie in the same
connected component of OX . We refer to this particular connected component as the

basic component of OX .
If p = 2k is even let xa ∈ Na be the linear operator which interchanges the vectors

ak and ak+1 and fixes all the other ai ’s. If q is even define xb ∈ Nb similarly. We use
the left and/or right superscripts, roman I and II, to label the connected components

of OX . The precise rule that governs the use of these superscripts is given in the next
definition and is identical to the one used in [11].

Definition 2.3 We introduce the following notation for the connected components
of the K-orbit OX ⊂ N by considering four possibilities:

(i) Both (HX)a and (HX)b have 0 eigenvalues: Then OX is connected and we do
not need any new notation.

(ii) (HX)a has no 0 eigenvalue but (HX)b does: Then p is even and OX has two
connected components. The basic component will be denoted by IOX , and the
other one by IIOX = Ad(xa)(IOX).

(iii) (HX)a has a 0 eigenvalue but (HX)b does not: Then q is even and again OX has

two connected components. The basic component will be denoted by OI
X , and

the other one by OII
X = Ad(xb)(OI

X).
(iv) HX has no 0 eigenvalues: Then both p and q must be even and OX has four

connected components. The basic component will be denoted by IOI
X , and the

remaining three are IIOI
X = Ad(xa)(IOI

X), IOII
X = Ad(xb)(IOI

X), and IIOII
X =

Ad(xaxb)(IOI
X). Furthermore, in this case we set

I
OX =

I
O

I
X ∪ I

O
II
X ,

II
OX =

II
O

I
X ∪ II

O
II
X ,

O
I
X =

I
O

I
X ∪ II

O
I
X , O

II
X =

I
O

II
X ∪ II

O
II
X .

If p (resp. q) is odd then the left (resp. right) superscripts I, II are not used. In
particular if p and q are odd then all K-orbits in N are connected.

Let us also introduce the characteristics for the K0-orbits in N. The characteristic
HX of OX is also the characteristic of the basic component of OX . In case (ii), the char-

acteristic of IIOX is Ad(xa)(HX). In case (iii), the characteristic of OII
X is Ad(xb)(HX).

Finally, in case (iv), the characteristics of the orbits IIOI
X , IOII

X , IIOII
X are

Ad(xa)(HX), Ad(xb)(HX), Ad(xaxb)(HX),

respectively. All these characteristics belong to the closed Weyl chamber C = Ca×Cb,

and different orbits have different characteristics.
The left (resp. right) superscripts I and II depend on the choice of the basis {ai}

of Va (resp. {bi} of Vb). If p = 2k is even then there are exactly two K0
a -orbits of

maximal isotropic subspaces of Va and the left superscripts I, II depend on the orbit
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to which the subspace spanned by {a1, . . . , ak} belongs. If this subspace is chosen
from a different orbit, then the left superscripts I and II get interchanged. The same

phenomenon occurs with the right superscripts when q is even.

3 The Closure Ordering Conjecture

In this section we state the main conjecture from [11] and recall some basic results
proved there.

A conjecture describing the closure ordering in N/K0 was proposed in [11] and
verified when min(p, q) ≤ 7. In order to state this conjecture, we introduce a few

more terms and then give the basic definition of the diagram ∆(p, q).
A vertex X of Γ(p, q) is stable (resp. unstable) if the K-orbit OX is connected (resp.

disconnected). An unstable vertex X is an a-vertex (resp. b-vertex) if the linear opera-
tor (HX)a (resp. (HX)b) is nonsingular. Equivalently, X is an a-vertex (resp. b-vertex)

if the middle letter of each row of odd length (if any) in X is a b (resp. a). If X is both
an a-vertex and a b-vertex, then we say that it is an ab-vertex. Thus X is an ab-vertex
if and only if it has no rows of odd length, i.e., the corresponding partition is very
even. An a-vertex that is not a b-vertex will be called a proper a-vertex. One defines

similarly a proper b-vertex.
We remark that if X and Y are ab-vertices, then X 6→ Y (i.e., X → Y does not

hold). The same is true if X is a stable vertex and Y an ab-vertex.

Definition 3.1 ∆(p, q) is the diagram which is obtained from Γ = Γ(p, q) by the

following modifications.

Step 1 For every vertex pair (X,Y ) such that X → Y and X or Y is unstable erase the
line in Γ joining X to Y .

Step 2 Replace each node X by as many nodes as there are connected components in
OX and label them by these components.

Step 3 Insert two or four lines for each line that was erased in Step 1. For this purpose
reconsider all pairs (X,Y ) from Step 1 and perform the indicated action:

(i) X stable and Y unstable: Join OX to each of the nodes corresponding to the
connected components of OY .

(ii) X unstable and Y stable: Join each of the nodes corresponding to the con-
nected components of OX to OY .

(iii) X a proper a-vertex and Y a proper b-vertex: Join each of IOX , IIOX to each of
OI

Y , OII
Y .

(iv) X a proper b-vertex and Y a proper a-vertex: Join each of OI
X , OII

X to each of
IOY , IIOY .

(v) X and Y proper a-vertices: Join IOX to IOY , and IIOX to IIOY .
(vi) X and Y proper b-vertices: Join OI

X to OI
Y , and OII

X to OII
Y .

(vii) X a proper a-vertex and Y an ab-vertex: Join IOX to IOI
Y and IOII

Y , and IIOX to
IIOI

Y and IIOII
Y .

(viii) X a proper b-vertex and Y an ab-vertex: Join OI
X to IOI

Y and IIOI
Y , and OII

X to
IOII

Y and IIOII
Y .
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(ix) X an ab-vertex and Y a proper a-vertex: Join IOI
X and IOII

X to IOY , and IIOI
X

and IIOII
X to IIOY .

(x) X an ab-vertex and Y a proper b-vertex: Join IOI
X and IIOI

X to OI
Y , and IOII

X

and IIOII
X to OII

Y .

We can now state the conjecture.

Conjecture 3.2 ([11]) The diagram ∆(p, q) is the Hasse diagram of the partially
ordered set (N/K0,≤).

In addition to the closure ordering “≤” on N/K0, introduce the new partial order

“�” on the same set N/K0. It is defined by postulating that its Hasse diagram is
∆(p, q). The conjecture can be reformulated as follows: The two partial orders “≤”
and “�” are the same. We quote the following basic result:

Theorem 3.3 ([11, Theorem 1]) If O1,O2 ∈ N/K0 and O1 � O2 then O1 ≤ O2.

Next we introduce the concept of pure pairs of nodes in Γ(p, q).

Definition 3.4 If X,Y ∈ D(p, q) are a-vertices with Y < X, and if Y < Z < X

implies that Z is an a-vertex, then we say that (X,Y ) is a pure a-pair. One defines
similarly pure b-pairs. A pure pair is either a pure a-pair or a pure b-pair.

We remark that if (X,Y ) is a pure pair, then X and Y cannot be both ab-vertices.

In the next important definition we introduce the concept of splitting for pure

pairs.

Definition 3.5 A pure a-pair (X,Y ) splits if IOX ∩ OY =
IOY (or, equivalently,

IIOX ∩ OY =
IIOY ). Similarly, a pure b-pair (X,Y ) splits if OI

X ∩ OY = OI
Y .

Remark 3.6 Let (X,Y ) be a pure b-pair. Theorem 3.3 implies that OI
X ⊃ OI

Y and

OII
X ⊃ OII

Y . Hence, the condition OI
X ∩ OY = OI

Y is equivalent to OI
X ∩ OY ⊂ OI

Y .

If X is an ab-vertex, then it is also equivalent to IOI
X ∩ OY ⊂ OI

Y . Indeed, we have
Ka ·

IOI
X = OI

X and Ka · O
I
Y = OI

Y . Analogous statements are valid for pure a-pairs.

Our proof of the conjecture will be based on the following reduction result.

Theorem 3.7 ([11, Theorem 2]) In order to prove the above conjecture, it suffices to

show that every pure pair in Γ(p, q) splits.

4 Two Prehomogeneous Vector Spaces Attached to an ab-Diagram

In this section we describe two important prehomogeneous vector spaces (PV) at-
tached to an ab-diagram X ∈ D(p, q). We refer the reader to [14], [15] for an expo-
sition of the theory of PVs.

Let H = HX , the characteristic of X, and let Ha (resp. Hb) be its restriction to Va

(resp. Vb). In this section, we denote by O the basic connected component of OX . We
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use the standard notation for the centralizers and for the connected component of
the identity. Thus ZK (H) denotes the centralizer of H in K, and ZK(H)0 its identity

component. We have

ZK (H) = ZKa
(Ha) × ZKb

(Hb), ZK(H)0
= ZKa

(Ha)0 × ZKb
(Hb)0.

Introduce the eigenspaces of H in Va and Vb:

Va(H, k) = {v ∈ Va : H(v) = kv}, k ∈ Z,

Vb(H, k) = {v ∈ Vb : H(v) = kv}, k ∈ Z.

Each nonzero Va(H, k) is a simple ZK(H)0-module with one exception: If p is even,

say p = 2m, and the dimension of Va(H, 0) is 2, then this 2-dimensional module is
not simple. Each of the 1-dimensional subspaces spanned by am or am+1 is a submod-
ule. The analogous assertions are valid for the subspaces Vb(H, k).

Next introduce the eigenspaces of ad(H) in k and p:

gH(0, j) = {X ∈ k : [H,X] = jX}, j ∈ Z,

gH(1, j) = {X ∈ p : [H,X] = jX}, j ∈ Z.

The first prehomogeneous vector space attached to O is

(4.1)
(

ZK (H)0, gH(1, 2)
)

.

This PV is regular and its generic orbit coincides with OX ∩ gH(1, 2) = O∩ gH(1, 2).
We say that an element E is a generic element of gH(1, 2) if it belongs to this generic

orbit. Denote by f1, . . . , fr the basic relative invariants of this PV and let Si be the
hypersurface in gH(1, 2) defined by fi . The singular set (i.e., the complement of the
generic orbit) S of this PV is the union of these hypersurfaces.

We now introduce the subspaces

(4.2) gH(i,≥ k) =

⊕

j≥k

gH(i, j), i = 0, 1; k ≥ 0.

For i = 0, these subspaces are subalgebras of k. Denote by QH the parabolic subgroup
of K0 whose Lie algebra is qH = gH(0,≥ 0). When i = 1 and k = 2, the above
decomposition gives the natural projection

(4.3) πX : gH(1,≥ 2) → gH(1, 2).

The second PV attached to X is

(4.4)
(

QH , gH(1,≥ 2)
)

.

Its generic orbit is OX∩gH(1,≥ 2) = O∩gH(1,≥ 2) and its singular set Ŝ is the union
of the hypersurfaces Ŝi , i = 1, . . . , r, defined by the polynomial functions f̂i = fi◦πX .
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The ZK(H)0-varieties Si are all quasi-homogeneous (i.e., they possess an open
dense orbit). This follows from the finiteness of the set of orbits of ZH(K)0 in gH(1, 2).

On the other hand the QH-varieties Ŝi are not necessarily quasi-homogeneous (see
Section 8 for examples). Nevertheless (see [8, Proposition 7.1]) for each i there ex-
ists a unique K0-orbit Oi such that Ŝi ∩ Oi is open and dense in Ŝi . The orbits Oi ,
i = 1, . . . , r, are not necessarily distinct (again see Section 8).

Definition 4.1 The dominating orbit of the hypersurface Ŝi is the unique K0-orbit
Oi whose intersection with Ŝi is open and dense in Ŝi .

Recall that O is the basic component of OX . The closure of O can be expressed as

(4.5) O = K0 · gH(1,≥ 2),

see [5, Theorem 3.1], and ∂O = O \ O (the boundary of O) is given by

∂O =

r
⋃

i=1

K0 · Ŝi .

Each child of O occurs among the Oi ’s but an Oi does not have to be a child of O (see
Section 8 for an example).

There is a natural direct decomposition of (4.1) which we are going to describe.

First of all, the H-eigenspace decompositions of Va and Vb induce a direct de-
composition of ZK(H)0. Let z ∈ ZK(H)0 be arbitrary. The eigenspace Va(H, k) is
z-invariant and let za,k be the restriction of z to this subspace. Then za,−kz∗a,k = 1 for
k ∈ Z, where ∗ denotes the adjoint operation with respect to a suitable restriction of

the form fa. In particular, za,0 ∈ SO
(

Va(H, 0)
)

. One defines similarly the restriction
zb,k of z to Vb(H, k), and these restrictions have similar properties as za,k. We now
introduce the subgroups

Za(H, k) = {z ∈ K0
a : za,i = 1, i 6= ±k},

Zb(H, k) = {z ∈ K0
b : zb,i = 1, i 6= ±k},

for k ≥ 0. Note that Za(H, 0) = SO
(

Va(H, 0)
)

, and that, for k > 0, the natural

projection map Za(H, k) → GL
(

Va(H, k)
)

is an isomorphism. Similar assertions
hold for the groups Zb(H, k). The direct decomposition that we need is:

ZK(H)0
= Z(H)a × Z(H)e × Z(H)b,

where

Z(H)a = Za(H, 0) × Zb(H, 2) × Za(H, 4) × · · · ,(4.6)

Z(H)e = Z(H, 1) × Z(H, 3) × Z(H, 5) × · · · ,(4.7)

Z(H)b = Zb(H, 0) × Za(H, 2) × Zb(H, 4) × · · · ,(4.8)
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and Z(H, 2k + 1) = Za(H, 2k + 1) × Zb(H, 2k + 1).

Next, the H-eigenspace decompositions of Va and Vb also induce a direct decom-

position of gH(1, 2). Let u ∈ gH(1, 2) be arbitrary. Then u maps Va(H, k − 1) into
Vb(H, k + 1) and Vb(H, k − 1) into Va(H, k + 1) for each k ∈ Z. We denote the first
of these restrictions by ua,k and the second one by ub,k. Since u∗

= −u, we have

(4.9) ub,−k = −u∗
a,k.

All these restrictions of u can be distributed over four infinite sequences as shown in
the following diagram. (For simplicity, we write Va(k) and Vb(k) instead of Va(H, k)

and Vb(H, k), respectively.)

· · · −→ Va(−4)
ua,−3
−→ Vb(−2)

ub,−1
−→ Va(0)

ua,1
−→ Vb(2)

ub,3
−→ Va(4) −→ · · ·

· · · −→ Vb(−4)
ub,−3
−→ Va(−2)

ua,−1
−→ Vb(0)

ub,1
−→ Va(2)

ua,3
−→ Vb(4) −→ · · ·

· · · −→ Vb(−3)
ub,−2
−→ Va(−1)

ua,0
−→ Vb(1)

ub,2
−→ Va(3) −→ · · ·

· · · −→ Va(−3)
ua,−2
−→ Vb(−1)

ub,0
−→ Va(1)

ua,2
−→ Vb(3) −→ · · ·

For k ≥ 0, denote by gH(1, 2, 2k + 1)a the subspace of gH(1, 2) consisting of all u

for which all of the above restrictions are 0 except for ua,2k+1 and ub,−2k−1. Similarly,
for k ≥ 0, denote by gH(1, 2, 2k + 1)b the subspace of gH(1, 2) consisting of all u for
which all of the above restrictions are 0 except for ub,2k+1 and ua,−2k−1. Finally, for

k ∈ Z, denote by gH(1, 2, 2k) the subspace of gH(1, 2) consisting of all u for which
all of the above restrictions are 0 except for ua,2k and ub,−2k. All these subspaces of
gH(1, 2) are ZK(H)0-submodules and the projection maps

gH(1, 2, 2k + 1)a → HomC

(

Va(H, 2k),Vb(H, 2k + 2)
)

,

gH(1, 2, 2k + 1)b → HomC

(

Vb(H, 2k),Va(H, 2k + 2)
)

,

gH(1, 2, 2k) → HomC

(

Va(H, 2k − 1),Vb(H, 2k + 1)
)

are isomorphisms of ZK(H)0-modules.

We obtain the direct decomposition:

(4.10) gH(1, 2) = gH(1, 2)a ⊕ gH(1, 2)e ⊕ gH(1, 2)b,

where

gH(1, 2)a = gH(1, 2, 1)a ⊕ gH(1, 2, 3)b ⊕ gH(1, 2, 5)a ⊕ · · · ,(4.11)

gH(1, 2)e =

∑

k∈Z

gH(1, 2, 2k),(4.12)

gH(1, 2)b = gH(1, 2, 1)b ⊕ gH(1, 2, 3)a ⊕ gH(1, 2, 5)b ⊕ · · · .(4.13)
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Finally we can write down the desired direct decomposition of (4.1):

(

ZK(H)0, gH(1, 2)
)

=
(

Z(H)a, gH(1, 2)a

)

×
(

Z(H)e, gH(1, 2)e

)

×
(

Z(H)b, gH(1, 2)b

)

.

(4.14)

In order to construct the basic relative invariants of (4.1), it suffices to consider sep-

arately the three factors in this decomposition.

5 Construction of Basic Relative Invariants

Let X ∈ D(p, q) and let H = HX , the characteristic of X. We denote by r(X) the
number r of basic relative invariants f1, . . . , fr , of

(

ZK (H)0, gH(1, 2)
)

. Our objective
in this section is to compute r = r(X) and construct the basic relative invariants. We
obtain an explicit formula for r whose proof is based on the following result, a special

case of [15, §4, Proposition 19], [14, Proposition 1.2.4].

Proposition 5.1 If E ∈ gH(1, 2) is generic, then r = dim(Z/Z ′ZE), where Z =

ZK(H)0, Z ′ is the derived subgroup of Z, and ZE the stabilizer of E in Z.

As mentioned in the previous section, it suffices to consider the following three
cases:

(i) gH(1, 2) = gH(1, 2)a, i.e., X is a b-vertex and has no rows of even length,
(ii) gH(1, 2) = gH(1, 2)e, i.e., the partition associated to X is very even,

(iii) gH(1, 2) = gH(1, 2)b, i.e., X is an a-vertex and has no rows of even length.

Due to symmetry of (i) and (iii), we can dismiss case (iii).
This suggests that we split X into three pieces:

(5.1) X = X(a) + X(e) + X(b),

where X(a) consists of the rows of X of odd length having the letter a in the middle

cell, X(e) consists of the rows of X of even length, and X(b) of the remaining rows
of X. Thus X is an a-vertex iff X(a) = ∅, and a b-vertex iff X(b) = ∅. In case (ii),
all eigenvalues of H are odd integers. In the other two cases, they are even integers.
Moreover, the eigenvalues of Ha are congruent to 0 (resp. 2) modulo 4 in case (i)

(resp. (iii)).

Definition 5.2 We attach to X the following three integers:

(i) ρa(X) = ma + δa, where 2ma + 1 is the length of the first row of X(a) and
δa = 0 except when X(a) has exactly two rows and these two rows have different
lengths, in which case δa = 1.

(ii) ρe(X) = 2me − de, where 2me is the length of the first row of X(e) and de is the

number of different row-lengths of X(e).
(iii) ρb(X) = mb + δb, where 2mb + 1 is the length of the first row of X(b) and

δb = 0 except when X(b) has exactly two rows and these two rows have different
lengths, in which case δb = 1.
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If, say X(a) = ∅, then ρa(X) = 0.

We can now state the main result of this section.

Theorem 5.3 Let X ∈ D(p, q) and H = HX . Then the number of basic relative

invariants of
(

ZK(H)0, gH(1, 2)
)

is given by r(X) = ρa(X) + ρe(X) + ρb(X).

Since r(X) = r
(

X(a)
)

+ r
(

X(e)
)

+ r
(

X(b)
)

, it suffices to prove that r
(

X(a)
)

=

ρa(X), r
(

X(e)
)

= ρe(X) and r
(

X(b)
)

= ρb(X). These proofs will be given in the

next two propositions. Moreover we shall list the basic relative invariants for the
cases X(a) and X(e).

Proposition 5.4 If X = X(a), then r(X) = ρa(X).

Proof In this case,
(

ZK(H)0, gH(1, 2)
)

is of the type considered in the first sub-
section of the appendix. Hence we need only apply Proposition 9.2 and the remark
following its proof.

Denote by s the number of rows of X and by 2m + 1 the length of its first row.

The subspaces gH(1, 2, 4k + 1)a are nonzero for 0 ≤ k ≤ m/2 and the subspaces
gH(1, 2, 4k + 3)b are nonzero for 0 ≤ k ≤ (m − 1)/2. Hence there are exactly m

nonzero summands in the direct decomposition (4.11). It is shown in the appendix
(see Proposition 9.2 and the remark following it) that r(X) = m, except when s = 2

and the two rows of X have different lengths, in which case r(X) = m + 1. Hence,
r(X) = ρa(X) holds.

We shall now list the basic relative invariants for this case by using the results
proved in the appendix.

Since we assume that X = X(a), we have V (H, 2i) = Va(H, 2i) for i even and
V (H, 2i) = Vb(H, 2i) for i odd. Denote by d2i the dimension of V (H, 2i). Let
u ∈ gH(1, 2) be arbitrary. Define the linear transformations u1, u3, u5, . . . and v1, v3,
v5, . . . by

u1 = ua,1, u3 = ub,3, u5 = ua,5, . . .

v1 = ua,1, v3 = ub,3ua,1, v5 = ua,5ub,3ua,1, . . .

and the polynomial functions Fa,2k : gH(1, 2) → C, k ≥ 1, by

Fa,2k(u) = det(v2k−1v∗2k−1),

where the determinant is taken with respect to some fixed bases of V (H,−2k) and
V (H, 2k). If these spaces are 0-dimensional, then we adopt the convention that Fa,2k

is the constant 1. It is also convenient to define Fa,0 = 1. The polynomial Fa,2k is a
relative invariant of (4.1) and the associated character is χ2k(z) = det(z2k)2, where
z ∈ Z(H)a = ZK(H)0 and z0, z2, z4, . . . are its components with respect to the direct
decomposition (4.6).
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If d2k−2 > d2k, k ≥ 1, then Fa,2k is irreducible, with an exception which will be
discussed below. On the other hand, if d2k−2 = d2k ≥ 1, k ≥ 1, then Fa,2k is the

product of Fa,2k−2 and the square of the determinant function det(u2k−1).
First assume that if s = 2 then the two rows of X have the same length. Then the

basic relative invariants are:

(i) Fa,2k if d2k−2 > d2k.
(ii) fa,2k(u) = det(u2k−1) if d2k−2 = d2k ≥ 1.

Let us now consider the excluded case: s = 2 and the second row of X has length
2k + 1, k < m. In this case both p and q are even and the space Va(H, 0) has di-
mension 2 with the basis {ap/2, ap/2+1}. Let v2k+1(ap/2) = ξc and v2k+1(ap/2+1) = ηc,
where c is a basis vector of the 1-dimensional space V (H, 2k+2). Then a simple com-

putation shows that Fa,2k+2(u) = 2ξη. The basic relative invariants are the same as
above in the general case except that Fa,2k+2 has to be replaced by the two multilinear
relative invariants ξ and η.

Proposition 5.5 If X = X(e), then r(X) = ρe(X).

Proof In this case,
(

ZK(H)0, gH(1, 2)
)

is of the type considered in the second sub-
section of the appendix. Hence we need only apply Proposition 9.5.

All rows of X have even length, the underlying partition is very even, p = q is
even, and all eigenvalues of H are odd integers. In particular, the number of rows of

X is even, say 2s. Denote by 2m the length of the first row of X and by d the number
of different row-lengths in X. Thus ρe(X) = 2m − d. On the other hand, it is shown
in the appendix (see Proposition 9.5) that r(X) = 2m − d.

Let us list the basic relative invariants for this case. Let u ∈ gH(1, 2) be arbitrary
and define linear transformations w2k, k ≥ 0, by

w0 = ua,0, w2 = ub,2ua,0ub,−2, w4 = ua,4ub,2ua,0ub,−2ua,−4, . . . .

Note that for k even, w2k : Va(H,−2k − 1) → Vb(H, 2k + 1), and for k odd,
w2k : Vb(H,−2k − 1) → Va(H, 2k + 1). The four spaces Va

(

H,±(2i − 1)
)

,

Vb

(

H,±(2i − 1)
)

have the same dimension, which we denote by d2i−1, i ≥ 1.

Define the polynomial functions Fe,2k+1 : gH(1, 2) → C, k ≥ 0, by Fe,2k+1(u) =

det(w2k), where the determinant is taken with respect to some fixed bases of the do-
main and co-domain of w2k. If these spaces are 0-dimensional, then we adopt the
convention that Fe,2k+1 is the constant 1. The polynomial Fe,2k+1 is a relative invariant

of (4.1) with the character χ2k+1 given by χ2k+1(z) = det(za,2k+1) det(zb,2k+1).
If d2k−1 > d2k+1, k ≥ 1, then Fe,2k+1 is irreducible. On the other hand, if d2k−1 =

d2k+1 ≥ 1, k ≥ 1, then Fe,2k+1 is the product of Fe,2k−1 and the two determinant
functions, det(ua,2k) and det(ua,−2k) if k is even, or det(ub,2k) and det(ub,−2k) if k is

odd.
The basic relative invariants are:

(i) Fe,2k+1 if d2k−1 > d2k+1 (1 ≤ k ≤ m − 1) or k = 0;
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No. P Q

1 (ab)2ka, (ba)2k−1b (ab)2k, (ba)2k k ≥ 1

2 (ba)2k+1b, (ab)2ka (ab)2k+1, (ba)2k+1 k ≥ 0

3 (ab)2k, (ba)2k, (ab)2m, (ba)2m
(

(ba)2k−1b
) 2
,
(

(ab)2ma
) 2

k > m ≥ 0

4 (ab)2k+1, (ba)2k+1,
(

(ab)2ka
) 2
,
(

(ba)2m+1b
) 2

k > m ≥ 0
(ab)2m+1, (ba)2m+1

5 (ab)2ka, (ba)2m−1b (ba)2k−1b, (ab)2ma k > m ≥ 1

6 (ba)2k+1b, (ab)2ma (ab)2ka, (ba)2m+1b k > m ≥ 0

7 (ab)2ka, (ab)2m, (ba)2m (ba)2k−1b,
(

(ab)2ma
) 2

k > m ≥ 0

8 (ba)2k+1b, (ab)2m+1, (ba)2m+1 (ab)2ka,
(

(ba)2m+1b
) 2

k > m ≥ 0

9 (ab)2k, (ba)2k, (ba)2m−1b
(

(ba)2k−1b
) 2
, (ab)2ma k > m ≥ 1

10 (ab)2k+1, (ba)2k+1, (ab)2ma
(

(ab)2ka
) 2
, (ba)2m+1b k > m ≥ 0

Table 1: Disjoint minimal pure b-pairs (P,Q) in Γ(p, q).

(ii) f a
e,2k+1(u) = det(ua,−2k) and f b

e,2k+1(u) = det(ua,2k) if d2k−1 = d2k+1 and k is

even (1 ≤ k ≤ m);
(iii) f a

e,2k+1(u) = det(ub,2k) and f b
e,2k+1(u) = det(ub,−2k) if d2k−1 = d2k+1 and k is odd

(1 ≤ k ≤ m).

The basic relative invariants of PV (4.1) when X = X(b) are defined analogously

to the case when X = X(a), but we will then use the subscript b instead of a. In the
general case, X = X(a) + X(e) + X(b), the basic relative invariants of PV (4.1) are just
the relative invariants of the three pieces X(a), X(e) and X(b). This is a consequence
of the decomposition (4.14).

The basic relative invariants of PV (4.4) are obtained from those of (4.1) by com-

posing the latter with the projection map πX . We shall use the hat to denote these
relative invariants. For instance, we have F̂a,2i = Fa,2i ◦ πX , f̂a,2i = fa,2i ◦ πX .

6 Proof of the Closure Ordering Conjecture

The objective of this section is to prove the closure ordering conjecture (3.2).

We say that a pure pair (X,Y ) is minimal if X → Y , i.e., Y is a child of X in the
diagram Γ(p, q). Every minimal pure b-pair (X,Y ) has the form

(X,Y ) = (P + Z,Q + Z),

where P,Q,Z are orthogonal ab-diagrams and (P,Q) is a disjoint minimal pure b-
pair. These latter pairs have been enumerated in [11, Table 8]. For the convenience
of the reader, we reproduce it here (Table 1).

We say that a pure pair (X,Y ) is maximal if there is no pure pair (P,Q) such that

Q ≤ Y < X ≤ P and (P,Q) 6= (X,Y ).

The diagrams Q are written in this table in abbreviated form. For instance, the
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symbol
(

(ba)2k−1b
) 2

in the row for type 3 stands for two identical rows of type

(ba)2k−1b.

We need some additional notation. Let X ∈ D(p, q). The eigenspaces Va(HX , i)
and Vb(HX , i) were introduced in Section 4. We now set V (HX , i) = Va(HX , i) +
Vb(HX , i) and define

V ↓(HX , k) =

∑

i≤k

V (HX , i), V ↑(HX , k) =

∑

i≥k

V (HX , i),

V ↓
a (HX , k) =

∑

i≤k

Va(HX , i), V ↑
a (HX , k) =

∑

i≥k

Va(HX , i),

V
↓

b (HX , k) =

∑

i≤k

Vb(HX , i), V
↑

b (HX , k) =

∑

i≥k

Vb(HX , i).

It is easy to verify that if E ∈ gHX
(1,≥ 2), then

E
(

V ↑(HX , k)
)

⊂ V ↑(HX , k + 2),

and consequently

E
(

V ↑
a (HX , k)

)

⊂ V ↑

b (HX , k + 2), E
(

V ↑

b (HX , k)
)

⊂ V ↑
a (HX , k + 2).

Definition 6.1 By using the notations na, nb, and X(k) introduced in Section 2, we
define:

rk,a(X) = na(X(k)), rk,b(X) = nb(X(k)),

for k ≥ 0. If k is odd, then one has rk,a(X) = rk,b(X) and we denote this common
value simply by rk(X). We also set, for all k,

nk(X) = rk,a(X) + rk,b(X).

Note that, when k = 0, we have r0,a(X) = p, r0,b(X) = q and n0(X) = n.
The geometric meaning of these numbers was explained in [11, Lemma 11]:

rk,a(X) = dim Ek(V ) ∩Va, rk,b(X) = dim Ek(V ) ∩Vb,

where E ∈ gHX
(1, 2) is a generic element.

The following formula follows from the sl2-theory:

(6.1) rk,a(X) = dimV ↑
a (HX , k) +

{

dimV ↓
a (HX ,−k − 1) if k is even,

dimV
↓

b (HX ,−k − 1) if k is odd.

It can be rewritten as:

(6.2) rk,a(X) = dimV ↑
a (HX , k + 1) +

{

dimV ↓
a (HX ,−k) if k is even,

dimV
↓

b (HX ,−k) if k is odd.

Similar formulae are valid for rk,b(X).
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Lemma 6.2 Let X,Y ∈ D(p, q) with Y ≤ X and let E ∈ OX
Y . If rk,a(Y ) = rk,a(X),

then for k even:

(i) Ek
(

V ↑
a (HX ,−k)

)

= V ↑
a (HX , k);

(ii) Ek
(

V ↑
a (HX , 1 − k)

)

= V ↑
a (HX , k + 1);

(iii) ker(Ek) ∩Va ⊂ V ↑
a (HX , 1 − k);

and for k odd:

(iv) Ek
(

V
↑

b (HX ,−k)
)

= V ↑
a (HX , k);

(v) Ek
(

V
↑

b (HX , 1 − k)
)

= V ↑
a (HX , k + 1);

(vi) ker(Ek) ∩Vb ⊂ V ↑

b (HX , 1 − k).

Similar statements are valid when rk,b(Y ) = rk,b(X).

Proof Assume that k is even. Since E ∈ OY , we have rk,a(Y ) = dim Ek(Va). Asser-
tion (i) follows from

Va = V ↓
a (HX ,−k − 1) + V ↑

a (HX ,−k), Ek
(

V ↑
a (HX ,−k)

)

⊂ V ↑
a (HX , k),

and equality (6.1). Assertion (ii) follows from

Va = V ↓
a (HX ,−k) + V ↑

a (HX , 1 − k), Ek
(

V ↑
a (HX , 1 − k)

)

⊂ V ↑
a (HX , k + 1),

and equality (6.2). As p = dimV ↑
a (HX , 1 − k) + dimV ↓

a (HX ,−k), (6.2) implies that

dim V ↑
a (HX , 1 − k) − dim V ↑

a (HX , k + 1) = p − rk,a(X) = dim
(

Va ∩ ker(Ek)
)

.

Now (iii) follows from the last inclusion displayed above.
The proofs for k odd are similar.

Let us say that the length of the pair (X,Y ), with Y < X, is the length m of the

shortest chain

(6.3) X = X0 → X1 → · · · → Xm−1 → Xm = Y

of elementary moves that joins X to Y .

The following simple observation will be useful. Assume that X = P+Z, Y = Q+Z

and Y < X. Then Q < P and the length of (P,Q) does not exceed that of (X,Y ).

Lemma 6.3 Let (X,Y ) be a pure b-pair with X and Y disjoint, and let 2l+3 or 2l+2 be

the length of the first row of X, where l is a nonnegative integer. Then r2l,a(Y ) = r2l,a(X)
if l is even and r2l,b(Y ) = r2l,b(X) if l is odd.

Proof Assume that the assertion of the lemma is false and let (X,Y ) be a counter-
example of minimal length, m. Choose a sequence of elementary moves as in (6.3).
It is easy to see that m > 1.

We give the detailed proof for l odd.
Since X is a b-vertex and l is odd, if the first row of X has length 2l + 3, it is neces-

sarily of type (ab)l+1a. Since m is minimal (i.e., our counter-example is minimal), X1

has no rows of length> 2l + 1. Consequently, X = X∧ + Z, where either
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(i) X∧
= (ab)l+1a or

(ii) X∧
= (ab)l+1, (ba)l+1,

and, in both cases, Z has no rows of length > 2l + 1.

The first elementary step X → X1 has to move two a-cells from X∧ to subsequent

rows. Consequently, the first row of X1 is (ba)lb.

The minimality of m also implies that

(6.4) r2l,b(X) = r2l,b(X1) = · · · = r2l,b(Xm−1) > r2l,b(Y ).

Denote by s (resp. t) the number of rows of Z (resp. X1) of length 2l +1. Such rows

are necessarily of type (ba)lb.

In case (i) we must have s = 0. Otherwise, the first move X → X1 must be of
type 1 (see Table 1) and X1 would have rows of length 2l + 2.

In case (ii), we have t = s + 2 and (6.4) implies that Xm−1 also has exactly t rows
of length 2l + 1. Consequently, Y must have at least s rows of length 2l + 1. As X and
Y are disjoint, we infer that s = 0.

We conclude that Z has no rows of length 2l + 1.

We claim that, if the first row of Z has even length, say 2d, then d must be even.
Assume that d is odd. As X is a b-vertex, Z has no rows of type (ba)d−1b. This
implies that X1 must contain two rows of type (ab)da, contradicting the fact that X1

is a b-vertex. Our claim is proved.

In particular, Z has no rows of length 2l. Hence, the first row of Z has length
≤ 2l − 1.

Assume that the first row of Z is (ab)da. Then d must be even and X → X1 implies
that Z has at least two rows of length 2d if d > 0, or else there would not be an
elementary move that moves two a-cells from the first row of X.

We deduce that either

Z =
(

(ab)da
) s
, (ab)d, (ba)d,U , d even, 0 ≤ d ≤ l − 1, s ≥ 0,

where U has no rows of length > 2d, or

Z = (ba)d−1b,U , d even, 2 ≤ d ≤ l − 1,

where U has no rows of length > 2d − 1 and we set s = −1. Then

X1 = X∧
1 ,

(

(ab)da
) s+2

,U and Xm−1 = X∧
1 + X∨

m−1,

where X∧
1 is (ba)lb in case (i) and

(

(ba)lb
) 2

in case (ii), and X∨
m−1 has no rows of

length > 2d + 1. By comparing X and X1, we see that

r2i+1(Xm−1) ≤ r2i+1(X1) = r2i+1(X) − 1, d ≤ i ≤ l;

r2i,a(Xm−1) ≤ r2i,a(X1) = r2i,a(X) − 2, d + 1 ≤ i ≤ l.
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The last elementary step, Xm−1 → Y , will move at least one b-cell from X∧
1 to X∨

m−1.
This implies that

r2i,b(Y ) ≤ r2i,b(X) − 1, d + 1 ≤ i ≤ l.

Set

P =

{

(ab)la,
(

(ab)da
) s+1

, (ba)db,U in case (i)

(ab)la, (ba)lb,
(

(ab)da
) s+1

, (ba)db,U in case (ii).

By using the above inequalities, it is easy to check that Y ≤ P < X. Since P is not a

b-vertex, we have a contradiction.

This concludes the proof when l is odd. The case when l is even gives a contra-
diction by using the same arguments except that the roles of “a” and “b” have to be

interchanged while still preserving the hypothesis that (X,Y ) is a pure b-pair.

The sets introduced in the next definition will play an important role in our proof.

Definition 6.4 For X,Y ∈ D(p, q) with Y ≤ X, we define

O
X
Y = OY ∩ gHX

(1,≥ 2).

Note that these sets are nonempty, the set OX
X is the generic orbit of PV (4.4), and

that, for Y < X, the set OX
Y is contained in the singular set Ŝ of this PV.

Lemma 6.5 Let X,Y ∈ D(p, q), X → Y , and let E ∈ OX
Y . Let Ŝµ be an irreducible

component of the singular set Ŝ of PV (4.4). If E ∈ Ŝµ, then O = K0 ·E is the dominating

orbit of Ŝµ.

Proof Let Oµ be the dominating K0-orbit of Ŝµ and let Z be its ab-diagram. Since
E belongs to the closure of Oµ, we have Y ≤ Z. As Z < X and X → Y , we infer

that Y = Z. Hence O and Oµ are connected components of OY , and it follows that
O = Oµ.

Lemma 6.6 Let (X,Y ) be a pure b-pair, Y < Z < X, and assume that (X,Z) and

(Z,Y ) split. If OX
Y ⊂ OI

Z , then (X,Y ) splits.

Proof Let O be the basic component of OX . By (4.5), we have

OY ∩ O = OY ∩
(

K0 · gHX
(1,≥ 2)

)

= K0 · OX
Y

⊂ OY ∩ OI
Z = O

I
Y .

Hence (X,Y ) splits.
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We shall denote by E0 the projection πX(E) of E ∈ gHX
(1,≥ 2). If, say x ∈

Va(HX , j) and i is odd, then Ei(x) ∈ V
↑

b (HX , j + 2i) and Ei
0(x) is the component

of Ei(x) in Vb(HX , j + 2i). We point out that if X is a b-vertex, then V (HX , 4i) =

Va(HX , 4i) and V (HX , 4i + 2) = Vb(HX , 4i + 2). Recall that the basic relative invari-
ants F and/or f (with a variety of subscripts and/or superscripts) of PVs (4.1) and

(4.4) have been introduced in the previous section.

Lemma 6.7 Let (X,Y ) be a pure b-pair with X = P + Z, Y = Q + Z and P and Q

disjoint. Let L be the length of the first row of P and write L = 2l + 3 or L = 2l + 2,

where l is a nonnegative integer. Then OX
Y is contained in the (not necessarily irreducible)

hypersurface:

(i) F̂e,2l+1 = 0 if L = 2l + 2;

(ii) F̂a,2l+2 = 0 if L = 2l + 3 and l is odd;

(iii) F̂b,2l+2 = 0 if L = 2l + 3 and l is even.

Proof Let E ∈ OX
Y be arbitrary and denote by E0 its projection to gHX

(1, 2). Clearly,
P and Q are not empty and Q < P. The first row of Q has length < L.

(i) In this case r2l+1(Y ) < r2l+1(X) and ni(Y ) = ni(X) for i > 2l +1. We claim that
the map V (HX ,−2l − 1) → V (HX , 2l + 1), induced by E2l+1

0 , is not an isomorphism.
By (6.1) we have

r2l+1(X) = dimV
↑

b (HX , 2l + 1) + dim V ↓
a (HX ,−2l − 2).

As n2l+2(Y ) = n2l+2(X) and Y < X, we have r2l+2,a(Y ) = r2l+2,a(X) and r2l+2,b(Y ) =

r2l+2,b(X). Lemma 6.2 shows that Va ∩ ker E2l+2 ⊂ V ↑
a (HX ,−2l − 1). Consequently,

from the direct decomposition

Va = V ↑
a (HX ,−2l − 1) ⊕V ↓

a (HX ,−2l − 2)

we obtain the direct decomposition

E2l+1(Va) = E2l+1
(

V ↑
a (HX ,−2l − 1)

)

⊕ E2l+1
(

V ↓
a (HX ,−2l − 2)

)

.

Hence

r2l+1(Y ) = dim E2l+1
(

V ↑
a (HX ,−2l − 1)

)

+ dimV ↓
a (HX ,−2l − 2).

As r2l+1(Y ) < r2l+1(X), it follows that E2l+1
(

V ↑
a (HX ,−2l−1)

)

is a proper subspace of

V
↑

b (HX , 2l + 1). On the other hand, as n2l+2(Y ) = n2l+2(X), Lemma 6.2 implies that

E2l+2
(

V
↑

b (HX ,−2l − 2)
)

= V
↑

b (HX , 2l + 2).

As

E2l+1
(

V ↑
a (HX ,−2l − 1)

)

⊃ E2l+2
(

V
↑

b (HX ,−2l − 2)
)

,

our claim is proved.
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It follows that F̂e,2l+1(E) = Fe,2l+1(E0) = 0.

(ii) In this case n2l+2(Y ) < n2l+2(X) and ni(Y ) = ni(X) for i > 2l + 2. We
claim that the map V (HX ,−2l − 2) → V (HX , 2l + 2), induced by E2l+2

0 , is not an
isomorphism.

The first row of P is necessarily of type (ab)l+1a. As P and Q are disjoint, we must
have r2l+2,a(Y ) < r2l+2,a(X). By (6.1) we have

r2l+2,a(X) = dimV ↑
a (HX , 2l + 2) + dimV ↓

a (HX ,−2l − 3).

As r2l+3(Y ) = r2l+3(X), Lemma 6.2 shows that ker E2l+3 ∩ Va ⊂ V ↑
a (HX ,−2l − 2).

Consequently, from the direct decomposition

Va = V ↓
a (HX ,−2l − 3) ⊕V ↑

a (HX ,−2l − 2),

we obtain the direct decomposition

E2l+2(Va) = E2l+2
(

V ↓
a (HX ,−2l − 3)

)

⊕ E2l+2
(

V ↑
a (HX ,−2l − 2)

)

.

Hence

r2l+2,a(Y ) = dimV ↓
a (HX ,−2l − 3) + dim E2l+2

(

V ↑
a (HX ,−2l − 2)

)

.

As r2l+2,a(Y ) < r2l+2,a(X), the image E2l+2
(

V ↑
a (HX ,−2l − 2)

)

is a proper subspace of
V ↑

a (HX , 2l + 2). On the other hand, as r2l+3(Y ) = r2l+3(X), Lemma 6.2 implies that

E2l+3
(

V
↑

b (HX ,−2l − 3)
)

= V ↑
a (HX , 2l + 3).

As

E2l+2
(

V ↑
a (HX ,−2l − 2)

)

⊃ E2l+3
(

V
↑

b (HX ,−2l − 3)
)

,

our claim is proved. It follows that F̂a,2l+2(E) = Fa,2l+2(E0) = 0.

(iii) The proof in this case is similar to that of (ii).

We can now prove our main result.

Theorem 6.8 The diagram ∆(p, q) is the Hasse diagram of the partially ordered set

(N/K0,≤).

Proof By Theorem 3.7, it suffices to prove that every pure pair (X,Y ) in Γ(p, q)

splits. Without any loss of generality, it suffices to do that for pure b-pairs only. We
proceed by induction on X by using the partial order “≤” of Γ(p, q). Thus our first
induction hypothesis is that if Z < X and (Z,U ) is a pure b-pair, then (Z,U ) splits.
For fixed b-vertex X, we shall use downward induction on Y . Thus we assume that if

(X,Y ) is a pure b-pair and Y < Z < X, then (X,Z) splits. Note that if X → Y , then
this condition is vacuously satisfied.

In order to show that (X,Y ) splits, it suffices to prove that
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(∗) there exists an irreducible hypersurface Ŝµ, an irreducible component of the sin-
gular set Ŝ of (4.4), such that OX

Y ⊂ Ŝµ.

Indeed, let O be the basic component of OX , and let Oµ be the dominating K0-

orbit of Ŝµ and Z the ab-diagram of Oµ. Then Y ≤ Z < X. If Y < Z, then our two
induction hypotheses imply that (Z,Y ) and (X,Z) split. Since Oµ ⊂ O ∩ OZ = OI

Z ,

we have OX
Y ⊂ Oµ ⊂ OI

Z . Hence (X,Y ) splits by Lemma 6.6. On the other hand, if
Y = Z then OX

Y ⊂ Oµ ∩ OY = Oµ, and consequently (X,Y ) splits.
In order to prove the assertion (∗) we proceed as follows. Let E ∈ OX

Y be arbi-
trary and denote by E0 its projection to gHX

(1, 2). Let P, Q, L and l be defined as in

Lemma 6.7. As in that lemma, we distinguish three cases.

(i) L = 2l + 2. Then r2l+1(Y ) < r2l+1(X) and ni(Y ) = ni(X) for i > 2l + 1.
By Lemma 6.7, the set OX

Y is contained in the hypersurface F̂e,2l+1 = 0. We are done

if the relative invariant Fe,2l+1 is irreducible, i.e., if V (HX , 2l−1) has larger dimension
than V (HX , 2l + 1). From now on we assume that these dimensions are equal.

We assume that l is odd. The l even case can be treated similarly. By Lemma 6.3,
r2l,b(Q) = r2l,b(P) and, consequently, r2l,b(Y ) = r2l,b(X). By Lemma 6.2, the map

Vb(HX , 1 − 2l) → Vb(HX , 2l + 1), induced by E2l
0 , is onto. As these two spaces have

the same dimension, this map is in fact an isomorphism. By taking the adjoints, we
infer that the map Vb(HX ,−2l − 1) → Vb(HX , 2l − 1), induced by E2l

0 , is also an iso-
morphism. As Fe,2l+1(E0) = 0, it follows that the map Vb(HX , 2l−1) → Va(HX , 2l+1)

induced by E0 is not an isomorphism, and consequently OX
Y is contained in the irre-

ducible hypersurface f̂ a
e,2l+1 = 0.

(ii) L = 2l + 3 and l is odd. By Lemma 6.7, OX
Y is contained in the hypersurface

F̂a,2l+2 = 0. If V (HX , 2l) has larger dimension than V (HX , 2l + 2), then, with one
exception which will be dealt with later, the relative invariant Fa,2l+2 is irreducible,
and we are done.

Now assume that the spaces V (HX , 2l) and V (HX , 2l+2) have the same dimension.

By Lemma 6.3, r2l,b(Q) = r2l,b(P) and, consequently, r2l,b(Y ) = r2l,b(X). Then by
Lemma 6.2,

E2l
(

V
↑

b (HX ,−2l)
)

= V
↑

b (HX , 2l)

and
E2l

(

V
↑

b (HX ,−2l + 1)
)

= V
↑

b (HX , 2l + 1).

As the spaces Vb(HX ,−2l) and Vb(HX , 2l) have the same dimension, it follows that
the map Vb(HX ,−2l) → Vb(HX , 2l), induced by E2l

0 , is an isomorphism. Hence

F̂a,2l(E) = Fa,2l(E0) 6= 0, i.e., OX
Y is contained in the irreducible hypersurface

f̂a,2l+2 = 0.
The exceptional case occurs when X(a) consists of exactly two rows: One of type

(ab)l+1a and the other of type (ba)lb. Then Fa,2l+2 = 2ξη, where ξ and η are two dif-
ferent irreducible polynomials. Denote by Ŝξ and Ŝη the corresponding hypersurfaces

in gHX
(1,≥ 2). We know that OX

Y ⊂ Ŝξ ∪ Ŝη . Let Z be the ab-diagram obtained from
X by replacing X(a) with the pair of rows of length 2l + 2. Obviously, the pair (X,Z)
is also a pure b-pair. By using Z instead of Y , we conclude that OX

Z ⊂ Ŝξ ∪ Ŝη . Since
X → Z and both IOI

Z and IIOI
Z are contained in the closure of OI

X (see Theorem 3.3),
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Lemma 6.5 implies that one of the orbits IOI
Z and IIOI

Z is the dominating orbit of the
hypersurface Ŝξ and the other the dominating orbit of Ŝη . As dim(OZ) < dim(OX),

the induction hypothesis implies that (Z,Y ) splits. Consequently, both OY ∩ Ŝξ and
OY ∩ Ŝη are contained in OI

Y . It follows that OX
Y ⊂ OI

Y , and so (X,Y ) splits.

(iii) L = 2l + 3 and l is even. The proof in this case is similar to that of (ii).

7 Factorization of Kac’s Relative Invariant

This section is supplementary to our main results proved in Section 6, and the reader

may wish to proceed directly to Section 8 after reading the definitions of ω and ϕX .
We will need another involution ω ∈ G. It leaves Va and Vb invariant and acts on

the basis vectors as follows:

ω(ai) = ap+1−i, 1 ≤ i ≤ p; ω(b j) = bq+1− j , 1 ≤ j ≤ q.

Under the adjoint action, ω leaves invariant k, p, h and acts as −1 on h. In particular,
ω(HX) = −HX , and consequentlyω

(

Va(HX , i)
)

= Va(HX ,−i) andω
(

Vb(HX , i)
)

=

Vb(HX ,−i) for all k’s.
By analogy with a construction of Kac [13, Lemma 1.4], for a given X ∈ D(p, q)

and x ∈ gHX
(1, 2), we define the linear operator Ax ∈ End

(

gHX
(1, 2)

)

by

(7.1) Ax(y) =
[

x, [x, ω(y)]
]

and set ϕX(x) = det Ax.

Lemma 7.1 The polynomial ϕX is a relative invariant of PV (4.1) with character

det
(

Ad(z)|gHX
(1,2)

) 2
, z ∈ ZK(HX)0.

Proof For x, y ∈ gHX
(1, 2) and z ∈ ZK(HX)0, we have

Az·x(y) =
[

z · x, [z · x, ω(y)]
]

= z ·
[

x, [x, z−1 · ω(y)]
]

= z · Ax

(

ω Ad(z−1)ω(y)
)

.

As

det
(

ω ◦ Ad(z−1)|gHX
(1,−2) ◦ ω

)

= det
(

Ad(z−1)|gHX
(1,−2)

)

= det
(

Ad(z)|gHX
(1,2)

)

,

we have
ϕX(z · x) =

(

det Ad(z)|gHX
(1,2)

) 2
ϕX(x).

We shall refer to ϕX as Kac’s relative invariant of PV (4.1). As in [13, Proposi-
tion 1.1], one can show that x ∈ gHX

(1, 2) is generic if and only if ϕX(x) 6= 0. This is
also a consequence of the factorization of ϕX which we are going to prove in the next
theorem.
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If x ∈ gHX
(1, 2)u and y ∈ gHX

(1, 2)v for u, v ∈ {a, e, b} (see (4.10)), it is easy to
verify that [x, ω(y)] = 0 if u 6= v and Ax(y) ∈ gHX

(1, 2)u if u = v. It follows that

Kac’s relative invariant has the following factorization:

(7.2) ϕX = ϕX(a)ϕX(e)ϕX(b),

where X = X(a) + X(e) + X(b) is the canonical decomposition of X (see (5.1)).
We shall now factorize Kac’s relative invariant when X is equal to X(a), X(e) or

X(b).

Theorem 7.2 Let X ∈ D(p, q).

(i) If X = X(a), then

(7.3) ϕX = ca

(

∏

i≥1

F
d2i−2−d2i+2

a,2i

) 2

,

where d2i = dimV (HX , 2i).

(ii) If X = X(e), then

(7.4) ϕX = ce

(

∏

i≥1

F
d2i−1−d2i+3

e,2i+1

) 2

,

where d2i+1 = dimVa(HX , 2i + 1) = dimVb(HX , 2i + 1).

(iii) If X = X(b), then

(7.5) ϕX = cb

(

∏

i≥1

F
d2i−2−d2i+2

b,2i

) 2

,

where d2i = dimV (HX , 2i).

The factors ca, ce, cb denote nonzero constants.

Proof For z ∈ Z = ZK (HX)0, let za,i (resp. zb,i) be the restriction of z to Va(HX , i)
(resp. Vb(HX , i)), and let ψa,i (resp. ψb,i) be the character of Z defined by ψa,i(z) =

det(za,i) (resp. ψb,i(z) = det(zb,i)). Note that ψa,−i = −ψa,i and ψb,−i = −ψb,i . In

particular, ψa,0 = ψb,0 = 0.
(i) Since a relative invariant is uniquely determined (up to a multiplicative con-

stant) by its character, it suffices to show that the two members of (7.3) have the same
character. As X = X(a), we have V (HX , i) = 0 for i odd, V (HX , 4i) = Va(HX , 4i)

and V (HX , 4i + 2) = Vb(HX , 4i) + 2. Consequently, ψa,4i+2 = ψb,4i = 0 for all inte-
gers i. To simplify the notation, we shall write ψ2i = ψa,2i if i is even and ψ2i = ψb,2i

if i is odd. It was shown in Section 5 that the character of Fa,2i is 2ψ2i . Hence the
character of the second member of (7.3) is

2
∑

i≥1

(d2i−2 − d2i+2)ψ2i .
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As X = X(a), we have gHX
(1, 2) = gHX

(1, 2)a, see (4.11). To simplify the notation,
we set g(1, 2, 2i+1) = gHX

(1, 2, 2i+1)a for i even and g(1, 2, 2i+1) = gHX
(1, 2, 2i+1)b

for i odd. We also set z2i = za,2i if i is even and z2i = zb,2i if i is odd. Each summand
g(1, 2, 2i + 1) is Ad(z)-invariant for z ∈ Z. Hence

det
(

Ad(z)|gHX
(1,2)

)

=

∏

i≥0

det
(

Ad(z)|g(1,2,2i+1)

)

.

For z ∈ Z, u ∈ g(1, 2, 2i + 1), and y ∈ V (HX , 2i), we have Ad(z)(u)(y) =

z2i+2uz−1
2i (y). Consequently, det

(

Ad(z)|g(1,2,2i+1)

)

, viewed as a character of Z, is equal
to d2iψ2i+2 − d2i+2ψ2i . The above equality now gives the following equality for char-
acters:

det
(

Ad(z)|gHX
(1,2)

)

=

∑

i≥0

(d2iψ2i+2 − d2i+2ψ2i)

=

∑

i≥1

(d2i−2 − d2i+2)ψ2i .

By Lemma 7.1, we conclude that indeed the two members of (7.3) have the same
character.

The proofs of (ii) and (iii) are similar.

We remark that it is easy to obtain the prime factorization of ϕX by using for-
mula (7.2), the above theorem, and the results of Section 5.

The relative invariants Fa,2k, Fe,2k+1, Fb,2k have not been normalized. For instance,
Fa,2k(u) has been defined in Section 5 as the determinant of a certain linear transfor-
mation v2k−1v∗2k−1 computed with respect to some unspecified bases of its domain
and co-domain spaces. We can now normalize it by defining Fa,2k(u) as the determi-

nant of the linear operator (−1)kv2k−1v∗2k−1ω on the space V (HX , 2k− 1). The factor

(−1)k is introduced so that the linear transformation (−1)kv2k−1v∗2k−1 coincides with

the linear transformation V (HX , 1−2k) → V (HX , 2k−1) induced by u2k (see (4.9)).

The same method can be used to normalize the relative invariant Fb,2k. We normal-
ize the relative invariant Fe,2k+1 by defining Fe,2k+1(u) as the determinant of the linear
operator w2kω, where w2k is the linear transformation defined in Section 5. Note that
this time no sign correction is needed.

If we agree to use these normalizations, then the question of determining the con-
stants ca, ce, cb in the above theorem arises.

There is a more general method for construction of relative invariants which gen-
eralizes Kac’s construction. It is described in the paper [12] of A. Gyoja, who at-

tributes the method to M. Kashiwara. The relative invariants Fa,2k, Fb,2k and Fe,2k+1,
constructed in Section 5, are of that type.

8 Examples and Some Open Questions

Let us consider a few examples in more detail. For the first three examples we take
p = 6 and q = 4. Then Γ(p, q) has 25 vertices, enumerated by integers 0 to 24. Their
ab-diagrams are listed in Table 2.
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No. X No. X

0 a6, b4 13 (aba)2, bab, a
1 ab, ba, a4, b2 14 (aba)3, b
2 bab, a5, b2 15 abab, baba, a2

3 aba, a4, b3 16 ababa, ab, ba, a
4 (ab, ba)2, a2 17 babab, aba, a2

5 bab, ab, ba, a3 18 ababa, bab, a2

6 aba, ab, ba, a2, b 19 ababa, aba, a, b
7 (bab)2, a4 20 (ababa)2

8 aba, bab, a3, b 21 (ba)3b, a3

9 (aba)2, a2, b2 22 (ab)3a, a2, b
10 (aba)2, ab, ba 23 (ab)3a, aba

11 babab, a4, b 24 (ab)4a, a
12 ababa, a3, b2

Table 2: The vertices of Γ(6, 4).

The diagram Γ(6, 4) is shown in Figure 1. We have written a (resp. b) near a vertex
to indicate that it is an a-vertex (resp. b-vertex). There are three a-vertices (10, 14 and
23) and nine b-vertices (4, 5, 7, 15, 16, 18, 20, 21 and 24). All other vertices are stable
(there are no ab-vertices). There is only one maximal pure a-pair (14, 10) and four

maximal pure b-pairs (7, 4), (20, 7), (21, 16) and (24, 21). On the right hand side of
Figure 1 we show the dimension of the orbits OX on various levels.

For X ∈ D(p, q) and E ∈ gHX
(1,≥ 2), we often have to compute the ab-diagram

Y ∈ D(p, q) for which E ∈ OY is true. This diagram is uniquely determined by the

dimensions of Va ∩ ker(Ek) and Vb ∩ ker(Ek) for k = 0, 1, 2, . . . , which can be easily
computed.

The involution ω ∈ G = On(C) defined in the previous section is given by the
matrix

ω =

[

Sp 0

0 Sq

]

,

where Sk denotes the k by k matrix having ones on the side diagonal and zeros else-
where.

The space p consists of matrices

(8.1) x =

[

0 x

−Sq
t xSp 0

]

,

where x is an arbitrary complex p by q matrix.

Example 8.1 Let X = (aba)2, bab, a (No. 13), a stable vertex. In this case

X(a) = bab, a X(e) = ∅, X(b) = (aba)2.

The relative invariant Fa,2 is reducible (this is the exceptional case), while Fb,2 is irre-
ducible.
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Figure 1: The diagram Γ(6, 4).
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An arbitrary matrix x ∈ gHX
(1, 2) has the form (8.1) where

x =

















0 x1 x2 0
0 x3 x4 0
0 0 0 x5

0 0 0 x6

0 0 0 0
0 0 0 0

















.

A computation shows that Fa,2(x) = −2x5x6 and Fb,2(x) = −(x1x4 − x2x3)2. The
matrix of the linear operator Ax (see (7.1)) is:

















2 x1
2 0 2 x1 x3 x2 x3 − x1 x4 0 0

0 2 x2
2 x1 x4 − x2 x3 2 x2 x4 0 0

2 x1 x3 x1 x4 − x2 x3 2 x3
2 0 0 0

x2 x3 − x1 x4 2 x2 x4 0 2 x4
2 0 0

0 0 0 0 2 x5
2 0

0 0 0 0 0 2 x6
2

















and we find that

ϕX(x) = det Ax = −12 x5
2x6

2(x1 x4 − x2 x3)4.

Hence, ϕX = −3F2
a,2F2

b,2 with ca = 1 and cb = −3.

The dominating nilpotent K0-orbit for the hypersurface x1x4 = x2x3 in

gHX
(1,≥ 2) is the orbit OY , where Y = aba, bab, a3, b (No. 8), while those for the

hyperplanes x5 = 0 and x6 = 0 are the two connected components IOZ and IIOZ of
OZ , where Z = (aba)2, ab, ba (No. 10).

In this example, the singular set Ŝ of PV (4.4) has three irreducible components,

and the K0-orbit OX has three children OY , IOZ , IIOZ . Each of the children orbits
is the dominating orbit of one of these irreducible components. This is not true in
general as shown by the next example.

Example 8.2 Now let X = (ba)3b, a3 (No. 21), a proper b-vertex. The orbit OI
X

has only two children: OY and OI
Z , where Y = babab, aba, a, a (No. 17) and Z =

ababa, bab, a, a (No. 18). On the other hand, PV (4.4) has three basic relative invari-
ants, and consequently its singular set Ŝ has three irreducible components.

An arbitrary matrix x ∈ gHX
(1, 2) has the form (8.1) where

x =

















0 x1 0 0

0 0 x2 0
0 0 x3 0
0 0 x4 0
0 0 x5 0

0 0 0 x6

















.
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The three irreducible hypersurfaces, the irreducible components of Ŝ ⊂ gHX
(1,≥ 2),

are given by the equations x1 = 0, x6 = 0, and x2x5 + x3x4 = 0. Their respective

dominating nilpotent K0-orbits are OI
U , OI

Z , OY , respectively, where U = (bab)2, a4

(No. 7). Two of these dominating orbits are the children of OI
X , but OI

U is not.

The fact that the dominating orbit of the hyperplane x1 = 0 in gHX
(1,≥ 2) is OI

U

is not obvious. A simple computation shows that this dominating orbit must be one

of the two connected components of OU . To prove that this dominating orbit is in
fact OI

U , it suffices to observe that the whole hyperplane x1 = 0 in gHX
(1,≥ 2) is also

contained in gHU
(1,≥ 2).

Example 8.3 Let X = (ab)4a, a (No. 24), a proper b-vertex. The K0-orbit OI
X has

three children: IOY , IIOY and OI
Z , where Y = (ab)3a, aba (No. 23) and Z = (ba)3b, a3

(No. 21). An arbitrary matrix x ∈ gHX
(1, 2) has the form (8.1) where

x =

















x1 0 0 0
0 x2 0 0

0 0 x3 0
0 0 x4 0
0 0 0 x5

0 0 0 0

















.

The singular set Ŝ of PV (4.4) is the union of five hyperplanes xi = 0, 1 ≤ i ≤ 5,
in the space gHX

(1,≥ 2). The dominating orbits of these hyperplanes are: OI
Z for

x1 = 0, OI
Q for x2 = 0, OII

Y for x3 = 0, OI
Y for x4 = 0 and OI

P for x5 = 0, where
P = (ababa)2 (No. 20) and Q = ababa, bab, a, a (No. 18).

The last four of these hyperplanes are quasi-homogeneous QHX
-varieties (i.e., they

are PVs), but the first one is not. Apart from this exceptional case, and another one
that arises from the orbit OII

X , all irreducible components of the singular sets Ŝ are
quasi-homogeneous varieties in the case when (p, q) = (6, 4).

Example 8.4 The objective of this example is to show that different irreducible
components of the singular set Ŝ may have the same dominating K0-orbit. We take

p = 7, q = 6, and X = (ab)6a. The K0-orbit OI
X has two children: OY and OI

Z ,
where Y = (ab)5a, a, b and Z = (ba)5b, a2. An arbitrary matrix x ∈ gHX

(1, 2) has the
form (8.1) where

x =





















x1 0 0 0 0 0

0 x2 0 0 0 0
0 0 x3 0 0 0
0 0 0 x4 0 0
0 0 0 0 x5 0

0 0 0 0 0 x6

0 0 0 0 0 0





















.

The singular set Ŝ of PV (4.4) is the union of six hyperplanes xi = 0, 1 ≤ i ≤ 6, in
the space gHX

(1,≥ 2). A calculation shows that the hyperplanes x5 = 0 and x6 = 0
have the same dominating orbit, namely OP where P = (ab)4a, aba, b. The second
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of these two hyperplanes is quasi-homogeneous QHX
-variety but the first one is not.

For the sake of completness, we mention that OI
Z is the dominating orbit for x1 = 0,

OY for x4 = 0, while the orbit OI
Q, with Q = (ab)4a, bab, a, dominates both x2 = 0

and x3 = 0.

In conclusion, we state several open problems.

Problem 1 For X ∈ D(p, q), identify the dominating orbits for each irreducible
component of the singular set Ŝ of PV (4.4).

Problem 2 For X ∈ D(p, q), determine which irreducible components of the singu-

lar set Ŝ of PV (4.4) fail to be quasi-homogeneous (as QHX
-varieties).

Problem 3 Determine and/or characterize the maximal pure pairs in Γ(p, q).

Problem 4 Determine the coefficients ca, ce, cb in the factorizations of Theorem 7.2.

9 Appendix: Two Special Types of PVs

In this section we construct the basic relative invariants for two important types of
PVs and describe their generic points and isotropy subgroups.

9.1 The First Type of PVs

The basic case (m = 1) of this type is well known, see [15, §5, Proposition 23]. Many
other cases appear in [14, Section 4.1], but we could not find any reference that states
the result in the generality and form that we need.

We consider a sequence V0,V2,V4, . . . of finite-dimensional complex vector
spaces such that only finitely many of them are nonzero, and that their dimensions
d2i = dim(V2i) satisfy d0 ≥ d2 ≥ d4 ≥ · · · . We also assume that d0 ≥ 1 and denote
by m the largest integer ≥ 0 such that d2m ≥ 1. Let f0 : V0 × V0 → C be a fixed

nondegenerate symmetric bilinear form, and define

L =

⊕

i≥1

HomC(V2i−2,V2i),

G = SO(V0, f0) ×
∏

i≥1

GL(V2i).

Introduce the following notation for the components of u ∈ L and g ∈ G:

u = (u1, u3, u5, . . . ), u2i−1 ∈ HomC(V2i−2,V2i),

g = (g0, g2, g4, . . . ), g0 ∈ SO(V0); g2i ∈ GL(V2i), i ≥ 1.

Then L is a G-module via the action:

g · u = (g2u1g−1
0 , g4u3g−1

2 , . . . ).
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We now construct a particular element e = (e1, e3, . . . ) ∈ L. For that purpose we
fix an orthogonal direct decomposition

V0 =

⊕

i≥1

U2i

such that dim(U2i) = d2i−2 − d2i . Furthermore, we set U ↓
2i = U2 + U4 + · · · + U2i

and U
↑
2i = U2i + U2i+2 + · · · . We choose the components e2i−1 ∈ HomC(V2i−2,V2i)

of e so that
U↓

2i = ker(e2i−1e2i−3 · · · e1), i ≥ 1.

These conditions imply that each e2i−1 is surjective.
Note that each nonzero HomC(V2i−2,V2i) is a simple G-module with only one ex-

ception: If d0 = 2 and m ≥ 1 then HomC(V0,V2) is the sum of two simple modules.

This is due to the fact that, in this case, V0 itself is the sum of two simple SO(V0)-
modules. Hence, if l is the length of the module L, then l = m + 1 in the exceptional
case, and l = m otherwise.

The intersection of SO(V0) with the direct product of the subgroups O(U2i),

i ≥ 1, will be denoted by S
(
∏

i≥1 O(U2i)
)

.

Proposition 9.1 The pair (G, L) is a regular PV, and the element e ∈ L constructed

above is a generic element. The stabilizer Ge consists of all elements g = (g0, g2, g4, . . . )
∈ G, where g0 ∈ SO(V0) is only subject to the condition that it leaves invariant each

of the subspaces U2i , and the other components of g are uniquely determined by the

equations

(9.1) g2ie2i−1 = e2i−1g2i−2, i ≥ 1.

Consequently, the projection map

(9.2) π : Ge → S
(

∏

i≥1

O(U2i)
)

,

sending g = (g0, g2, g4, . . . ) to g0, is an isomorphism.

Proof For g = (g0, g2, g4, . . . ) ∈ G, we have g · e = e iff equations (9.1) are satisfied.

Assume that g ∈ Ge. If x ∈ U
↓
2i then e2i−1e2i−3 · · · e1(x) = 0 and so

0 = g2ie2i−1e2i−3 · · · e1(x) = e2i−1g2i−2e2i−3 · · · e1(x)

= · · · = e2i−1e2i−3 · · · e1g0(x).

This shows that g0(U↓
2i) = U↓

2i , and consequently g0 leaves invariant each of the sub-

spaces U2i .
Conversely, assume that g0 ∈ SO(V0) leaves invariant each of the subspaces U2i .

Then the equation g2e1 = e1g0 has a unique solution for g2 ∈ GL(V2). Indeed,
since e1 is surjective, there exists s1 ∈ HomC(V2,V0) such that e1s1 = 1. Therefore
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g2 = e1g0s1. As V0 = im(s1)⊕ker(e1), and U
↓
2 = ker(e1) is g0-invariant, we conclude

that g2 is invertible, i.e., g2 ∈ GL(V2). Similarly, the equation g4e3 = e3g2 has a unique

solution for g4 ∈ GL(V4), etc. This proves that our description of Ge is correct and
that π is an isomorphism.

An easy computation shows that dim(L) = dim(G/Ge), and so (G, L) is a PV and
e is a generic point. As Ge is reductive, this PV is regular.

Let σ : V ∗
0 → V0 be the isomorphism induced by f0. Define the polynomial func-

tions F2i : L → C, i ≥ 1, by:

F2i(u) = det(u2i−1u2i−3 · · · u1σ
tu1 · · ·

tu2i−3
tu2i−1),

where tu2 j−1 : V ∗
2 j → V ∗

2 j−2 is the transpose of u2 j−1 : V2 j−2 → V2 j , and the determi-
nant is computed with respect to some fixed bases of V ∗

2i and V2i . It is easy to check
that F2i is a relative invariant of (G, L) with character

χ2i(g) = det(g2i)
2.

Proposition 9.2 Assume that if d0 = 2 then also dm = 2. Then the basic relative

invariants of (G, L) are:

(i) F2i for i’s such that d2i−2 > d2i and 1 ≤ i ≤ m.

(ii) det(u2i−1) for i’s such that d2i−2 = d2i and 1 ≤ i ≤ m.

Hence, the number of basic relative invariants is equal to m.

Proof Let X be the character group of G. Define ϕ2i ∈ X, i ≥ 0, by ϕ2i(g) =

det(g2i). Note that ϕ2i is the trivial character if i = 0 or i > m, and that X is a free
Abelian group of rank m with free generators ϕ2i , 1 ≤ i ≤ m. Let Λ be the set of
integers i ≥ 1 for which d2i−2 > d2i . Denote by XL the character group of G/G ′Ge,

viewed as a subgroup of X. Finally, let Y be the subgroup of XL generated by the
characters:

(i) ′ χ2i = 2ϕ2i for i ∈ Λ;
(ii) ′ ϕ2i − ϕ2i−2 for i /∈ Λ.

In order to prove the proposition, we have to show that Y = XL.
Note that the index [X : Y ] = 2r−1, where r = |Λ|. We claim that G ′Ge/G ′ is an

elementary Abelian group of order 2r−1. This can be proved by using Proposition 9.1

and the fact that G ′Ge/G ′ ∼= Ge/(Ge ∩ G ′). Indeed, let g = (g0, g2, g4, . . . ) ∈ Ge and
denote by g0,2i the restriction of g0 to U2i . We have g ∈ G ′ iff det(g2i) = 1 for all
i ≥ 1. On the other hand, det(g2i) is equal to the determinant of the restriction of g0

to U↑
2i+2. It follows that g ∈ G ′ iff for each i, g0,2i ∈ SO(U2i). Now our claim follows.

By applying the character group functor to the short exact sequence

1 → G ′Ge/G ′ → G/G ′ → G/G ′Ge → 1,

we conclude that X/XL is also an elementary Abelian group of order 2r−1. Hence
[X : XL] = 2r−1

= [X : Y ], which implies that XL = Y .
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Remark 9.3 We conclude with the remark concerning the exceptional case: d0 = 2
and d2m = 1. Then there is a unique k, 1 ≤ k ≤ m, such that d2k−2 = 2 and d2k = 1.

The only new feature of this case is that the relative invariant F2k is not irreducible:
It has a factorization F2k = 2ξη where ξ and η are two different irreducible poly-
nomials. Let V0 = V ′

0 ⊕ V ′′
0 , where V ′

0 and V ′′
0 are the two 1-dimensional isotropic

subspaces of V0. Then, say ξ is the determinant of the linear map u2k−1u2k−3 · · · u1u ′,

where u ′ : V ′
0 → V0 is the inclusion map. To get η, we just use V ′′

0 instead of V ′
0 .

Hence, to summarize, the basic relative invariants in the exceptional case are:

det(u1), . . . , det(u2k−3), ξ, η, det(u2k+1), . . . , det(u2m).

Note that, in this case, the number of basic relative invariants is m + 1.

9.2 The Second Type of PVs

We consider a doubly infinite sequence

. . . ,V−5,V−3,V−1,V1,V3,V5, . . .

of finite-dimensional complex vector spaces. We assume that only finitely many of

them are nonzero, and that their dimensions d2i−1 = dim(V2i−1) satisfy d−2i+1 =

d2i−1 and d1 ≥ d3 ≥ d5 ≥ · · · . We also assume that d1 ≥ 1, and denote by m the
largest integer ≥ 1 such that d2m−1 ≥ 1. We set

L =

⊕

i∈Z

HomC(V2i−1,V2i+1),

G =

∏

i∈Z

GL(V2i+1),

and introduce the following notation for the components of u ∈ L and g ∈ G:

u = (. . . , u−4, u−2, u0, u2, u4, . . . ), u2i ∈ HomC(V2i−1,V2i+1),

g = (. . . , g−3, g−1, g1, g3, . . . ), g2i−1 ∈ GL(V2i−1).

Then L is a G-module via the action:

g · u = (. . . , g−1u−2g−1
−3 , g1u0g−1

−1 , g3u2g−1
1 , . . . ).

We now construct a particular element e = (. . . , e−2, e0, e2, . . . ) ∈ L. For that

purpose we fix a direct decomposition

(9.3) V1 =

⊕

i≥1

U2i

with dim(U2i) = d2i−1 − d2i+1. Furthermore, we set U
↓
2i = U2 + U4 + · · · + U2i and

U↑
2i = U2i + U2i+2 + · · · .
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We now choose the components e2i ∈ HomC(V2i−1,V2i+1) of e so that

U↓
2i = ker(e2ie2i−2 · · · e2),(9.4)

U
↑
2i+2 = im(e0e−2 · · · e−2i),(9.5)

for all i’s. In particular, e0 is an isomorphism, and the e2i ’s are surjective (resp.
injective) if i is positive (resp. negative). Note also that each nonzero space

HomC(V2i−1,V2i+1) is a simple G-module.

Proposition 9.4 The pair (G, L) is a regular PV and the element e ∈ L constructed

above is a generic element. The stabilizer Ge consists of all elements g = (. . . , g−3, g−1,
g1, g3, . . . ) ∈ G, where g1 ∈ GL(V1) is only subject to the condition that it leaves invari-

ant each of the subspaces U2i , and the other components of g are uniquely determined by

the equations

(9.6) g2i+1e2i = e2ig2i−1, i ∈ Z.

Consequently, the projection map

(9.7) π : Ge →
∏

i≥1

GL(U2i),

sending g = (. . . , g−3, g−1, g1, g3, . . . ) to g1, is an isomorphism.

Proof For g = (. . . , g−3, g−1, g1, g3, . . . ) ∈ G, we have g · e = e iff equations (9.6)
are satisfied.

Assume that g ∈ Ge. If x ∈ U
↓
2i then, by (9.4), e2ie2i−2 · · · e2(x) = 0 and so

0 = g2i+1e2ie2i−2 · · · e2(x) = e2ig2i−1e2i−2 · · · e2(x)

= · · · = e2ie2i−2 · · · e2g1(x).

This shows that g1 leaves invariant U
↓
2i . Similarly, by using (9.5), one can show that

g1 leaves invariant U
↑
2i . It follows that g1 leaves invariant each U2i .

Conversely, if g ∈ G leaves invariant each U2i , then the equation g3e2 = e2g1

has a unique solution for g3 ∈ GL(V3) (see the proof of Proposition 9.1). Next,
the equation g5e4 = e4g3 has a unique solution for g5 ∈ GL(V5), etc. As e0 is an

isomorphism, the equation g1e0 = e0g−1 gives g−1 = e−1
0 g1e0. By using (9.5), one can

show that the equation g−3e−2 = e−2g−1 has a unique solution for g−3 ∈ GL(V−3),
etc. This proves that our description of Ge is correct and that π is an isomorphism.

An easy computation shows that dim(L) = dim(G/Ge), and so (G, L) is a PV and

e is a generic point. As Ge is reductive, this PV is regular.

Define the polynomial functions F2i+1 : L → C, 0 ≤ i ≤ m − 1, by:

F2i+1(u) = det(u2iu2i−2 · · · u0 · · · u−2i+2u−2i),
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where the determinant is computed with respect to some fixed bases. It is easy to
check that F2i+1 is a relative invariant of (G, L) with character

χ2i+1(g) = det(g2i+1) det(g−2i−1)−1.

Proposition 9.5 The basic relative invariants of (G, L) are:

(i) F2i+1 if d2i−1 > d2i+1 or i = 0;

(ii) det(u2i) and det(u−2i) if d2i−1 = d2i+1 and i > 0.

The number of basic relative invariants is 2m − d, where d is the number of integers

i ≥ 1 for which d2i−1 > d2i+1.

Proof Let X be the character group of G. It is a free Abelian group of rank 2m. The
characters ϕ2i+1, −m ≤ i ≤ m−1, of G defined by ϕ2i+1(g) = det(g2i+1) form a basis
of X. Let e be the generic element of L constructed in the previous proposition. Then
we know that Ge is isomorphic to the direct product of the groups GL(U2i). Denote

by Λ the set of integers i ≥ 1 for which d2i−1 > d2i+1. Then |Λ| = d and U2i 6= 0 iff
i ∈ Λ.

Denote by XL the character group of G/G ′Ge, viewed as a subgroup of X. In order
to prove the proposition, we have to show that the characters

(i) ′ χ2i+1 = ϕ2i+1 − ϕ−2i−1 for i ∈ Λ;
(ii) ′ χ ′

2i+1 = ϕ2i+1 − ϕ2i−1 and χ ′ ′
2i+1 = ϕ−2i+1 − ϕ−2i−1 for i /∈ Λ;

generate XL.
Let Y be the subgroup of XL generated by these characters. Observe that every

coset of Y in X has the unique representative of the form

χ =

∑

i∈Λ

k2i+1ϕ2i+1.

Assume now that this representative χ belongs to XL. Let r ≥ 1 be the least integer
such that r ∈ Λ. Then U2i = 0 for i < r while U2r 6= 0. Consider the 1-dimensional

torus in Ge which acts as an arbitrary scalar on U2r and acts trivially on all other
spaces U2i . If i ∈ Λ and i > r, then the character ϕ2i+1 is trivial on T1. Since χ is also
trivial on T1 but ϕ2r+1 is not, we infer that the coefficient k2r+1 is zero. Similarly, one
can show that all the coefficients k2i+1 are zero, i.e., χ ∈ Y . Hence Y = XL and the

proof is completed.
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