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0. Introduction

The notion of a recursive density type (R.D.T.) was introduced by Medvedev
and developed by Pavlova (1961). More recently the algebra of R.D.T.’s was
initiated by Gonshor and Rice (1969). The R.D.T.’s are equivalence classes of
sets of integers, similar in many respects to the R.E.T.’s. They may both be thought
of as effective analogues of the cardinal numbers. While the equivalence relation
for R.E.T.’s is defined in terms of partial recursive functions, that for R.D.T.’s
may be characterized in terms of recursively bounded partial functions (see 4.22a).

In Gronshor and Rice (1969) addition and multiplication of R.D.T.’s are
defined and some of their properties are found. In particular a subset A of the
R.D.T.’s is defined such that the following cancellation law holds; x + y = x + z
implies y = z for xeA, where y,z are arbitrary R.D.T.’s. This led them to
conjecture that there is an extension theory for R.D.T.’s analogous to Nerode’s
theory for the R.E.T.’s (see Nerode (1961)) and that certain subclasses such as
A, would have properties similar to A, the set of isols.

The aim of this paper is to verify this conjecture. We shall show that there is
a natural procedure to extend arbitrary relations on w = {0,1,---} to relations
on R.D.T.’s and that a large class of functions on w extend to functions on
R.D.T.’s. A generalization of the above cancellation law for addition will be
seen to apply toaset I' 2 A,

In order to put the above results in a general framework we define the notion
of a Nerode extension of arithmetic. Roughly speaking, a Nerode extension is a
relational system, extending a relational system with domain w, whose universal
properties may be characterized as in Theorem 11.1 of Nerode (1961). Thus the
main result of Nerode (1961) is that a certain relational system on A is a Nerode
extension. The main result of this paper is that there is a relational systme on I”

that is a Nerode extension. .
46
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In the first part of the paper we define and investigate Nerode extensions
and give some examples. In the second part we introduce the R.D.T.’s and prove
the main results. The method used to extend relations and functions on w to the
R.D.T.’s is by a characterization of the R.D.T.’s as a homomorphic image of a
previously defined Nerode extension. This characterization has led to simpler
proofs of many of the results.

Part I

1.1, Let ¥4 denote the k-fold cartesian product of the set 4. If xe*4 then
X = (Xg, "5 Xg—1)-

If h: I —» w where I is a proper subset of {0,--,k — 1} and R < *w, the
k-specification S,R of R is the relation obtained from R by substituting the
integer h(i) at the i-th argument place for each iel. More precisely, if
J={0,--,k—1} -1 ={j(0) < - <j(t—1)} then SR = {xe 'wlh*(x)eR}
where if x € ‘w then h*(x) = y, where y; = h(i) for ieI and Yiw = x; fori < t.

R < *w is totally unbounded if for all x e*w there is a yeR such that
x<y(ie x; £y fori<k)IfRSc"nlet R<,S if R—S is not totally
unbounded. R is eventual if *o =, R.

The following is needed in the proof of Lemma 1.4.

LEMMA. R < *@ is co-finite if and only if every k-specification S,R is
eventual.,

1.2. Let Z be the full first order language for arithmetic, i.e. there is a
function symbol f for each function on w and a relation symbol R for each re-
lation R on w. If ¢ is a quantifier free formula of .% in conjunctive norms! form
then ¢’ is a Horn reduct of ¢ if ¢’ can be obtained from ¢ by striking out all but
one unnegated atomic formula in each conjunct with at least two occurrences of
unnegated atomic formulae.

If #" is a set of n-ary functions on w for n = 1,2,--- and & =y {97"[0
< n < w}, let £(F) be the sublanguage of £ with symbols f for fe % and R
for ReA(F) =u {#(F)|0 < n < w}, where ReZ(F) if and only if
R = {xe"w|f(x) = g(x)} for some f,g e F".

F will be called a closed system if (1) u],cie #" for i < n, ke w, where
ui(x) = x;, cp(x) = k for xew. @) If feF" g% -, g" 'e#* then
fo(g® 9" YeF* where fo(g°-,9"")(x) = f(g°x),,g" '(x)) for
xe*w. (3) If R,Se #"(F) then R N S e Z(F).

The relational system A(Q, %) = {Q,f5,Rp) ;.5 recaws) iS an extension
if # is a closed system, ® € Q and f = f, ' "w, R = RyN"w for feF™",
ReZ(F). Let /' (F) = 0, /,R)s e 5, R a(5)-
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1.3. DerINITION. The extension A7(Q, F) is a Nerode extension if its universal
properties may be characterized as follows: If ¢ is a quantifier-free formula
of # (&) in conjunctive normal form, with free variables among v, ---,v,_,, then
NQ,F)EV vy Vo1 if and only if (1) A(F)EVv, - Vo, ;¢ and
(2) for every k-specification S, there is a Horn reduct ¢’ of ¢ such that
Si{xet*w ] N (F)E ¢'[x]} is eventual.

1.4. A proof of the following lemma may be abstracted from Ellentuck (1967).

LemMA. If the extension A°(Q, F) satisfies 1.4.1-1.4.6 then it is a Nerode
extension.

1.4.1. (u])o(x) = x; and (¢p)g(x) = k for x€"Q.

14.2. Iffe 7595 -, g" e F*then (fo (3% -, 9" No=100 (a3, 95 V-
1.4.3. If R={xe"0|f(x)=g(x)} for f, g€ F" then Ry= {x"Q|f5(x)=go(x)}.
144, If R,Se Z(F) then (R N S)g = Ry N Sg.

145. If R,Se#Z"(¥) and R<,S then Rpo = (RN S)yw where
Row = RogN"Q® for @® = 0 — .

1.4.6. If R,R% - R" 'eZ(#) and Ryo S Rn U -+ URJs' then
R <, R’ for some i < m.

21. Iff,g: o~ wletf~gif {x ]f(x) = g(x)} is co-finite. If & is a closed
system let A4 ~(F) = N (F| ~, F) where F| ~ = {f~|fef‘} for f~ =
{ge®w|f ~ gl fe Flet f5, :"F| ~ - F[ ~ suchthat f, (fo, Sl )=
(fo (for s foe)™- If ReB(F) let (f5,-fis)eRs, if and only if
{x|(fo(x), > fu-1(x)) € R} is co-finite.

2.2. Identifying k € @ with (ci)~, 4 ~ (%) is clearly an extension. Moreover,
by routine computations:

2.2.1. &/ 7(&) is an extension satisfying 1.4.1-1.4.4.

2.2.2. If #! contains only nondecreasing functions then 4" ~(F) satisfies
1.4.5.

ProoF. In general if R,Se#"(#) then (RN S)z,. < Ry, N S5, for
if fo, o foc €F and {x|(f0(x),--~,j;,_1(x))eR N S} is co-finite then so
are (x| (fo(®), - fiesGNER},  {x](fol¥), 1 fu-1(x)€S}. I RS and
(fo> s Jiu1) ERg/ o then {x ’ (fo(x), =+, fu—m1(x)) € R} is co-finite. As
Jos S €F[~®, for every xe"w there is a kew such that Ym =z k
x £ (fo(m), -, f,~1(m)) € R. As R—S is not totally unbounded there is an x such
that y¢ R — S for all y = x. Hence (fo(m), -, fo_1(m))e R N S for all m = k,
ie. (fo o ful1)e(RN S)g, ». Hence (R N S)g;. = Rg .
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2.3. DEFINITION. % is good if & is a closed system such that %! contains
only nondecreasing functions and & satisfies 2.3.1.

2.3.1. If R,R®, - ,R" ' e #"(F) and R &, R’ for all i < m then there are
Sos s fu_1 € F?' such that for each kew {x [f,-(x) = k} is co-finite for i < m,
{xl(fo(x), v fuo1(X)€R} is co-finite and {xl(fo(x), o fum1(x))€R'} is not
co-finite for i < m.

2.3.2. LeMMA. If F is good, then A~ (F) satisfies 1.4.1-1.4.6 and is hence
a Nerode system.

This is an immediate consequence of 2.2.1, 2.2.2 and the observation that
2.3.1 is a restatement of 1.4.6 for Q = F#/~.

2.4. In this subsection we give some examples of good systems &. Let &
be the set of functions on @ that are nondecreasing in each argument., Let
F(F ) F,.] be the set of recursive (combinatorial) [recursive combinatorial]
functions in & . (See Ellenbuck (1967) or Nerode (1961) for the definition of the
combinatorial functions.) Note that #,. = &%, N &, and that every combinatorial
function is in #,. Observe the following

24.1. #(F,) = A(F_. = Set of all relations on w.
R(F,) = A(F,.) = Set of recursive relations on .

(See for example the first paragraph of §9 of Nerode (1961).)

2.4.2. LeMMA. &, F,, F ., F,. are all good.

re

PrOOF. The only problem is to show 2.3.1. Let R,R%---,R™ ' = "w such
that R &, R for i < m, i.e. each R — R’ is totally unbounded. Hence a sequence
{x']iew) of elements of "w may be defined such that x} < xi"* for all i € » and
j <nandif k=i (modm) then x*& R — R. Hence if fj(i) = x| for all i and j < n
then fy, . fo—1 € F ¢, {x|fi(x) 2 k} and {x|(fo(x), -, f,~1(x)) € R} are co-finite,
while {x[(fo(x), w, fa— 1(x)) € R'} is not co-finite for i < m. Hence, & is good.

If R,R®,---,R™"! are recursive then f,---,f,_, may clearly be defined re-
cursively so that &, is good. In each case f,-,f,—; may be chosen such that
they are in addition combinatorial (see the proof of Theorem 2 of Ellentuck
(1967). Hence &, and &,, are also good.

A (possibly partial) function g is recursively bounded if there is a recursive
function f such that g(n) < f(n) for every n in the domain of g.

2.4.3. Let &, be the set of recursively bounded functions in &,. Then
F.cF, < F,y. Let

=

S = {feg#"}[‘v’n n £ f(n)}.

LeMMA. %(F ;) = The set of all relations and &, is good.
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PrROOF. If R < "w define f,g € ] as follows f(x) = 2(xq + x; + - + X,_1)

f(x) if xeR
g(x) = {
f)+1 if x¢R,

then R = {xe"w l f(x) = g(x)}. It only remains to show that & satisfies 2.3.1.
Let R,R% -, R™ * < "o such that R ¢ R for all i < m.Let (x'|i < ») be as
in the proof of 2.4.2. Let s; = max (x}, -, x}_,). Define f,,--,f,—, as follows
for k < n;

0 if x < sg

A=
xpg ifs; S x <8544

Then clearly each f, is nondecreasing and fi(x) = x for all x, so that each
fie F1. x z s; implies that f,(x) 2 x{ = j. Hence {x|fi(x) Z j} is co-finite for
all j. Also if x = s, then (f5(X), -, f;-1(¥)) € R so that {x | (fo(x), - fu_1(x)ER
is co-finite. On the other hand {x | (fo(x), -+, f— 1(x)) € R} is not co-finite.

3.1. DerFINITION. If A47(Q,%) is an extension, x is A°(Q, F)-universal if
x€Q and for all Re #H(F) x € R, if and only if R is co-finite.

This generalizes the notion of a universal isol. (See Ellentuck (1967).)

If x is #(Q, F)-universal let Q[x] = {fo(x)|fe F'}. If fe F" let fy
= fo M "Q[x]. If Re #"(F) let Ry, = Ry N"Q[x].

3.2. LeMMA, If the extension A(Q, %) satisfies 1.4.3 and x is A/ (Q, F)-
universal then the mapping F.: F[~ — Q[x] given by F.(f~) = fo(x) for
feF! is a well-defined isomorphism of N ~(F) with /' (Q[x], F).

Proor. To show that F, is well defined and one — one it is sufficient to
show that f~ = g~ if and only if f(x) = go(x) for f,ge F’, ie. R is co-
finite if and only if xeR, where R = {y If(y) = g(y)} and using 1.4.3,
Ry ={yeQ | Jo(») = go(¥)}. But this is just the definition of A4°(Q, #)-univer-
sal.

To show that F, preserves the structure we need only consider functions
as both A 7(F) and #(Q, ) satisfy 1.4.3,, If fe F#"

Folfe) (o /a21)) = F((fo (fo, s fu-)7) = (0 (fo, s fa=1))o(X)
= fQ((fO)Q(x)’ s (fae l)Q(x)) = fQ(Fx(f0~)a“',Fx(f;|: )

3.3. CorOLLARY. If & is good and A°(Q,%) is an extension satisfying
1.4.3 and there are N (Q, F)-universal elements then A (Q, F) satisfies 1.4.6.

Proor. If & is good then A4~ (&) satisfies 1.4.6. By 3.2 4/ (&) is iso-
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morphically embeddable in A7(Q, ). But clearly any extension of a system
satisfying 1.4.6 also satisfies 1.4.6. Hence A47(Q, %) satisfies 1.4.6.

3.4. ReMARK. The argument that Ellentuck (1967) outlines showing that
A (A, F,) is a Nerode extension may be formulated as an application of 1.4
and 3.3.

Part II

4.1. If « = w let a(n) be the cardinality of {iea|i < n}. Let a < f if there
is a recursive function f such that a(n) < B(f(n)) for all n € w. Note that if such
an fexists then it may be taken to be in .#, that is, to be increasing, recursively
bounded, and satisfy n < f(n). Let « = fif a = § and B < «. < is a transitive
relation so that ~ is an equivalence relation. D(x) = {|x &~ B} is the recursive
density type of a. Let A = {D(oz)'cx < o}. Let D(x) £ D(B) if o < f. Let
w0 = D(w). Identify n e w with D({0, ---,n — 1}). Then <A, <) is clearly a partial
ordering with {w, <) as initial segment and oo as last element.

4.2. We now give without proof some alternative characterizations of the
relations <, &~ on sets of integers. Characterization (a) in each case shows that
A is an analogue of the class of cardinal numbers in much the same way as Q,
the set of R.E.T.’s.

If « < w is infinite let og, a4, --- enumerate « in order of magnitude.

4.2.1. LeMMA. The following are equivalent to o < f.

(a) There is a one — one recursively bounded partial function defined on «
and mapping o into f.

(b) There are f,f, € F such that a(fi(n)) < B(f>,(n)) for all n.

(c) aisfinite and cardo < card B or a, B are infinite and there is a recursive
Junction f such that B, < f(a,) for all n.

4.2.2. The following are equivalent to o ~ f.

(a) There is a one — one partial function p such that p and p * are re-
cursively bounded and p has domain « and range f.

(b) There are f,, f, € # such that

a0 f, = o fy.

4.3, We shall define an extension A(A,%,) on A. If f,ge Flet f<g
if f(n) < g(h(n)) for all n, for some he 1.

Note in particular that o < § if and only if & < B.

4.3.1. LeMMA. There is a well-defined mapping D of %,/ ~ onto A such
that D(f;") = D(f7") if and only if f, < /3.
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ProOF. If fe #] let D(f~) = D(a) for an & = w such that f = ao g for
some g € #. That such an o always exists is seen as follows. Let g(n) = f(n) + n.
Then ge £, and if « = w — {g(n + 1) — 1|nea)} then f=ao g. To see that
D(f™) is well defined let f~ =/, f=wa0g, fi=a,0g, for a0, € w,
9,9, €F. Then Ik e wsuchthat Vn = ka(g(n)) = a,(g,(n)). Letg'(n) = g(n + k),
gi(n) = g,(n + k). Then ¢g’,gie.# and ao g =0a;0g;. Hence by 4.2.2 (b)
D(e) = D(%,). If « © w then ae %} and D(a~) = D(x). Hence D maps &/, ~
onto A,

Let fiy = a;09y, f» =a,0 g,. We wish to show that f; < f; if and only if
a, < a,. Let fi(n) £ fo(h(n)) for all n where he #|. We may assume h € .%.
Then a;(g,(n)) < a,((g,0 h)(n)). But g, o he £ so that by 42.1 (b) «; < «,.
Conversely, if a,(n) < a,(h(n)) for all n where he #, then a,(n) < a,(g,(h(n)))
for all n, so

Si(n) = a,(g,(n)) £ a,(g2(h(g1(n)))) = fa(ho g)(n).
Hence f; < fasho g, e ;.

43.2. If feF | let fuD(f5 ), D(fiz)) = D((fo (fo s fu-1)) 7). This
is well defined, for if f; < g; for i < nthen fo (fo, ", fo-1) <90 (gos"**sJn~1)-

If RS0 let Ry = {(DUS), DU fs s fiz1)€Rg, ). Clearly
N (A, F 1) = (A, fas RaDsc % Re(# ) 1S an extension. Moreover:

433. D: N ~(F,) > A (A, F,) is a homomorphism. Note that if
R={(x,p)e’w|x =y} and S={(x,y)e’w|x <y} then R, ={(x,y)e
Alx = y} and S, = {(x,y)e*A|x £ y}.

4.3.4. LEMMA. Let ¢ be a sentence of L(F,) of the form Vug, -, v,_,
[R(vo, -+, U4—1) = Y] where  is atomic. If /' (F ) F ¢ then /' (A, F ) F .

PrOOF. As /7 (%) is a Nerode extension, R(vg, ", 04~;) = ¥ is a Horn
reduct of itself and A°(F ;) F ¢ it follows that #”~(F () E ¢. But it is easy to see
that sentences of the form ¢ are preserved under homomorphic images. Hence

by 4.3.3A4(A, F)) E ¢.

4.3.5, COROLLARY. A'(A, %)) satisfies 1.4.1, 1.4.2, 1.4.3', 1.4.4" and 1.4.5,
where

143.If Rc {xe"w'f(x) = g(x)} for f,geF" and ReR'(F) then
Ry < {x€"Q|fy(x) = go(x)}.

144, If R,S € Z(F) then (RN S)g < Ry N S,

4.4. The definition 4.4.1 of the set I' of recursive density types enables us to
give a direct proof of 4.4.2. Later we shall give a simple characterization of I' in
terms of the partial ordering on A.
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4.4.1. DEFINITION. Let € = {a](er.f)(Elgef) ao g =ao fo g}
I = {D(@)]xe®}.
4.4.2. THEOREM. Letk £ 1< n,mew. Let fle F',9'e F** " for i < m.

Let  be an atomic formula of #(% ) containing variables from vy, ---,v,_,.
Let ¢ be the formula

(A [_fi(vo,"', vy = Qi(vo,“',vk—p Uty g 1)] = W)

If /' (F)E Vg, -, Y0,_1¢ then A (A, F)F $[x] for all xe™A such that
x;el for i < k.

ProoF. By 4.3.4 and 2.4.3 we assume without loss of generality that ¢ has
the form R(vg,- -, v,-1). Assume that A(F )k Vug, --+,Vu,_ ¢, that x €"A such
that x;e T for i < k and that

™ fAi(XOa"',xl—l) = giA(xoy"'axk—laxb"',xn—l) forall i < m.

Let D(a;) = x; for i < n, such that o;€ € for i < k. To prove the theorem
we must show that x e R,.

By (*) fio (dOr"'9al—1) < gio (a07'“’ak—l’ala“'yan—l) for all i< m,
i.e. there are functions k' € # for i < m such that for all yew

Fi@o(y), o 1() £ ' @HGY), st ( (), B (1)), -+ et 1 (R (D)
S g'(@oh())s -+, % 1 (h()), 0 (h(V)), -+, - 1 (R()))

where h(y) = Max {hi(y)[i < m}. Then he #. Define jo, -, j,—1 €F to satisfy
the following conditions,

I\

a0 jo = 0 hoj,

o 0 jy a0 (hojo)oj,
Oy O Ji1 = X1 0 (B0 joO -+ 0 ji_2)0 jr—i.

This is possible as ag,---,0,_,€% and h,ho j,,--,(ho jo0 -0 j,_,)€F. Let
j=Jjo0ji00j_,€F. Then clearlyay0 j=a,0 hoj, -, _0j=a,_;0hoj.
Hence, forall ye w

TR CE167) TN B G167)) ETA C X €167) RER: A 10)) XA (16167)) REN-MNC16{69)) 2
Thus, by hypothesis,

(CHO{C2) RN ERT6 D)X M C1662)) NEER- MR 16 [62))I=F S
for all y. But j,ho jeJ so that
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D{(a;0 j)™) = D(o;) for i < 1
D((@0ohoj)”) =D(x) for IZi<n

and x = (D(“o),"',D(“n—J)ERA-

4.5. Before investigating I’ we shall derive some consequences from the
following special case of 4.4.2 that does not involve I'.

4.5.1. Let ¢ be as in 4.4.2 with k = 0. Then A (F,) kF Vv, -+ v,_ ¢ implies
that /7 (A, ) E Yoy -+ v,_1¢.

4.5.2. Let f(x,y) = max(x,y), g(x,y) = min(x,y), then f,ge#? and
{A, £, /1, g> is a distributive lattice. 4.5.1 applies to each of the axioms of the
theory of a distributive lattice; so that <A, £, fa, ga> is a distributive lattice.
Letx Uy =fa(x,y) x Ny = galx,y) for x,y €A,

4.5.3. If fe #| is one — one then

fX)EfO)ex <y for x,yem.

Hence by 4.5.1 f,(x) £ fu(y) & x £ y for x, ye A, and f, is one — one,
If f e then by 4.5.1 x < f,(x) for all xe A,

4.54. If f(x,y) =x+y and g(x,y) = x-y for x,yew then f,geF2.
Let x +y = fu(x, ¥), x-y = galx,y) for x,yeA. It is not hard to show that
these operations are the same as those introduced in Gonsher and Rice (1969),
ie. that D)+ D(B)=DaeUpP) if a,fcw and an f = ¢D(a) - D(B)
= D({j(x,y) | xea and ye B}), where j: 20 — w is a one-one recursive function.
Observe that

455, x4+ 1 = x if and only ig x = co. (See Gonsher and Rice 1969).)
In Gonsher and Rice (1969) a pair of disjoint sets o, § are constructed such that
D(a) < o0, D(f) < oo but D(a) + D(B) = D(ax U f) = oo. Hence A — {0} is not
closed under every f, for fe % . On the other hand we have

4.5.6. Lemma. If fe&F] and xe"A then xqUx; U Ux,.q4 < ®©
implies fo(x) < co.

ProoF. If f e %] then there is a g € # such that
f(x) é g (max (xO’ Tty xn—l)) for xe"w.

By 4.5.1 fi(x) £ galxo Y -+ U x,_,) for xe"A. We may assume that g is one —
one so that x £ g (x) < g,(v) implies x < y for x,ye”A. Hence o0 = gA(y)
implies c0 < y.

Hence oo £ f(x) implies oo £ gulxo U -+ U x,_1), which implies that
0 £ Xg U r UXx,_yq; 1. folx) = oo implies xo U -- U x, = oo, Taking the
contrapositive gives the lemma,
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4.5.7. COROLLARY. A — {0} is closed under every f, for fe F; .
4.6. In 4.6.2 we give a simple characterization of T'.
4.6.1. D(x) = oo if and only if there is an h e # such that h(n) e o for all n.

Proor. If D(x) = oo then there is a g € £ such that a(g(n)) = n for all n.
Let

‘ g0 =0
g'(n+1) =g@g'(n)+ 1.
Then g'e.# and a(g’'(n + 1)) = g'(n) + 1. But a(g'(n)) £ g'(n). So (Ayea)g'(n)

£ y < g'(n+1). Let h(n) be such a y for all n. Then h e # and h(n) e « for all n.
Conversely, let h(n) e o for all n where he #. Let

: g(0) =0
gn)+1 = hign) + 1).

Then g € .# and g(n) e« for all n. Also g(n + 1) > g(n) for all n, so thata(g(n)) = n.
Hence D(x) = 0.

4.6.2. LEmMMA. T = {xeA|(Vy < ©)x Uy < o).
Proor. If x eI then by 4.4.2,

x+z < x+y implies z £ y for all z,yeA.

Let z = o0, so that 0 < x + y implies o0 < y. Hence y < oo implies x U y
£Sx+y<w.SoIc {xeA[(Vy< w)x Uy < o}.

Conversely, suppose (Vy < w0)x Uy < 0. Let x = D(z) and fef. We
must find ge S such that aog =aofog. Let B = {nla(n) =a(f(n) + D}.
Clearlya n f = J. Let

g’ (0)=0
gm+1)=f(g'(m)+ 1.

Then g’ e # and forallnew thereisa yea U fsuchthatg’'(n) < y < g'(n + 1).
Hence n £ (x U B) (g'(n)) for all n, so that D(x U B) = . So x + D(f)
= D(a U B) = o0, and by 4.5.6 x U D(f) = o0, hence D(f) = oo, i.e., by 4.6.1
there is an h € £ such that h(n) € p for all n; i.e. a(h(n)) = a(f(h(n)) + 1) for all
n by definition of . Hence o h = a0 fo h, and a € ¢. Note that the proof has
shown that D(a)eT if and only if x e %.

4.6.3. COROLLARY. (i) x; < x,eT implies x;eT. () If feF [ and xe"T
then fu(x)el.
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Proor. (i) If (Vy < ®0)x, Uy < 0 and x; £ x, then (Vy < o0)x, Uy
Sx, Uy < .

(ii)) Ifxe"Tand y < oo thenx,_; Uy < 0080 X, U(X,-; Uy < 0.
Hence x, Ux; U+ Ux,_; Uy < 0. Let g(xq,+"%s_1,X%,) = f(x) UXx, for
Xg, -+ X, € . Hence

ga(Xgs s X415 ¥) = falx) U y.

By 4.5.6 and the above, g.(xg, ", X,+1,)y) < 0o0; Le., we have shown that
if xeT then Vy < o0 fi(x) Uy < o0, i.e. fu(x)el.

4.6.4. DeFINITION. If feZFllet fr=fu M T.If R € w,let Rr = Ry,N "T.
Then A7(T, #,) is an extension.

4.7. The proof of the next theorem uses the existence of A°(I", #,)-universal
elements. This will be proved in 4.8.

THEOREM. A ([, #,) is a Nerode extension.

Proor. By 3.3, 1.4 and 2.4.3 it is sufficient to show that A#(T', &) satisfies
1.4.1-1.4.5. By 4.3.5 A/ (A, F ) satisfies 1.4.1, 1.42, 1.4.3’, 1.4.4" and 1.4.5 and
hence so does A(I', #,). To finish the proof it remains only to show 4.7.1 and

4.7.2.
47.1. If {xe'w |f(x) = g(x)} = R for f, geF| then{xe*T|fi(x)
= gr(x)} € Rr.

4.7.2. If R,S < *o then Rr N S S (R N S)r. Using 442 with k =1 = n,
we get 4.7.1 where ¢ is the formula

[.Z(UOa"'yvk~1) = IRy U.‘._?(Uo,"',vk— 1) éI(UOa"'avk—l)] = R(vg,*++5Uk-1)-

To show 472, let R = {xe*o|f(x) = g(x)} and S = {xe*w If'(x) = g'(x)}
for f,9, 1,9’ € #% . Then by 1.4.3’ for #'(T, F,)

Rr N Sp € {xe*T|fr(x) = gr(x) A fi(*) = gr(x)}.

By another application of 4.4.2 fi(x) = gr(x) and f{(x) = g{(x) implies
xe(R NS)r for all xe*I". Hence Ry N\ Sy = (R N ).

4.8. By one of the standard definitions of the hyperimmune sets, o is hyper-
immune if and only if D(x) € A — (w U {c0}). Hence the hyperimmune sets form
an invariant of the recursive density types. Another example is the class €. We
shall examine a few more such invariants and finally prove the existence of
AT, & ()-universal elements. The following definitions are in Gonshor and
Rice (1969).

4.8.1. The infinite set a is strongly hyperimmune (s.h.) if {n |oz,, > h(n)} is
co-finite for every recursive function h.
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4.8.2. The infinite set « is uniformly hyperimmune (u.h.) if {n | %1 > h(x)}
is co-finite for every recursive function h.

It is not hard to show the following.

4.8.3. « is s.h. (wh) if and only if « is infinite and {n|a(h(n)) < n}
({n |a(h(n)) < a(n) + 1} is co-finite for all he S.

4.8.4. DEFINITION. o is universal if o is infinite and {n ]a(h(n + 1)
< a(h(n)) + 1} is co-finite for all he #.

In Gonshor and Rice (1969) it is shown that the classes of s.h. and u.h. sets
are invariants of the recursive density types. Let

A, = {D(@) |« is finite or « is s.h.}
A, = {D(@) |« is finite or a is u.h.}

ThenA, = A, = T" where all the inclusions are proper, A, is an ideal of the lattice

(A, £>and A, = {AeA[(VBeA®) (VCeA)A # 2B + C}; (see Gonshor and
Rice (1969)).

4.8.5. LEMMA. a is universal if and only if D(z) is A (A, F ,)-universal.

PrROOF. D(x) is A (A, F ;)-universal if and only if whenever a(h(n)) e R for
all n, where he #, then R is co-finite. This is true if and only if the range of
oo h is co-finite for all he #. But the range of ao h is co-finite if and only if
{n|a(h(n + 1)) < a(h(n)) + 1} is co-finite, concluding the proof.

4.8.6. LeMMmA. If X is a countable family of infinite sets of integers then
there is a u.h. set o such that B is not < a for all fe X.

PrOOF. Let (hiliew> be a sequence of strictly increasing functions such
that x < h'(x) < h'+1(x) for all i,x € w and if h is recursive then Vxh(x) £ hi(x)
for some i€ w. Such a sequence may easily be constructed as the set of recursive
functions is countable. Let (ocil ie ) be an enumeration of X such that each
setin X occurs infinitely often in the enumeration. Now define o« = {og < a; < -}
as follows:
h° ()

{ K
ntls nt+1
Upt1 = h Xy, +1)-

Then o is u.h., for if h is recursive and h(x) £ hi(x) for all x then
an+1 = hn+1(“::—:1) g hn+1(<xn) > h(d")

foralln = i.

Finally, if f e X to show that § <{ «; by 4.2.1 (¢) it is sufficient to show that
for all n 3x«, > h"(B,). Given n there is an m = n such that § = a™*!. Then
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Apy1 = hmr (Ol'::},) > h"(a::} = h"(Bp+1)-
Hence o, > h"(8,) with x = m + 1.

4.8.7. COROLLARY. There are uncountably many elements of T that are
N (T, & )-universal.

Proor. By 4.8.3, 4.8.4 and 4.8.5 every xeA, — v is A (A, #)-universal,
ButasA, € I'every xe A, — wis A (I', #,)-universal. By 4.8.6 A, is uncountable.

4.8.8. LemMA. If fe #71 and x €"A, then f,(x)€A,.

ProoOF. If fe 1 then there is a g € £ such that f(x) £ g (max {x; |i < n})
for x €"w. Hence, as A, is an ideal x €"A, implies y = xo U -+ U x,_; €A, and
as fa(x) £ ga(y), falx) € A, if

(**%) for all yeA,, g, () €A,

To prove (**) let y=D(x) € A so that « is s.h. We must show that D((go a)~) e A,.
By the proof of 4.3.1 goa = Bo g’ for some f < w and g’ € #. Hence we must
show that B is s.h. Let he #. We show that {n|B(h(n)) £ n} is co-finite.

B(h(g(n +1))) = Bo g'(h(g(n + 1))) = g(a(h(g(n + 1)))).

As a is s.h. {n|a(h(g(n + 1))) £ n} is co-finite. So {n|3(h(g(n + 1))) < g(n)} is
co-finite,
ie. 3mVn = mP(h(g(n + 1)) < g(n).

If x=g(m) then In 2 mgn) £ x £ g(n+1). So Ph(x)) < Bh(g(n + 1))

< g(n) = x; e {xl[i(h(x)) < x} is co-finite.

4.8.9. By 4.8.8 we may define in the obvious way the extension A (A, #,)
as a subsystem of A (I', # ;). As A, S A, there are uncountably many A4"(A,, #,)-
universal elements. As A(I', %) satisfies 1.4.1-1.4.5, so does A(A,, #,). Hence
we have

THEOREM. A (A, #,) is a Nerode extension.
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