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Abstract
This paper is devoted to the global analysis of the three-dimensional axisymmetric Navier–Stokes–Maxwell equa-
tions. More precisely, we are able to prove that, for large values of the speed of light 𝑐 ∈ (𝑐0,∞), for some threshold
𝑐0 > 0 depending only on the initial data, the system in question admits a unique global solution. The ensuing bounds
on the solutions are uniform with respect to the speed of light, which allows us to study the singular regime 𝑐 → ∞

and rigorously derive the limiting viscous magnetohydrodynamic (MHD) system in the axisymmetric setting.
The strategy of our proofs draws insight from recent results on the two-dimensional incompressible Euler–

Maxwell system to exploit the dissipative–dispersive structure of Maxwell’s system in the axisymmetric setting.
Furthermore, a detailed analysis of the asymptotic regime 𝑐 → ∞ allows us to derive a robust nonlinear energy
estimate which holds uniformly in c. As a byproduct of such refined uniform estimates, we are able to describe the
global strong convergence of solutions toward the MHD system.

This collection of results seemingly establishes the first available global well-posedness of three-dimensional
viscous plasmas, where the electric and magnetic fields are governed by the complete Maxwell equations, for large
initial data as 𝑐 → ∞.
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1. Introduction and main results

In this paper, we consider the incompressible Navier–Stokes–Maxwell equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Navier–Stokes’s equation) 𝜕𝑡𝑢 + 𝑢 · ∇𝑢 = 𝜈Δ𝑢 − ∇𝑝 + 𝑗 × 𝐵, div 𝑢 = 0,

(Ampère’s equation)
1
𝑐
𝜕𝑡𝐸 − ∇ × 𝐵 = − 𝑗 , div 𝐸 = 0,

(Faraday’s equation)
1
𝑐
𝜕𝑡𝐵 + ∇ × 𝐸 = 0, div 𝐵 = 0,

(Ohm’s law) 𝑗 = 𝜎
(
𝑐𝐸 + 𝑃(𝑢 × 𝐵)

)
, div 𝑗 = 0,

(1.1)

completed with a divergence-free initial data

(𝑢, 𝐸, 𝐵) |𝑡=0 = (𝑢0, 𝐸0, 𝐵0).

Here, u, E, B and j are defined on the whole space R+ ×R𝑑 , with 𝑑 ∈ {2, 3}, and take their values in R3.
The operator 𝑃 def

= Id − ∇Δ−1 div denotes Leray’s projector on divergence-free vector fields. Note that
the divergence-free condition div 𝐵 = 0 is not a constraint, and (1.1) is therefore not overdetermined.
Instead, it is a property propagated by the flow provided that it holds initially.

The Navier–Stokes–Maxwell equations describe the evolution of a viscous plasma, a charged gas or
an electrically conducting fluid subject to the self-induced electromagnetic Lorentz force 𝑗 × 𝐵.

As for the physical meaning of the quantities in (1.1), the electric and magnetic fields are de-
noted by 𝐸 and 𝐵, respectively, and the electric current is denoted by j. Additionally, the posi-
tive constants 𝜈, 𝜎 and c stand for the fluid viscosity, the electrical conductivity and the speed of
light, respectively. We refer the interested reader to [9, 13] for further details on the underlying
physical theories about plasma modeling and to [6] for a mathematical derivation of (1.1) through
the analysis of the viscous incompressible hydrodynamic regimes of Vlasov–Maxwell–Boltzmann
systems.

The only known a priori global information on solutions of (1.1) is given by the energy inequality

‖(𝑢, 𝐸, 𝐵)(𝑡)‖2
𝐿2 + 2𝜈

∫ 𝑡

0
‖∇𝑢(𝜏)‖2

𝐿2𝑑𝜏 +
2
𝜎

∫ 𝑡

0
‖ 𝑗 (𝜏)‖2

𝐿2𝑑𝜏 ≤ E2
0 , (1.2)

https://doi.org/10.1017/fms.2024.60 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.60


Forum of Mathematics, Sigma 3

for all 𝑡 ≥ 0, where we denote

E0
def
= ‖(𝑢0, 𝐸0, 𝐵0)‖𝐿2 .

Note that (1.2) is, in fact, an equality for smooth solutions.
Observe that, at least formally, taking the limit of c to infinity in (1.1) yields the well-known magneto-

hydrodynamic (MHD) system {
𝜕𝑡𝑢 + 𝑢 · ∇𝑢 = 𝜈Δ𝑢 − ∇𝑝 + 𝐵 · ∇𝐵,

𝜕𝑡𝐵 + 𝑢 · ∇𝐵 =
1
𝜎
Δ𝐵 + 𝐵 · ∇𝑢.

(MHD)

Similarly to (1.1), solutions to the system of equations (MHD) enjoy the energy inequality

‖(𝑢, 𝐵)(𝑡)‖2
𝐿2 + 2𝜈

∫ 𝑡

0
‖∇𝑢(𝜏)‖2

𝐿2𝑑𝜏 +
2
𝜎

∫ 𝑡

0
‖∇𝐵(𝜏)‖2

𝐿2𝑑𝜏 ≤ ‖(𝑢0, 𝐵0)‖
2
𝐿2 , (1.3)

for any 𝑡 ≥ 0.
Although Leray-type weak solutions for (MHD) satisfying (1.3) are known to exist, this remains

unknown for (1.1), even for large values of c.
The issue comes from the fact that standard compactness methods, usually used to prove the existence

of weak solutions, raise the following question: Given two sequences ( 𝑗𝑛)𝑛∈N, (𝐵𝑛)𝑛∈N, bounded in
𝐿2
𝑡 ,𝑥 and 𝐿∞𝑡 𝐿2

𝑥 and converging weakly to 𝑗 and B, respectively, does it hold that 𝑗𝑛 × 𝐵𝑛 converges to
𝑗 × 𝐵, at least in the sense of distributions? This remains unsettled as there is no known phenomenon
that prevents the buildup of high frequencies in 𝑗𝑛 × 𝐵𝑛, as n tends to infinity.

One way to overcome this lack of compactness consists in propagating some additional regularity
on the magnetic field. Based on this idea, the first attempt to construct a (unique) global solution to the
two-dimensional Navier–Stokes–Maxwell system (1.1) is due to Masmoudi [36] who proved that, given
any 𝑠 > 0, if 𝑢0 ∈ 𝐿2 (R2) and (𝐸0, 𝐵0) ∈ 𝐻

𝑠 (R2), then there is a unique global weak solution to (1.1).
Apart from the energy estimate, the solution constructed therein does not satisfy any uniform bound
with respect to the speed of light c.

Later on, the first author, Ibrahim and Masmoudi [5] established a conditional convergence result
that entails the convergence of weak solutions of (1.1) to (MHD).

Crucial progress was then achieved in [2] by the first author and Gallagher by showing the persistence
of the 𝐻𝑠-regularity of the electromagnetic field, uniformly with respect to the speed of light c.

As for the inviscid version of (1.1) (i.e., the incompressible Euler–Maxwell system), the first global
results on that model were established recently by the first and the third authors in [3, 4]. In that context,
owing to known results on Euler equations (see, for instance, [14]), working at the level of the energy
(1.2), with 𝜈 = 0, is insufficient to ensure the global well-posedness of the system. One is therefore
compelled to study the existence and uniqueness of weak solutions in a higher-regularity space.

The main contribution from [3] is then the construction of a unique global solution of the Euler–
Maxwell equations (1.1) (with 𝜈 = 0) in the spirit of Yudovich’s work [40], where the electromagnetic
field has some Sobolev regularity 𝐻𝑠 (R2), 𝑠 ∈ ( 7

4 , 2). Moreover, it is shown therein that the solution
is uniformly bounded with respect to c in adequate spaces. The other work by the same authors [4]
further establishes the strong convergence of that solution, as c goes to ∞. We should point out that the
results in [3, 4], for the Euler–Maxwell system, only hold under the assumption that (𝑢, 𝐸, 𝐵) has the
two-dimensional normal structure

𝑢(𝑡, 𝑥) =

��
𝑢1(𝑡, 𝑥)
𝑢2(𝑡, 𝑥)

0

��, 𝐸 (𝑡, 𝑥) =

��
𝐸1 (𝑡, 𝑥)
𝐸2 (𝑡, 𝑥)

0

�� and 𝐵(𝑡, 𝑥) =

��

0
0

𝑏(𝑡, 𝑥)

��. (1.4)
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Extending the arguments from [3, 4] to general structures is a challenging open problem. As we shall
see later on, a novelty of the present work is to permit the consideration of a new three-dimensional
structure in the context of plasmas – namely, the axisymmetric structure.

From now on, we are going to focus on the three-dimensional case by first considering the work by
Ibrahim and Keraani [27], where it is proved that the system (1.1) is globally well-posed provided that
the initial data (𝑢0, 𝐸0, 𝐵0) are small enough in

�𝐵
1
2
2,1 ×

�𝐻
1
2 × �𝐻

1
2 (R3).

This smallness condition is slightly weakened in the work of Germain, Ibrahim and Masmoudi [19],
where the initial data lies in the space

�𝐻
1
2 × �𝐻

1
2 × �𝐻

1
2 (R3).

Note that the scaling of these spaces is at the critical level of the three-dimensional Navier–Stokes
equations (i.e., in the case 𝐸 ≡ 𝐵 ≡ 0). Accordingly, we do not expect to maintain the uniqueness of the
solution to (1.1) if the initial velocity lies in spaces that scale below �𝐻

1
2 .

Besides [19, 27], the three-dimensional Navier–Stokes–Maxwell system (1.1) was studied in several
papers – for instance, [2, 41, 42, 43]. However, to the best of our knowledge, none of the existing results
provide enough information to study the regime 𝑐 → ∞ in the three-dimensional case.

Thus, an important novelty of our paper is achieved by shedding light on the regime 𝑐 → ∞ and
extending the techniques recently developed by the first and the third authors in [3, 4] to the three-
dimensional axisymmetric setting, which we introduce next.

1.1. The axisymmetric structure

Throughout this paper, we assume that the velocity and the electromagnetic fields are axisymmetric, u
and E are without swirl, whereas, B has pure swirl – that is to say,

𝑢(𝑥) = 𝑢𝑟 (𝑟, 𝑧)𝑒𝑟 + 𝑢𝑧 (𝑟, 𝑧)𝑒𝑧 , 𝐸 (𝑥) = 𝐸𝑟 (𝑟, 𝑧)𝑒𝑟 + 𝐸𝑧 (𝑟, 𝑧)𝑒𝑧 , 𝐵(𝑥) = 𝐵𝜃 (𝑟, 𝑧)𝑒𝜃 , (1.5)

where (𝑟, 𝜃, 𝑧) denotes the usual cylindrical coordinates and (𝑒𝑟 , 𝑒𝜃 , 𝑒𝑧) is the corresponding orthonor-
mal basis (see Section 2 for the explicit definition of these variables). The careful reader may now notice
that this assumption shares some similarity with the two-dimensional normal structure (1.4). Indeed, in
(1.5), the magnetic field B remains orthogonal to u and E.

This key observation will allow us to somewhat simplify the equations. However, this structure will
also require some extra attention when performing estimates in Besov spaces, for the cylindrical basis
(𝑒𝑟 , 𝑒𝜃 , 𝑒𝑧) depends on the position variables.
Remark. Before moving forward, we recall here, for the convenience of the reader, some basic iden-
tities in cylindrical coordinates, which we will be using regularly throughout this work. Specifically,
considering a function 𝑓 : R3 → R and a vector field 𝑣 : R3 → R

3, with cylindrical components
𝑣 = 𝑣𝑟 𝑒𝑟 + 𝑣 𝜃𝑒𝜃 + 𝑣𝑧𝑒𝑧 , one has the formulas

∇ 𝑓 = (𝜕𝑟 𝑓 )𝑒𝑟 +
1
𝑟
(𝜕𝜃 𝑓 )𝑒𝜃 + (𝜕𝑧 𝑓 )𝑒𝑧 ,

Δ 𝑓 = 𝜕2
𝑟 𝑓 +

1
𝑟
𝜕𝑟 𝑓 +

1
𝑟2 𝜕

2
𝜃 𝑓 + 𝜕

2
𝑧 𝑓 ,

div 𝑣 = 𝜕𝑟𝑣𝑟 +
1
𝑟
𝑣𝑟 +

1
𝑟
𝜕𝜃𝑣 𝜃 + 𝜕𝑧𝑣𝑧 ,

curl 𝑣 =
(

1
𝑟
𝜕𝜃𝑣𝑧 − 𝜕𝑧𝑣 𝜃

)
𝑒𝑟 + (𝜕𝑧𝑣𝑟 − 𝜕𝑟𝑣𝑧)𝑒𝜃 +

(
𝜕𝑟𝑣 𝜃 −

1
𝑟
𝜕𝜃𝑣𝑟 +

1
𝑟
𝑣 𝜃

)
𝑒𝑧 .

These expressions are derived through straightforward computations.
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Let us now state some crucial properties provided by (1.5). First of all, note that the vorticity

𝜔
def
= curl 𝑢

is acting only in the direction 𝑒𝜃 ; that is,

𝜔 = 𝜔𝜃 𝑒𝜃
def
=
(
𝜕𝑧𝑢𝑟 − 𝜕𝑟𝑢𝑧

)
𝑒𝜃 .

However, straightforward computations show that

∇ × ( 𝑗 × 𝐵) = 𝐵 · ∇ 𝑗 − 𝑗 · ∇𝐵 = 𝑗𝑟
𝐵

𝑟
− 𝑗 · ∇𝐵.

Thus, taking the curl of the momentum equation in (1.1) yields

𝜕𝑡𝜔𝜃 + 𝑢 · ∇𝜔𝜃 − 𝜈
(
Δ −

1
𝑟2
)
𝜔𝜃 =

𝑢𝑟
𝑟
𝜔𝜃 + 𝑗𝑟

𝐵𝜃
𝑟

− 𝑗 · ∇𝐵𝜃 . (1.6)

Then, by introducing

Ω
def
=
𝜔𝜃
𝑟
, Γ

def
=
𝐵𝜃
𝑟
,

we further obtain the equation

𝜕𝑡Ω + 𝑢 · ∇Ω − 𝜈
(
Δ +

𝜕𝑟
𝑟

)
Ω = 𝑗 · ∇Γ. (1.7)

Note that the last equation is very similar to the vorticity equation of the two-dimensional Euler–Maxwell
system treated in [3].

An equivalent formulation of (1.6) and (1.7) is obtained by employing Ampère’s equation to eliminate
the current density j and deduce that

𝜕𝑡𝜔𝜃 + 𝑢 · ∇𝜔𝜃 − 𝜈
(
Δ −

1
𝑟2
)
𝜔𝜃 =

𝑢𝑟
𝑟
𝜔𝜃 − 𝜕𝑧

(
Γ𝐵𝜃

)
−

1
𝑐
𝜕𝑡𝐸𝑟

𝐵𝜃
𝑟

+
1
𝑐
𝜕𝑡𝐸 · ∇𝐵𝜃 , (1.8)

and

𝜕𝑡Ω + 𝑢 · ∇Ω − 𝜈
(
Δ +

𝜕𝑟
𝑟

)
Ω = −𝜕𝑧

(
Γ2) − 1

𝑐
𝜕𝑡𝐸 · ∇Γ. (1.9)

Furthermore, by virtue of (1.5), combining Ampère and Faraday’s equations yields

1
𝑐2 𝜕𝑡𝑡𝐵 + 𝜕𝑡𝐵 + 𝑢 · ∇𝐵 −

1
𝜎
Δ𝐵 =

𝑢𝑟
𝑟
𝐵,

and therefore

1
𝑐2 𝜕𝑡𝑡Γ + 𝜕𝑡Γ + 𝑢 · ∇Γ −

1
𝜎

(
Δ +

𝜕𝑟
𝑟

)
Γ = 0.

The key observation behind the global estimates in the axisymmetric setting when 𝐸 ≡ 𝐵 ≡ 0 is the
fact that the stretching term 𝜔 · ∇𝑢 is reduced to 𝑢𝑟

𝑟 𝜔. As shown in [37], this term can be controlled by
the estimate1 ���𝑢𝑟

𝑟

���𝐿∞ � ‖Ω‖𝐿3,1 � ‖Ω‖
1
2
𝐿2 ‖∇Ω‖

1
2
𝐿2 , (1.10)

1𝐿𝑝,𝑞 stands for the usual Lorentz spaces.
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which then yields a global bound on the velocity in sub-critical spaces. Indeed, this is due to the fact
that Ω obeys a transport–diffusion equation (resp. transport equation) in the case of the Navier–Stokes
equations (resp. Euler equations), which can be used to deduce a global bound for Ω in 𝐿∞𝑡 𝐿2 ∩ 𝐿2

𝑡
�𝐻1

(resp. in 𝐿∞𝑡 𝐿3,1), by means of standard energy estimates. Similar results can be extended to the MHD
equations (see Theorem 1.2 below).

We conclude by pointing out that the axisymmetric structure has been extensively studied in a variety
of fluid models, such as the Navier–Stokes [11, 12, 33, 34, 35], Euler [15], Boussinesq [1, 16, 17, 22,
23, 25, 26] and MHD [10, 28, 29, 31, 32, 39] systems with partial or full dissipation.

1.2. Aims and main results

We intend to show that the global well-posedness of the three-dimensional system (1.1) holds whenever
𝑐 is large enough. We shall prove our results uniformly with respect to c and then derive the MHD
equations by studying the singular limit 𝑐 → ∞. We refer to Section 2 for the definition of all functional
spaces.
Theorem 1.1 (Global well-posedness). Let (𝑢𝑐0 , 𝐸

𝑐
0 , 𝐵

𝑐
0 )𝑐>0 be a family of divergence-free axisymmetric

initial data such that 𝑢𝑐0 and 𝐸𝑐0 are without swirl, whereas 𝐵𝑐0 has pure swirl. Assume further that

(𝑢𝑐0 , 𝐸
𝑐
0 , 𝐵

𝑐
0 ) ∈

(
𝐻1 × 𝐻

3
2 × 𝐻

3
2

)
(R3), 𝑐−1 (𝐸𝑐0 , 𝐵

𝑐
0 ) ∈

�𝐵
5
2
2,1 (R

3),

Ω𝑐0
def
=
𝜔𝑐0
𝑟

∈ 𝐿2 (R3), 𝑗𝑐0
def
= 𝜎(𝑐𝑒 : 0𝑐 + 𝑃(𝑢𝑐0 × 𝐵𝑐0 )) ∈ 𝐻

1
2 (R3),

uniformly in 𝑐 > 0. Then, there is a constant 𝑐0 > 0, depending only on the size of the initial data,
such that, for any 𝑐 ∈ (𝑐0,∞), there is a unique global axisymmetric solution (𝑢𝑐 , 𝐸𝑐 , 𝐵𝑐) of the three-
dimensional Navier–Stokes–Maxwell equations (1.1), with 𝜈 > 0, such that 𝑢𝑐 and 𝐸𝑐 are without swirl
and 𝐵𝑐 has pure swirl. This solution enjoys the bounds

𝑢𝑐 ∈ 𝐿∞(R+;𝐻1), ∇𝑢𝑐 ∈ 𝐿2 (R+;𝐻1), Ω𝑐
def
=
𝜔𝑐𝜃
𝑟

∈ 𝐿∞(R+; 𝐿2) ∩ 𝐿2 (R+; �𝐻1),

(𝐸𝑐 , 𝐵𝑐) ∈ 𝐿∞(R+;𝐻
3
2 ), 𝑐−1(𝐸𝑐 , 𝐵𝑐) ∈ 𝐿∞(R+; �𝐵

5
2
2,1),

(𝐸𝑐 , 𝐵𝑐) ∈ 𝐿2 (R+; �𝐵
5
2
2,1), 𝑐𝐸𝑐 ∈ 𝐿2 (R+;𝐻

3
2 ), 𝐵𝑐 ∈ 𝐿2 (R+; �𝐻1), 𝑗𝑐 ∈

∞⋂
𝑝=2

𝐿 𝑝 (R+;𝐻
1
2 ),

uniformly in 𝑐 ∈ (𝑐0,∞). If, moreover,

(𝐸𝑐0 , 𝐵
𝑐
0 ) ∈

�𝐵
5
2
2,1 (R

3),

uniformly in 𝑐 > 0, then the bound

(𝐸𝑐 , 𝐵𝑐) ∈ 𝐿∞(R+; �𝐵
5
2
2,1)

holds uniformly in 𝑐 ∈ (𝑐0,∞).

The complete proof of Theorem 1.1 is given in Section 5.
Remark. By setting 𝐸 ≡ 𝐵 ≡ 0 in the above theorem, observe that we recover a classical global well-
posedness result for the axisymmetric Navier–Stokes equations (see, for instance, Theorem 10.4 in [30]).

We also wish to understand the singular regime 𝑐 → ∞ in (1.1). The next corollary establishes a well-
posedness result for the limiting system (MHD) by considering the weak limit of solutions constructed
in Theorem 1.1.
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Corollary 1.2 (Weak singular limit). Let (𝑢0, 𝐵0) be an axisymmetric divergence-free vector field, where
𝑢0 is without swirl and 𝐵0 has pure swirl. Further assume that

(𝑢0, 𝐵0) ∈
(
𝐻1 × 𝐻

3
2

)
(R3),

𝜔0
𝑟

∈ 𝐿2 (R3).

Then, there is a unique axisymmetric solution to (MHD), with 𝜈 > 0 and initial data (𝑢0, 𝐵0), enjoying
the bounds

(𝑢, 𝐵) ∈ 𝐿∞
(
R
+;𝐻1 (R3) × 𝐻

3
2 (R3)

)
, (∇𝑢,∇𝐵) ∈ 𝐿2

(
R
+;𝐻1(R3) × 𝐵

3
2
2,1 (R

3)

)
,

and
𝜔𝜃
𝑟

∈ 𝐿∞(R+; 𝐿2 (R3)) ∩ 𝐿2 (R+; �𝐻1 (R3)).

Proof. We build global solutions by making use of the bounds from the preceding theorem and employ-
ing standard compactness methods. To that end, let (𝑢𝑐𝑛0 , 𝐸𝑐𝑛0 , 𝐵𝑐𝑛0 )𝑛∈N be any family of divergence-free
vector fields satisfying the assumptions of Theorem 1.1 and converging to (𝑢0, 0, 𝐵0), at least in the
sense of distributions. In particular, by Theorem 1.1, there exists a unique family (𝑢𝑐𝑛 , 𝐸𝑐𝑛 , 𝐵𝑐𝑛 )𝑛∈N of
solutions to (1.1), which obeys the bounds

(𝑢𝑐𝑛 , 𝐵𝑐𝑛 ) ∈ 𝐿∞
(
R
+;𝐻1 (R3) × 𝐻

3
2 (R3)

)
, (∇𝑢𝑐𝑛 ,∇𝐵𝑐𝑛 ) ∈ 𝐿2

(
R
+;𝐻1 (R3) × 𝐵

3
2
2,1 (R

3)

)
,

and

𝜔𝑐𝑛𝜃
𝑟

∈ 𝐿∞(R+; 𝐿2 (R3)) ∩ 𝐿2 (R+; �𝐻1 (R3)), 𝑐𝑛𝐸
𝑐𝑛 ∈ 𝐿2 (R+;𝐻

3
2 ),

uniformly in 𝑛 ∈ N.
Thus, by the Banach–Alaoglu theorem, up to extraction of a subsequence (which is not distinguished,

for simplicity), it holds that

(𝑢𝑐𝑛 , 𝐸𝑐𝑛 , 𝐵𝑐𝑛 )
𝑛→∞
−→ (𝑢, 0, 𝐵), in D′(R+ × R3),

where (𝑢, 𝐵) is in the same functional spaces as (𝑢𝑐𝑛 , 𝐵𝑐𝑛 ).
In fact, one can also show that (𝜕𝑡𝑢𝑐𝑛 , 𝜕𝑡𝐵𝑐𝑛 )𝑛∈N is uniformly bounded in 𝐿2

𝑡 ,𝑥,loc, which implies, by a
classical compactness result by Aubin and Lions (see [38] for a thorough discussion of such compactness
results and, in particular, Section 9 therein, for convenient results which are easily applicable to our
setting), that (𝑢𝑐𝑛 , 𝐵𝑐𝑛 )𝑛∈N is relatively compact in 𝐿2

𝑡 ,𝑥,loc.
Therefore, by taking the limit in (1.1) in the sense of distributions, and exploiting the strong com-

pactness of (𝑢𝑐𝑛 , 𝐵𝑐𝑛 )𝑛∈N to show the weak stability of nonlinear terms, it is readily seen that (𝑢, 𝐵) is
a weak solution of (MHD), thereby completing the existence proof.

As for the uniqueness of solutions, we only need to note that it follows directly from weak–strong
uniqueness principles for fluid dynamical models (for instance, see [6, Section 3.2.3] and [18]). �

Remark. The solution constructed in the previous corollary enjoys the refined bound

𝐵 ∈ �̃�∞
(
R
+; �𝐵

3
2
2,2 (R

3)
)
. (1.11)

Indeed, by virtue of the bounds from Corollary 1.2, one can show that 𝑢 · ∇𝐵 and 𝐵 · ∇𝑢 belong to
𝐿2 (R+; �𝐻

1
2 (R3)). Therefore, standard parabolic regularity estimates applied directly to the heat equation

satisfied by B in (MHD) give the bound above. In particular, this bound guarantees that
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lim
𝑛→∞

sup
𝑡 ∈[0,∞)

‖1{ |𝐷 | ≥Θ𝑛 }𝐵(𝑡)‖ �𝐻
3
2
= 0, (1.12)

for any sequence (Θ𝑛)𝑛≥1 satisfying

lim
𝑛→∞

Θ𝑛 = ∞.

Further note that the weaker bound

𝐵 ∈ 𝐿∞
(
R
+; �𝐻

3
2 (R3)

)
would not be enough to establish (1.12). This will be important, later on, in the proofs of our main results.

We state now our second main theorem. It concerns the strong convergence, as 𝑐 → ∞, of the solution
given in Theorem 1.1 toward the solution constructed in Corollary 1.2.

Theorem 1.3 (Strong singular limit). Let (𝑢𝑐0 , 𝐸
𝑐
0 , 𝐵

𝑐
0 )𝑐>0 be a family of initial data satisfying the

assumptions in Theorem 1.1 and denote by (𝑢𝑐 , 𝐸𝑐 , 𝐵𝑐)𝑐>𝑐0 the corresponding unique global solution
to (1.1) given by the same theorem. Further consider divergence-free vector fields (𝑢0, 𝐵0) such that

(𝑢0, 𝐵0) ∈
(
𝐻1 × 𝐻

3
2

)
(R3),

𝜔0
𝑟

∈ 𝐿2 (R3),

and assume that

lim
𝑐→∞

��(𝑢𝑐0 , 𝐵𝑐0 ) − (𝑢0, 𝐵0)
��
𝐻 1×𝐿2 = 0.

Finally, let (𝑢, 𝐵) be the unique global solution of (MHD), given in Corollary 1.2, associated to the data
(𝑢0, 𝐵0).

Then (𝑢𝑐 , 𝐵𝑐) converges strongly to (𝑢, 𝐵), as 𝑐 → ∞. More specifically, it holds that

lim
𝑐→∞

(
sup

𝑡 ∈[0,∞)

‖(𝑢𝑐 − 𝑢) (𝑡)‖ �𝐻 1 +

∫ ∞

0
‖(𝑢𝑐 − 𝑢) (𝑡)‖2

�𝐻 2𝑑𝑡

)
= 0, (1.13)

and, for all 𝑠 ∈ [0, 3
2 ),

lim
𝑐→∞

(
sup

𝑡 ∈[0,∞)

‖(𝐵𝑐 − 𝐵) (𝑡)‖ �𝐻 𝑠 +

∫ ∞

0
‖(𝐵𝑐 − 𝐵) (𝑡)‖2

�𝐻 𝑠+1𝑑𝑡

)
= 0. (1.14)

If, moreover, we assume that

lim
𝑐→∞

��(𝐸𝑐0 , 𝐵𝑐0 ) − (0, 𝐵0)
��
�𝐻

3
2
= 0

and

lim
𝑐→∞

(
𝑐−1‖(𝐸𝑐0 , 𝐵

𝑐
0 )‖ �𝐵

5
2

2,1

)
= 0, (1.15)

then (1.14) holds for 𝑠 = 3
2 , as well.

The complete proof of Theorem 1.3 is given in Section 6.

Remark. It is possible to quantify (1.13) and (1.14) with a rate of convergence𝑂 (𝑐−𝛼), for some 𝛼 > 0,
provided that the initial data satisfy a similar algebraic rate of convergence.
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Remark. Observe that the initial data in Theorem 1.1 are required to enjoy the regularity �𝐵
5
2
2,1. However,

this is not needed in the limiting system obtained in the regime 𝑐 → ∞, as reflected in Corollary 1.2.
Moreover, the growth of the global solution from Theorem 1.1 in that space is of order c, which is

consistent with the fact that it is uniformly bounded in the space �𝐻
3
2 . Indeed, heuristically, we notice

from our proofs, later on, that each spatial derivative has the same dimension as the speed of light c;
that is,

𝑐−1 �𝐵
5
2
2,1 ∼ �𝐻

3
2 ,

which means that the solutions have a comparable size in each space. This is natural in view of the fact
that waves produced by Maxwell’s system have a characteristic speed c.

In conclusion, we supplement our remark with a typical example of data that summarizes the
preceding observations and fulfills the assumptions of Theorem 1.1 and Theorem 1.3. To that end, let
𝜑 ∈ 𝐶∞

𝑐 (R3) and introduce the standard mollifier

𝜑𝑐 (·)
def
= 𝑐3𝜑(𝑐 ·).

Let (𝑢0, 𝐵0) be the initial data from Corollary 1.2 and 𝐸0 be any divergence-free profile in 𝐻 3
2 . Then

the sequence of data defined by

(𝑢𝑐0 , 𝐸
𝑐
0 , 𝐵

𝑐
0 )

def
= 𝜑𝑐 ∗ (𝑢0, 0, 𝐵0) (1.16)

is suitable and satisfies all the assumptions in Theorem 1.1 and Theorem 1.3, as long as 𝑐 > 𝑐0, where
𝑐0 > 0 only depends on the size of 𝑢0, 𝐸0, 𝐵0 and 𝜑.

1.3. Challenges and ingredients of proof

Here, we provide the reader with a short roadmap that sheds light on our strategy and main ingredients
toward proving our results. We already made it clear in the introduction that the construction of a (unique
global) solution to (1.1) at the level of the energy (1.2) is an outstanding open problem. Hence, we seek
solutions in higher-regularity spaces.

Notice that one cannot expect to have a better understanding of the Cauchy problem for (1.1) compared
to the Navier–Stokes equations (i.e., the case 𝐸 ≡ 𝐵 ≡ 0). In the three-dimensional case, one of the
well-known settings where the Navier–Stokes equations are globally well-posed is when the initial data
obey an axisymmetric geometric condition, which, roughly speaking, reduces the dimension from three
to two, in some sense. In this work, we therefore make the choice of restricting ourselves to the case of
axisymmetric data.

We first clarify the key idea leading to an estimate of the velocity field, which can be performed on
(1.6)–(1.7) or (1.8)–(1.9). We argue now that it is better to work on (1.8)–(1.9). The reasons behind this
choice can be summarized in two crucial points. The first one is that the terms containing 1

𝑐 𝜕𝑡𝐸 can be
seen as an error that should vanish and be discarded from the system when 𝑐 → ∞, at least formally.
Observe that this formal limit yields exactly the equations for the vorticity in the axisymmetric case,
which have been studied in several papers (for instance, see [24]). Accordingly, we believe that (1.8)–
(1.9) are more suitable to study the equations in the regime 𝑐 → ∞. We shall come back to this limit,
later on, to comment on the formal claim

lim
𝑐→∞

1
𝑐
𝜕𝑡𝐸 = 0. (1.17)

The second reason why we choose to consider (1.8)–(1.9) is more technical and it relies on the fact
that the 𝐿2 energy estimate (1.2) provides us with weak information in dimension three, unlike the
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two-dimensional case. Indeed, our alternative choice would be to consider (1.6)–(1.7) and to estimate j
in 𝐿2

𝑡 ,𝑥 , which is the only global bound on j that can be extracted from the energy estimate. By doing
so, one can can only establish an estimate of (𝜔,Ω) in 𝐿∞𝑡 𝐿

2
𝑥 ∩ 𝐿2

𝑡
�𝐻1
𝑥 , which is linear in terms of the

𝐿2
𝑡 𝐵

5
2
2,1 norm of B. This is comparable to the techniques from [3] where, in two dimensions, it is shown

that such estimates can be closed. However, in three dimensions, if one goes into the details of low-
frequency estimates, one notices that the interpolation argument used in [3] to weaken the power of B
in some crucial norms will likely not work. It seems that this method would require a global control of
j in 𝐿2

𝑡 𝐿
3
𝑥 , which is not available.

Thus, our main estimate on the velocity field is based on (1.8)–(1.9) and is given in Proposition 3.1,
below, where we show that

‖(𝜔,Ω)‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1

�
(
‖(𝜔0,Ω0)‖𝐿2 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 + ‖Γ‖𝐿∞

𝑡 𝐿
3 ‖(𝐵, Γ)‖𝐿2

𝑡
�𝐻 1

)
exp

(
𝐶E2

0
)
,

for some 𝐶 > 0. Now, in order to use this bound, we need the following ingredients:

1. An asymptotically vanishing estimate for 1
𝑐 𝜕𝑡𝐸 of the form

1
𝑐
‖𝜕𝑡𝐸 ‖

𝐿2
𝑡
�𝐻

1
2
� 𝑐−𝛼𝐹

(
‖(𝑢, 𝐸, 𝐵)‖𝑋

)
,

for some 𝛼 > 1
2 , some (nonlinear) function F and a suitable functional space X.

2. A bound of the type

‖𝐵‖𝐿∞
𝑡 𝐻

2 � 𝑐
1
2 𝐹
(
‖(𝑢, 𝐸, 𝐵)‖𝑋

)
.

3. An asymptotically global estimate for 𝐵 in 𝐿2
𝑡
�𝐻1 and Γ in 𝐿∞𝑡 𝐿3 ∩ 𝐿2

𝑡
�𝐻1 of the form

‖𝐵‖𝐿2
𝑡
�𝐻 1 + ‖Γ‖𝐿∞

𝑡 𝐿
3∩𝐿2

𝑡
�𝐻 1 ≤ 𝐶0 + 𝑐

−𝛽𝐹
(
‖(𝑢, 𝐸, 𝐵)‖𝑋

)
,

for some 𝛽 > 0 and 𝐶0 > 0 depending only on the initial data.

The first bound above is inspired by the results from [4, Section 3], whereas the third one is obtained in
the spirit of [3, Section 3.6].

The precise proof of these claims is the subject of Section 4, where we will build on the arguments
from [3, 4]. For simplicity, the reader can think of the space X in the foregoing estimates as a combination
of the spaces appearing in the statement of Theorem 1.1. The precise construction of X is also detailed
in Section 4.

The next step in our strategy is to study the Maxwell system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
𝑐
𝜕𝑡𝐸 − ∇ × 𝐵 + 𝜎𝑐𝐸 = −𝜎𝑃(𝑢 × 𝐵),

1
𝑐
𝜕𝑡𝐵 + ∇ × 𝐸 = 0,

div 𝑢 = div 𝐵 = div 𝐸 = 0.

(1.18)

The relevant estimates for (𝐸, 𝐵) with a general forcing term have recently been established in [3]. They
are reproduced in Lemmas 3.2 and 3.3. Nevertheless, some refinements in the analysis of (1.18) are
required in order to obtain adequate bounds for the electromagnetic field that are compatible with the
asymptotic behavior of 1

𝑐 𝜕𝑡𝐸 , B and Γ.
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As a starting point, we will be facing the problem of estimating products of the form

‖𝑃(𝑢 × 𝐵)‖𝐵𝑠
𝑝,𝑞
,

with 𝑠 > 3
𝑝 , where the regularity of u is restricted to 𝐿∞𝑡 �𝐻1 ∩ 𝐿2

𝑡
�𝐻2. Note that a similar issue was

overcome in [3] by exploiting the two-dimensional normal structure (1.4), which is not valid in our
context. Here, we show that a similar analysis can be performed in the axisymmetric case, by using
the fact that B remains orthogonal to E and u. Accordingly, in Lemma 2.3, we provide a general result
refining the classical paraproduct estimates in a framework which covers the axisymmetric setting.

The ability to prove Theorem 1.1 further requires a precise understanding of the damping phenomenon
in (1.18), which is obtained by studying the parabolic–hyperbolic properties of fields, their interaction
and their behavior relatively to c. This analysis is laid out in detail in Section 3.2.

With the above ingredients, we are then in a position to conclude Theorem 1.1. Thus, in Section 5.3,
we gather all the estimates to establish a nonlinear bound of the form

‖(𝑢, 𝐸, 𝐵)‖𝑋 ≤ 𝐶0 + P (‖(𝑢, 𝐸, 𝐵)‖𝑋 ),

where P is a polynomial whose coefficients vanish as 𝑐 → ∞. The conclusion of the global estimates
is then a straightforward application of the abstract Lemma 5.2, which ensures that

‖(𝑢, 𝐸, 𝐵)‖𝑋 ≤ 2𝐶0,

as long as c is larger than some power of 𝐶0.
Note that the proof of Theorem 1.1 is divided into two parts. The first one deals with the case that

we call rough profiles, in the spirit of the example of initial data given in (1.16). In that case, the initial
electromagnetic field (𝐸𝑐0 , 𝐵

𝑐
0 ) can have a �𝐵

5
2
2,1 norm growing at most like c. In the second part of

the proof, in the case of regular profiles, we show that if, moreover, the corresponding �𝐵
5
2
2,1 norm of

(𝐸𝑐0 , 𝐵
𝑐
0 ) does not blow up as c goes to infinity, then, the �𝐵

5
2
2,1 norm of (𝐸𝑐 (𝑡), 𝐵𝑐 (𝑡)) remains bounded,

for any 𝑡 ∈ [0,∞). The second case will be proved with a kind of bootstrap argument, and it can be seen
as the result of persistence of initial regularity.

Our second main result (Theorem 1.3) establishes the convergence toward (MHD) of the solution
constructed in Theorem 1.1. It is to be emphasized that a fundamental ingredient in the proof of Theorem
1.3 hinges upon the understanding of the limit (1.17). This is crucial to obtain a convergence result in
the whole domain [0,∞) × R3.

The proof of Theorem 1.3 will be done in several steps. First, we prove the convergence in the 𝐿2

energy space by performing adequate stability estimates. Subsequently, by interpolation, it follows that
the convergence of velocities and magnetic fields holds in 𝐿∞𝑡 �𝐻𝑠 ∩ 𝐿2

𝑡
�𝐻𝑠+1 and 𝐿∞𝑡 �𝐻

3𝑠
2 ∩ 𝐿2

𝑡
�𝐻

3𝑠
2 +1,

respectively, for any 𝑠 ∈ [0, 1).
Therefore, the convergence of velocity fields in the endpoint space 𝐿∞𝑡 �𝐻1 ∩ 𝐿2

𝑡
�𝐻2 will be achieved

by an energy estimate in �𝐻1 and by making use of the stability results from the previous step. Here, it
is important to mention that the validity of (1.17) in 𝐿2

𝑡
�𝐻

1
2 (see Proposition 4.1) is crucial.

However, the convergence of the magnetic fields in the endpoint space 𝐿∞𝑡 �𝐻
3
2 ∩ 𝐿2

𝑡
�𝐻

3
2+1 will be

established by a different approach, for a standard �𝐻
3
2 energy estimate would require the validity of

(1.17) in 𝐿2
𝑡
�𝐻

3
2 , which is not available from Proposition 4.1. More precisely, the convergence of magnetic

fields in that space follows from extrapolation compactness techniques, introduced and utilized by the
first and third authors in [4].

In summary, the proof of convergence of magnetic fields in the energy space of �𝐻
3
2 is split into two

main steps. In the first step, we treat the convergence of frequencies that are localized in a ball whose
radius grows as the speed of light increases. By suitably choosing that radius, the convergence of low
frequencies then follows as a direct consequence of the convergence in the 𝐿2 energy space. In the
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second step, by exploiting the assumption (1.15), we take care of the remaining high frequencies by
building on the refined analysis of Maxwell equations laid out in Section 3.2. The combination of these
ideas eventually leads to the completion of all proofs.

1.4. Notation

All definitions and basic properties of functional spaces utilized throughout the paper are introduced in
Section 2.

Furthermore, the letter C will often denote a universal (possibly large) constant that is independent
of the variables of the problem, and which is also allowed to change from one line to the next.

For simplicity, we will also be using 𝐴 � 𝐵 instead of 𝐴 ≤ 𝐶𝐵. Moreover, when needed, in order to
specify the dependence of some estimates on some parameters, we will occasionally utilize 𝐴 �𝑠 𝐵 to
insist on the fact that the generic constant C might depend on a parameter s.

2. The axisymmetric structure, Hardy inequalities and paradifferential calculus

In this section, we establish several lemmas which shed light on crucial features of the axisymmetric
structure, which are similar to the properties of the two-dimensional normal structure that is exploited
in [3, 4]. In particular, this structure will be employed to obtain useful improvements on the classical
paradifferential product laws and will serve in our main a priori estimates, later on.

First of all, we recall that a vector field 𝐹 : R3 → R3 is axisymmetric if it has the form

𝐹 (𝑥1, 𝑥2, 𝑥3) = 𝐹𝑟 (𝑟, 𝑧)𝑒𝑟 + 𝐹𝜃 (𝑟, 𝑧)𝑒𝜃 + 𝐹𝑧 (𝑟, 𝑧)𝑒𝑧 ,

where the triple (𝑟, 𝜃, 𝑧) denotes the usual cylindrical coordinates defined by the relations

𝑥1 = 𝑟 cos 𝜃, 𝑥2 = 𝑟 sin 𝜃, 𝑥3 = 𝑧,

and (𝑒𝑟 , 𝑒𝜃 , 𝑒𝑧) is the corresponding cylindrical orthonormal basis

𝑒𝑟 =
( 𝑥ℎ
𝑟
, 0
)
, 𝑒𝜃 =

( 𝑥⊥ℎ
𝑟
, 0
)
, 𝑒𝜃 = (0, 0, 1).

Here, the index h is used to refer to the horizontal components

𝑥ℎ
def
= (𝑥1, 𝑥2), 𝑥⊥ℎ

def
= (−𝑥2, 𝑥1).

Thus, axisymmetry is characterized by the property that the components (𝐹𝑟 , 𝐹𝜃 , 𝐹𝑧) are independent
of 𝜃. In other words, the field F is axisymmetric if and only if it satisfies 𝑅 ◦ 𝐹 = 𝐹 ◦ 𝑅, for all rotations
R around the z-axis.

Furthermore, we say that the vector field 𝐹 : R3 → R3 is axisymmetric without swirl if it has the form

𝐹 (𝑥1, 𝑥2, 𝑥3) = 𝐹𝑟 (𝑟, 𝑧)𝑒𝑟 + 𝐹𝑧 (𝑟, 𝑧)𝑒𝑧

and that it is axisymmetric with pure swirl if it can be represented as

𝐹 (𝑥1, 𝑥2, 𝑥3) = 𝐹𝜃 (𝑟, 𝑧)𝑒𝜃 .

Observe that an axisymmetric field with pure swirl is always divergence-free, which follows from a
straightforward computation.

We take some time now to carefully introduce the functional spaces that we use in this article and
some related notation. To that end, we first consider the Littlewood–Paley decomposition
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𝑘∈Z

Δ 𝑘 𝑓 = 𝑓

of a tempered distribution modulo polynomials 𝑓 ∈ S ′/P (R𝑑), in any dimension 𝑑 ≥ 1, where the
operator Δ 𝑘 is the classical frequency truncation that restricts the support of the Fourier transform

F 𝑓 (𝜉) = 𝑓 (𝜉)
def
=
∫
R𝑑
𝑒−𝑖 𝜉 ·𝑥 𝑓 (𝑥)𝑑𝑥

to the set {2𝑘−1 ≤ |𝜉 | ≤ 2𝑘+1}, for each 𝑘 ∈ Z. Recall that the space S ′/P (R𝑑) is isomorphic to
the space S ′

0(R
𝑑) of tempered distribution restricted to the subspace S0(R

𝑑), which is made up of all
Schwartz functions 𝜑 ∈ S (R𝑑) such that ∫

R𝑑
𝑥𝛼𝜑(𝑥)𝑑𝑥 = 0,

for every mutli-index 𝛼 ∈ N𝑑 . It is always possible to construct Δ 𝑘 so that it acts on tempered
distributions through a convolution with a radial smooth function in S0(R

𝑑), which is appropriately
dilated by a factor 2𝑘 .

Then, for any 𝑠 ∈ R and 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞, we define the homogeneous Besov space �𝐵𝑠𝑝,𝑞
(
R
𝑑
)

and
the homogeneous Chemin–Lerner space �̃�𝑟

(
[0, 𝑇); 𝐵𝑠𝑝,𝑞

(
R
𝑑
) )

, with 𝑇 ∈ (0,∞], as the subspaces of
tempered distributions modulo polynomials S ′/P endowed with the respective norms

‖ 𝑓 ‖ �𝐵𝑠
𝑝,𝑞 (R𝑑)

def
=

(∑
𝑘∈Z

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑝 (R𝑑)

) 1
𝑞

,

‖ 𝑓 ‖𝐿𝑟 ( [0,𝑇 );𝐵𝑠
𝑝,𝑞 (R𝑑))

def
=

(∑
𝑘∈Z

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑟 ( [0,𝑇 );𝐿𝑝 (R𝑑))

) 1
𝑞

,

if 𝑞 < ∞, and with the usual modifications if 𝑞 = ∞.
We will also employ the homogeneous Sobolev spaces �𝑊 𝑠, 𝑝

(
R
𝑑
)
⊂ S ′/P that are defined by the

semi-norms

‖ 𝑓 ‖ �𝑊 𝑠,𝑝 (R𝑑)
def
=
��|𝐷 |𝑠 𝑓

��
𝐿𝑝 (R𝑑) ,

where |𝐷 |𝑠 is the Fourier multiplier corresponding to the symbol |𝜉 |𝑠 , with 𝑠 ∈ R and 1 < 𝑝 < ∞. When
𝑝 = 𝑞 = 2, note that the Besov space �𝐵𝑠2,2 is equivalent to the homogeneous Sobolev space classically
denoted by

�𝐻𝑠
def
= �𝑊 𝑠,2.

Nonhomogeneous versions of these spaces are also defined in a similar way.
Finally, employing truncated Littlewood–Paley decompositions, one can show that the subspace S0

is dense in �𝐵𝑠𝑝,𝑞 and �𝑊 𝑠, 𝑝 , for any 𝑠 ∈ R and 1 ≤ 𝑝, 𝑞 < ∞, and that a similar statement holds for
Chemin–Lerner spaces with suitable modifications.

We refer to [3, Appendix A] for some more details and properties of Besov and Chemin–Lerner
spaces in the same notation as in this article, and to [7, 21] for a comprehensive introduction to the
subject of Littlewood–Paley decompositions and functional spaces.

We move on now to the main results of this section. Prior to presenting the paradifferential features of
the axisymmetric structure, we establish the following version of Hardy’s inequality that will be useful
in our analysis, below.
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Lemma 2.1. Fix the dimension 𝑑 ≥ 2. Let f be a smooth function satisfying, for all 𝑥 ′ ∈ R𝑑−1, that

𝑓 (0, 𝑥 ′) = 0.

Then, it holds that ���� 𝑓𝑥1

���� �𝑊 𝑠,𝑝 (R𝑑) �𝑠, 𝑝 ‖ 𝑓 ‖ �𝑊 𝑠+1, 𝑝 (R𝑑) ,

for any 𝑝 ∈ (1,∞) and all 𝑠 > 1
𝑝 − 1.

Proof. By virtue of the vanishing assumption on f, we can write, for any (𝑥1, 𝑥
′) ∈ R∗ × R𝑑−1, that

𝑓 (𝑥1, 𝑥
′)

𝑥1
=
∫ 1

0
(𝜕1 𝑓 ) (𝜆𝑥1, 𝑥

′)𝑑𝜆.

It then follows that ���� 𝑓𝑥1

���� �𝑊 𝑠,𝑝 ≤

∫ 1

0

��(𝜕1 𝑓 ) (𝜆·, ·)
��

�𝑊 𝑠,𝑝𝑑𝜆

=
∫ 1

0

��|𝐷 |𝑠 (𝜕1 𝑓 ) (𝜆·, ·)
��
𝐿𝑝𝑑𝜆

=
∫ 1

0
𝜆−

1
𝑝
��|𝐷 |𝑠𝑚𝜆,𝑠 (𝐷) (𝜕1 𝑓 )

��
𝐿𝑝𝑑𝜆

=
∫ 1

0
𝜆−

1
𝑝
��𝑚𝜆,𝑠 (𝐷)𝜕1 𝑓

��
�𝑊 𝑠,𝑝𝑑𝜆,

where 𝑚𝜆,𝑠 (𝐷) is the Fourier multiplier operator given, for any 𝜆 ∈ (0, 1) and 𝑠 ∈ R, by

𝑚𝜆,𝑠 (𝜉) =

(√
|𝜆𝜉1 |2 + |𝜉 ′ |2

|𝜉 |

)𝑠
.

Now, we claim that the multiplier norm of 𝑚𝜆,𝑠 (𝐷) over 𝐿 𝑝 is bounded by a constant multiple of
max{1, 𝜆𝑠}, which leads to���� 𝑓𝑥1

���� �𝑊 𝑠,𝑝 �
∫ 1

0
𝜆−

1
𝑝 max{1, 𝜆𝑠}𝑑𝜆‖𝜕1 𝑓 ‖ �𝑊 𝑠,𝑝

� max

{
𝑝

𝑝 − 1
,

1
𝑠 + 1 − 1

𝑝

}
‖ 𝑓 ‖ �𝑊 𝑠+1, 𝑝 ,

provided that 𝑠 > 1
𝑝 − 1, thereby establishing the main estimate of the lemma.

In order to justify the boundedness of𝑚𝜆,𝑠 (𝐷) over 𝐿 𝑝 , it is sufficient, by the Marcinkiewicz–Mikhlin
multiplier theorem (see [20, Theorem 6.2.4]), to show that

sup
𝜉 ∈R𝑑

���𝜉𝛼𝜕𝛼𝜉 𝑚𝜆,𝑠 (𝜉)��� � max{1, 𝜆𝑠}, (2.1)

for all multi-indices 𝛼 ∈ {0, 1}𝑑 . To that end, we introduce the notation

ℓ𝑖,𝜆(𝜉)
def
=

𝜉2
𝑖

𝜆2 |𝜉1 |2 + |𝜉 ′ |2
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and compute that

𝜉1𝜕𝜉1𝑚𝜆,𝑠 (𝜉) = 𝑠ℓ1,1(𝜉)
(
𝜆2𝑚𝜆,𝑠−2 (𝜉) − 𝑚𝜆,𝑠 (𝜉)

)
,

𝜉𝑖𝜕𝜉𝑖𝑚𝜆,𝑠 (𝜉) = 𝑠
(
ℓ𝑖,𝜆(𝜉) − ℓ𝑖,1(𝜉)

)
𝑚𝜆,𝑠 (𝜉),

𝜉1𝜕𝜉1ℓ 𝑗 ,𝜆 (𝜉) = 2
(
𝛿1 𝑗 − 𝜆

2ℓ1,𝜆(𝜉)
)
ℓ 𝑗 ,𝜆 (𝜉),

𝜉𝑖𝜕𝜉𝑖ℓ 𝑗 ,𝜆 (𝜉) = 2
(
𝛿𝑖 𝑗 − ℓ𝑖,𝜆(𝜉)

)
ℓ 𝑗 ,𝜆 (𝜉),

for any integers 𝑖 ∈ [2, 𝑑] and 𝑗 ∈ [1, 𝑑], where 𝛿𝑖 𝑗 denotes the usual Kronecker delta. Therefore,
iterating the preceding calculations and observing that��𝑚𝜆,𝑠 (𝜉)�� + ��𝜆2𝑚𝜆,𝑠−2 (𝜉)

�� � max{1, 𝜆𝑠},
��𝜆2ℓ1,𝜆

�� + ��ℓ𝑖,𝜆(𝜉)�� � 1,

for all integers 𝑖 ∈ [2, 𝑑], it is readily seen that (2.1) holds true, which establishes that the operator norm
of 𝑚𝜆,𝑠 (𝐷) is controlled by max{1, 𝜆𝑠}. This completes the proof of the lemma. �

Remark. Note that the assumption on the smoothness of the function f in Lemma 2.1 can, in fact, be
relaxed. Indeed, as described, for instance, in Theorem 6.6.1 from [8], the trace operator

Tr : S0 (R
𝑑) → S0(R

𝑑−1),

defined by

(Tr 𝑓 ) (𝑥1, 𝑥
′)

def
= 𝑓 (0, 𝑥 ′), where (𝑥1, 𝑥

′) ∈ R × R𝑑−1,

has a well-defined extension into a bounded operator from 𝑊 𝑠+1, 𝑝 (R𝑑) into 𝐵
𝑠+1− 1

𝑝
𝑝,𝑝 (R𝑑−1), for any

𝑝 ∈ (1,∞), as soon as the condition 𝑠 > 1
𝑝 − 1 is satisfied. Hence, for 𝑓 ∈ 𝑊 𝑠+1, 𝑝 (R𝑑), the condition

𝑓 (0, 𝑥 ′) ≡ 0 in Lemma 2.1 can be replaced by Tr 𝑓 = 0.

The next lemma is a variant of Lemma 2.1 for vector fields with an axisymmetric structure. It will
be employed to control specific quantities involving electromagnetic fields, later on. The statement of
the lemma below is written in the notation introduced at the beginning of this section.

Lemma 2.2. Let E be an axisymmetric divergence-free vector field without swirl and B be an axisym-
metric vector field with pure swirl.

Then, it holds that ����∇ × 𝐸

𝑟

����𝐿𝑝 � ‖𝐸 ‖ �𝑊 2, 𝑝

and ����𝐵𝜃𝑟 ���� �𝑊 𝑠,𝑝 �𝑠 ‖𝐵‖ �𝑊 𝑠+1, 𝑝 ,

for any 𝑝 ∈ (1,∞) and all 𝑠 > 1
𝑝 − 1.

Remark. For any given axisymmetric vector field 𝐸 = 𝐸𝑟 𝑒𝑟 + 𝐸𝑧𝑒𝑧 with no swirl, a direct computation
gives that the curl ∇ × 𝐸 = (𝜕𝑧𝐸𝑟 − 𝜕𝑟𝐸𝑧)𝑒𝜃 is axisymmetric with pure swirl. Similarly, given an
axisymmetric vector field 𝐵 = 𝐵𝜃𝑒𝜃 with pure swirl, another straightforward computation gives that
the curl ∇ × 𝐵 = −𝜕𝑧𝐵𝜃𝑒𝑟 + (𝜕𝑟𝐵𝜃 +

1
𝑟 𝐵𝜃 )𝑒𝑧 is axisymmetric with no swirl.
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Proof. The bound on 𝐵𝜃 is a consequence of Lemma 2.1. To see this, let us first assume that B is smooth
and has pure swirl. Then, we can write that

(𝐵1, 𝐵2, 0) = 𝐵𝜃𝑒𝜃 = 𝐵𝜃

(−𝑥2
𝑟
,
𝑥1
𝑟
, 0
)

to deduce that

𝐵1 |𝑥2=0 ≡ 0, 𝐵2 |𝑥1=0 ≡ 0,

and

𝐵𝜃
𝑟

= −
𝐵1
𝑥2

=
𝐵2
𝑥1
,

as soon as 𝑟 ≠ 0. Therefore, it is enough to estimate 𝐵1
𝑥2

or 𝐵2
𝑥1

.
Then, an application of Lemma 2.1 yields that����𝐵𝜃𝑟 ���� �𝑊 𝑠,𝑝 =

����𝐵2
𝑥1

���� �𝑊 𝑠,𝑝 �𝑠 ‖𝐵2‖ �𝑊 𝑠+1, 𝑝 ,

thereby establishing the desired bound on 𝐵𝜃 in the case of a smooth vector field. The general nonsmooth
case is then obtained by a standard approximation argument.

As for the bound on E, it will follow from a remarkable identity valid for axisymmetric divergence-
free vector fields with no swirl. Indeed, the fact that E is axisymmetric without swirl allows us to write
that

∇ × 𝐸 = (𝜕𝑧𝐸𝑟 − 𝜕𝑟𝐸𝑧)𝑒𝜃 ,

𝑒𝑟 · ∇(∇ × 𝐸) =
(
𝜕𝑟𝜕𝑧𝐸𝑟 − 𝜕

2
𝑟 𝐸𝑧

)
𝑒𝜃 ,

which, when combined with the divergence-free condition for axisymmetric fields

𝜕𝑟𝐸𝑟 +
1
𝑟
𝐸𝑟 + 𝜕𝑧𝐸𝑧 = 0,

leads to

∇ × 𝐸

𝑟
+ 𝑒𝑟 · ∇(∇ × 𝐸) =

(
1
𝑟
𝜕𝑧𝐸𝑟 −

1
𝑟
𝜕𝑟𝐸𝑧 + 𝜕𝑟𝜕𝑧𝐸𝑟 − 𝜕

2
𝑟 𝐸𝑧

)
𝑒𝜃

= −

(
𝜕2
𝑟 𝐸𝑧 +

1
𝑟
𝜕𝑟𝐸𝑧 + 𝜕

2
𝑧𝐸𝑧

)
𝑒𝜃 .

Then, identifying the action of the Laplacian on axisymmetric functions to deduce that

Δ𝐸𝑧 = 𝜕2
𝑟 𝐸𝑧 +

1
𝑟
𝜕𝑟𝐸𝑧 + 𝜕

2
𝑧𝐸𝑧 ,

we arrive at the expression

∇ × 𝐸

𝑟
= −𝑒𝑟 · ∇(∇ × 𝐸) − (Δ𝐸𝑧)𝑒𝜃 .

The bound on E therefore follows from a direct estimate in 𝐿𝑝 on the preceding identity, which completes
the proof of the lemma. �

We conclude this section with a lemma that extends the range of parameters in the classical para-
product laws by exploiting a geometric condition that is satisfied by the axisymmetric structure. These
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extended paradifferential estimates will be employed to obtain important a priori estimates for the
Navier–Stokes–Maxwell system (1.1), later on.

Lemma 2.3. Let 𝐹, 𝐺 : [0, 𝑇) × R3 → R3 be such that div 𝐹 = 0 and∫
R3
𝜑(𝑥 − 𝑦)∇ × 𝐹 (𝑡, 𝑦)𝑑𝑦 and

∫
R3
𝜓(𝑥 − 𝑦)𝐺 (𝑡, 𝑦)𝑑𝑦 are colinear, (2.2)

for all 𝑡 ∈ [0, 𝑇), 𝑥 ∈ R3, and any radially symmetric 𝜑, 𝜓 ∈ S0 (R
3) (i.e., such that 𝜑(𝑥) and 𝜓(𝑥) only

depend on |𝑥 |). Further consider parameters in [1,∞] such that

1
𝑎
=

1
𝑎1

+
1
𝑎2

and
1
𝑐
=

1
𝑐1

+
1
𝑐2
.

Then, recalling that 𝑃 = (−Δ)−1 curl curl denotes Leray’s projector onto solenoidal vector fields, one
has the product estimate

‖𝑃(𝐹 × 𝐺)‖
𝐿𝑎 ( [0,𝑇 ); �𝐵

𝑠+𝜂− 3
2

2,𝑐 )
� ‖𝐹‖𝐿𝑎1 ( [0,𝑇 ); �𝐵𝑠

2,𝑐1
) ‖𝐺‖𝐿𝑎2 ( [0,𝑇 ); �𝐵𝜂

2,𝑐2
) , (2.3)

for any 𝑠 ∈ (−∞, 3
2 ) and 𝜂 ∈ (−∞, 5

2 ) with 𝑠 + 𝜂 > 0.
Furthermore, in the endpoint case 𝑠 = 3

2 , one has that

‖𝑃(𝐹 × 𝐺)‖𝐿𝑎 ( [0,𝑇 ); �𝐵𝜂
2,𝑐 )
� ‖𝐹‖

𝐿𝑎1 ( [0,𝑇 );𝐿∞)∩𝐿𝑎1 ( [0,𝑇 ); �𝐵
3
2

2,∞)
‖𝐺‖𝐿𝑎2 ( [0,𝑇 ) �𝐵𝜂

2,𝑐 )
, (2.4)

for any 𝜂 ∈ (− 3
2 ,

5
2 ).

Finally, in the case 𝜂 = 5
2 , it holds that

‖𝑃(𝐹 × 𝐺)‖𝐿𝑎 ( [0,𝑇 ); �𝐵𝑠+1
2,𝑐 )
� ‖𝐹‖𝐿𝑎1 ( [0,𝑇 ); �𝐵𝑠

2,𝑐 )
‖𝐺‖

𝐿𝑎2 ( [0,𝑇 ); �𝐵
5
2

2,1)
, (2.5)

as soon as 𝑠 ∈ (− 5
2 ,

3
2 ), and the case 𝑠 = 3

2 is allowed provided that 𝑐 = 1.

Remark. The preceding result also holds for vector fields that are independent of time in classical Besov
spaces (without any norm in time). Accordingly, the lemma also holds in the case of Besov-space-valued
Lebesgue spaces. This means that removing the tildes in (2.3), (2.4) and (2.5) produces valid estimates.

Remark. Consider an axisymmetric field 𝐻 : R3 → R
3. For any radially symmetric 𝜑 ∈ S0 and any

rotation R around the z-axis, we find that

𝜑 ∗ 𝐻 (𝑅𝑥) =
∫
R3
𝜑(𝑅(𝑥 − 𝑦))𝐻 (𝑅𝑦)𝑑𝑦 =

∫
R3
𝜑(𝑥 − 𝑦)𝑅𝐻 (𝑦)𝑑𝑦 = 𝑅𝜑 ∗ 𝐻 (𝑥),

thereby showing that 𝜑 ∗ 𝐻 is axisymmetric, too. If, furthermore, the field H has pure swirl, then,
employing that 𝑆𝑥 (𝑦)

def
= 𝑦 − 2(𝑦 · 𝑒𝜃 (𝑥))𝑒𝜃 (𝑥), for any 𝑥 ≠ 0, is an isometry and satisfies that

1
2
(
𝑒𝜃 (𝑦) + 𝑒𝜃 (𝑆𝑥𝑦)

)
= 𝑒𝜃 (𝑦) −

(
𝑒𝜃 (𝑦) · 𝑒𝑟 (𝑥)

)
𝑒𝑟 (𝑥) =

(
𝑒𝜃 (𝑦) · 𝑒𝜃 (𝑥)

)
𝑒𝜃 (𝑥),
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we compute that∫
R3
𝜑(𝑥 − 𝑦)𝐻𝜃 (𝑦)𝑒𝜃 (𝑦)𝑑𝑦 =

1
2

∫
R3

(
𝜑(𝑥 − 𝑦)𝐻𝜃 (𝑦)𝑒𝜃 (𝑦) + 𝜑(𝑥 − 𝑆𝑥𝑦)𝐻𝜃 (𝑆𝑥𝑦)𝑒𝜃 (𝑆𝑥𝑦)

)
𝑑𝑦

=
1
2

∫
R3
𝜑(𝑥 − 𝑦)𝐻𝜃 (𝑦)

(
𝑒𝜃 (𝑦) + 𝑒𝜃 (𝑆𝑥𝑦)

)
𝑑𝑦

=

(∫
R3
𝜑(𝑥 − 𝑦)𝐻𝜃 (𝑦)

(
𝑒𝜃 (𝑦) · 𝑒𝜃 (𝑥)

)
𝑑𝑦

)
𝑒𝜃 (𝑥),

which establishes that 𝜑 ∗ 𝐻 has pure swirl, as well.

Remark. The hypothesis (2.2) is satisfied by axisymmetric divergence-free vector fields such that F
has no swirl and G has pure swirl. Indeed, as previously emphasized, the curl of an axisymmetric vector
field with no swirl is axisymmetric with pure swirl. Therefore, in this situation, it holds that ∇ × 𝐹 and
G both have pure swirls, which implies, according to the preceding remark, that their convolutions with
radial functions remain axisymmetric with pure swirl and are thus colinear.

Remark. Note that Lemma 2.3 above is an extension of [3, Lemma 3.4] to the three-dimensional setting.
In particular, its significance lies in the fact that it allows us to cover the range of parameters 𝜂 ∈ [ 3

2 ,
5
2 ).

Indeed, without the geometric assumption (2.2) on F and G, the paradifferential estimates remain valid
but may need to be restricted to parameters satisfying 𝜂 < 3

2 .

Proof. We follow the method of proof of Lemma 3.4 from [3] and write Bony’s decomposition

𝐹 × 𝐺 = 𝑇𝐹𝐺 − 𝑇𝐺𝐹 + 𝑅(𝐹, 𝐺),

where the paraproducts are defined by

𝑇𝐹𝐺 =
∑
𝑗 ,𝑘∈Z
𝑗−𝑘<−2

Δ 𝑗𝐹 × Δ 𝑘𝐺, 𝑇𝐺𝐹 =
∑
𝑗 ,𝑘∈Z
𝑗−𝑘<−2

Δ 𝑗𝐺 × Δ 𝑘𝐹 = −
∑
𝑗 ,𝑘∈Z
𝑗−𝑘>2

Δ 𝑗𝐹 × Δ 𝑘𝐺,

and the remainder is given by

𝑅(𝐹, 𝐺) =
∑
𝑗 ,𝑘∈Z

| 𝑗−𝑘 | ≤2

Δ 𝑗𝐹 × Δ 𝑘𝐺,

to deduce that a direct application of classical paraproduct estimates on homogeneous Besov spaces
(see [3, Appendix A] or [7], for instance), combined with the fact that P is bounded over Besov spaces,
yields the validity of (2.3) for parameters 𝑠 ∈ (−∞, 3

2 ) and 𝜂 ∈ (−∞, 3
2 ) with 𝑠 + 𝜂 > 0, and the validity

of (2.4) for parameters 𝜂 ∈ (− 3
2 ,

3
2 ).

It is important to emphasize here that the restriction 𝜂 < 3
2 comes solely from the estimate of 𝑇𝐺𝐹.

Thus, in order to establish the validity of (2.3) and (2.4) for the full range of parameters, we only need
to show now that

‖𝑃(𝑇𝐺𝐹)‖
𝐿𝑎 ( [0,𝑇 ); �𝐵

𝑠+𝜂− 3
2

2,𝑐 )
� ‖𝐹‖𝐿𝑎1 ( [0,𝑇 ); �𝐵𝑠

2,𝑐1
) ‖𝐺‖𝐿𝑎2 ( [0,𝑇 ); �𝐵𝜂

2,𝑐2
) , (2.6)

for any 𝑠 ∈ R and 𝜂 ∈ (−∞, 5
2 ), as a consequence of the divergence-free structure of F and the geometric

assumption (2.2).
To that end, assuming first that F and G are smooth, we compute that

∇ × (𝐹 × 𝐺) = ∇(𝐹 · 𝐺) − 𝐺 × (∇ × 𝐹) − 𝐹 × (∇ × 𝐺) − 2𝐹 · ∇𝐺 + 𝐹 div𝐺 − 𝐺 div 𝐹.
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Thus, if ∇ × 𝐹 and G are colinear and F is divergence-free, we arrive at

𝑃(𝐹 × 𝐺) = (−Δ)−1∇ ×
(
− 𝐹 × (∇ × 𝐺) − 2𝐹 · ∇𝐺 + 𝐹 div𝐺

)
. (2.7)

Now, applying the same reasoning to Δ 𝑘𝐹 and Δ 𝑗𝐺, instead of F and G, and utilizing (2.2) to deduce
that ∇ × Δ 𝑘𝐹 and Δ 𝑗𝐺 are colinear, we obtain that

𝑃(𝑇𝐺𝐹) = (−Δ)−1∇ ×

( ∑
𝑗 ,𝑘∈Z
𝑗−𝑘<−2

(
Δ 𝑘𝐹 × (∇ × Δ 𝑗𝐺) + 2Δ 𝑘𝐹 · ∇Δ 𝑗𝐺 − Δ 𝑘𝐹 divΔ 𝑗𝐺

))
. (2.8)

Therefore, applying classical paraproduct estimates (see [3, Appendix A] or [7]), we conclude, for any
𝑠 ∈ R and 𝜂 < 5

2 , that

‖𝑃(𝑇𝐺𝐹)‖
𝐿𝑎 �𝐵

𝑠+𝜂− 3
2

2,𝑐

�

����� ∑
𝑗 ,𝑘∈Z
𝑗−𝑘<−2

(
Δ 𝑘𝐹 × (∇ × Δ 𝑗𝐺) + 2Δ 𝑘𝐹 · ∇Δ 𝑗𝐺 − Δ 𝑘𝐹 divΔ 𝑗𝐺

)�����
𝐿𝑎 �𝐵

𝑠+𝜂− 5
2

2,𝑐

� ‖𝐹‖𝐿𝑎1 �𝐵𝑠
2,𝑐1

‖∇𝐺‖
𝐿𝑎2 �𝐵

𝜂− 5
2

∞,𝑐2

� ‖𝐹‖𝐿𝑎1 �𝐵𝑠
2,𝑐1

‖∇𝐺‖
𝐿𝑎2 �𝐵

𝜂−1
2,𝑐2

� ‖𝐹‖𝐿𝑎1 �𝐵𝑠
2,𝑐1

‖𝐺‖𝐿𝑎2 �𝐵
𝜂
2,𝑐2

,

which establishes (2.6), thereby completing the proof of (2.3) and (2.4).
The justification of (2.5) is similar. Indeed, the classical paradifferential estimates apply directly to

the paraproduct 𝑇𝐹𝐺 and the remainder 𝑅(𝐹, 𝐺) in the range of parameters desribed in (2.5). Thus, we
see that (2.5) will follow from the justification of the paraproduct estimate

‖𝑃(𝑇𝐺𝐹)‖𝐿𝑎 ( [0,𝑇 ); �𝐵𝑠+1
2,𝑐 )
� ‖𝐹‖𝐿𝑎1 ( [0,𝑇 ); �𝐵𝑠

2,𝑐 )
‖𝐺‖

𝐿𝑎2 ( [0,𝑇 ); �𝐵
5
2

2,1)
, (2.9)

for any 𝑠 ∈ R. As before, in order to prove (2.9), we apply classical paraproduct estimates to (2.8). This
leads to

‖𝑃(𝑇𝐺𝐹)‖𝐿𝑎 �𝐵𝑠+1
2,𝑐

�

����� ∑
𝑗 ,𝑘∈Z
𝑗−𝑘<−2

(
Δ 𝑘𝐹 × (∇ × Δ 𝑗𝐺) + 2Δ 𝑘𝐹 · ∇Δ 𝑗𝐺 − Δ 𝑘𝐹 divΔ 𝑗𝐺

)�����
𝐿𝑎 �𝐵𝑠

2,𝑐

� ‖𝐹‖𝐿𝑎1 �𝐵𝑠
2,𝑐
‖∇𝐺‖𝐿𝑎2 𝐿∞ � ‖𝐹‖𝐿𝑎1 �𝐵𝑠

2,𝑐
‖∇𝐺‖𝐿𝑎2 �𝐵0

∞,1

� ‖𝐹‖𝐿𝑎1 �𝐵𝑠
2,𝑐
‖𝐺‖𝐿𝑎2 �𝐵1

∞,1
� ‖𝐹‖𝐿𝑎1 �𝐵𝑠

2,𝑐
‖𝐺‖

𝐿𝑎2 �𝐵
5
2

2,1

,

for all 𝑠 ∈ R, which establishes the validity of (2.5) and concludes of the proof of the lemma. �

Remark. If, instead of (2.2), one merely assumes that ∇ × 𝐹 and G are colinear, in the sense that
𝐺 × (∇ × 𝐹) = 0, then the paradifferential estimate (2.3) remains valid for any parameters 𝑠 ∈ (−∞, 3

2 )

and 𝜂 ∈ (−∞, 5
2 ) in the range 𝑠 + 𝜂 > 1. This follows from applying Bony’s decomposition to each

term of (2.7) and then estimating the resulting paraproducts and remainders as in the proof above.
The restriction 𝑠 + 𝜂 > 1 is then a consequence of the estimates of the remainders. Similarly, under
the assumption that ∇ × 𝐹 and G are colinear, one can show that (2.4) and (2.5) remain valid in the
respective ranges 𝜂 ∈ (− 1

2 ,
5
2 ) and 𝑠 ∈ (− 3

2 ,
3
2 ).
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3. A priori estimates

Here, we establish a priori estimates on smooth solutions of the Navier–Stokes–Maxwell system (1.1).
The ensuing bounds will be employed to prove existence of global solutions to that system. For simplicity,
from now on, we take 𝜈 = 1 in (1.1). However, we emphasize that all estimates below hold for any 𝜈 > 0.

We recall first that the only available global bound for smooth solutions of (1.1) corresponds to the
𝐿2-energy estimate

‖𝑢‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 + ‖(𝐸, 𝐵)‖𝐿∞

𝑡 𝐿
2 + ‖ 𝑗 ‖𝐿2

𝑡 𝐿
2 � E0

def
= ‖(𝑢0, 𝐸0, 𝐵0)‖𝐿2 . (3.1)

As explained in the introduction, this bound does not seem to be enough to construct any kind of
solutions. Therefore, we shall aim to propagate some higher regularity for u, E and B.

In what follows, we recall that are using the notation

Ω
def
=
𝜔𝜃
𝑟

and Γ
def
=
𝐵𝜃
𝑟
,

where

𝜔𝜃 = 𝜔 · 𝑒𝜃 = (∇ × 𝑢) · 𝑒𝜃 and 𝐵𝜃 = 𝐵 · 𝑒𝜃 .

3.1. Controlling the velocity field

In order to control higher regularities for the velocity field, we shall exploit the axisymmetric structure
and perform an energy estimate on the equations describing the evolution of 𝜔𝜃 and Ω, which we
derived in Section 1.1. For convenience, we recall here that the equation for 𝜔𝜃 can be written as

𝜕𝑡𝜔𝜃 + 𝑢 · ∇𝜔𝜃 −
(
Δ −

1
𝑟2
)
𝜔𝜃 =

𝑢𝑟
𝑟
𝜔𝜃 − 𝜕𝑧

(
Γ𝐵𝜃

)
−

1
𝑐
𝜕𝑡𝐸𝑟

𝐵𝜃
𝑟

+
1
𝑐
𝜕𝑡𝐸 · ∇𝐵𝜃 , (3.2)

whereas the equation for Ω reads as

𝜕𝑡Ω + 𝑢 · ∇Ω −
(
Δ +

𝜕𝑟
𝑟

)
Ω = −𝜕𝑧

(
Γ2) − 1

𝑐
𝜕𝑡𝐸 · ∇Γ. (3.3)

The following proposition provides a control on the velocity field in terms of some suitable norms of
electromagnetic fields. This will be combined with the estimates from Section 3.2 to obtain uniform
global bounds in Section 5, later on.
Proposition 3.1. Let 𝑇 ∈ (0,∞] and (𝑢, 𝐸, 𝐵) be a smooth axisymmetric solution of (1.1) on [0, 𝑇),
where u and E have no swirl and B has pure swirl. Then, there is a universal constant 𝐶 > 0 such that

‖(𝜔,Ω)‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1

�
(
‖(𝜔0,Ω0)‖𝐿2 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 + ‖Γ‖𝐿∞

𝑡 𝐿
3 ‖(𝐵, Γ)‖𝐿2

𝑡
�𝐻 1

)
exp

(
𝐶E2

0
)
,

where all the norms are taken over the time interval [0, 𝑇).
Remark. Note that the right-hand side in the bound above does not exhibit any time growth, provided
that the norms of the electromagnetic fields remain bounded on any time interval [0, 𝑇). This is crucial
and necessary to prove the global existence of solutions in Theorem 1.1.
Proof. First, we observe that a straightforward computation relying on the fact 𝜔 is axisymmetric
without swirl yields that

𝑒𝑟 · ∇𝜔 = (𝜕𝑟𝜔𝜃 )𝑒𝜃 , 𝑒𝜃 · ∇𝜔 = −
𝜔𝜃
𝑟
𝑒𝑟 = −Ω𝑒𝑟 , 𝑒𝑧 · ∇𝜔 = (𝜕𝑧𝜔𝜃 )𝑒𝜃 .
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In particular, this implies that

|𝜔| = |𝜔𝜃 | and |∇𝜔| ∼ |(𝜕𝑟𝜔𝜃 , 𝜕𝑧𝜔𝜃 ) | + |Ω|, (3.4)

which will allow us to estimate (𝜔𝜃 ,Ω) instead of (𝜔,Ω).
Now, multiplying (3.2) by 𝜔𝜃 , integrating in time and space, and then using the divergence-free

condition on E and u yields, for all 𝑡 ∈ [0, 𝑇), that

1
2
‖𝜔𝜃 (𝑡)‖

2
𝐿2 + ‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2 +

���𝜔𝜃
𝑟

���2
𝐿2
𝑡 𝐿

2

≤
1
2
‖𝜔0‖

2
𝐿2 +

∫ 𝑡

0

����𝑢𝑟 (𝜏)𝑟

����𝐿∞ ‖𝜔𝜃 (𝜏)‖
2
𝐿2𝑑𝜏 +

����∫ 𝑡

0

∫
R3

Γ(𝜏)𝐵(𝜏)𝜕𝑧𝜔𝜃 (𝜏)𝑑𝑥𝑑𝜏

����
+

∫ 𝑡

0

1
𝑐
‖(𝜕𝑡𝐸)𝐵(𝜏)‖𝐿2

(
‖∇𝜔𝜃 (𝜏)‖𝐿2 +

���𝜔𝜃
𝑟

(𝜏)
���𝐿2

)
𝑑𝜏,

(3.5)

where the norms in time are taken over the interval [0, 𝑡).
In order to estimate the second term in the right-hand side above, we make use of (1.10) to obtain,

for any 𝜀 > 0, that∫ 𝑡

0

����𝑢𝑟 (𝜏)𝑟

����𝐿∞ ‖𝜔𝜃 (𝜏)‖
2
𝐿2𝑑𝜏

�
∫ 𝑡

0
‖Ω(𝜏)‖

1
2
𝐿2 ‖∇Ω(𝜏)‖

1
2
𝐿2 ‖𝜔𝜃 (𝜏)‖

2
𝐿2𝑑𝜏

≤ 𝜀

∫ 𝑡

0
‖Ω(𝜏)‖𝐿2 ‖∇Ω(𝜏)‖𝐿2𝑑𝜏 + 𝐶𝜀

∫ 𝑡

0
‖𝜔𝜃 (𝜏)‖

4
𝐿2𝑑𝜏

≤ 𝜀
(���𝜔𝜃

𝑟

���2
𝐿2
𝑡 𝐿

2 + ‖Ω‖2
𝐿2
𝑡
�𝐻 1

)
+ 𝐶𝜀

∫ 𝑡

0
‖𝑢(𝜏)‖2

�𝐻 1 ‖𝜔𝜃 (𝜏)‖
2
𝐿2𝑑𝜏,

(3.6)

where we utilized the celebrated Biot–Savart estimate in the last line.
However, the estimate of the third term in the right-hand side of (3.5) is obtained by employing

Hölder’s inequality, again, followed by the Sobolev embedding �𝐻1 ↩→ 𝐿6 (R3) to write, for any 𝜀 > 0,
that ����∫ 𝑡

0

∫
R3

Γ(𝜏)𝐵(𝜏)𝜕𝑧𝜔𝜃 (𝜏)𝑑𝑥𝑑𝜏

���� ≤ 𝐶𝜀

∫ 𝑡

0
‖Γ𝐵(𝜏)‖2

𝐿2𝑑𝜏 + 𝜀‖𝜕𝑧𝜔𝜃 ‖
2
𝐿2
𝑡 𝐿

2

≤ 𝐶𝜀

∫ 𝑡

0
‖Γ(𝜏)‖2

𝐿3 ‖𝐵(𝜏)‖
2
𝐿6𝑑𝜏 + 𝜀‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2

≤ 𝐶𝜀 ‖Γ‖
2
𝐿∞
𝑡 𝐿

3 ‖𝐵‖
2
𝐿2
𝑡
�𝐻 1 + 𝜀‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2 .

(3.7)

Finally, the last integral in (3.5) can be easily controlled by similar arguments to obtain that∫ 𝑡

0

1
𝑐
‖(𝜕𝑡𝐸)𝐵(𝜏)‖𝐿2

(
‖∇𝜔𝜃 (𝜏)‖𝐿2 +

���𝜔𝜃
𝑟

(𝜏)
���𝐿2

)
𝑑𝜏

≤
𝐶𝜀
𝑐2 ‖𝜕𝑡𝐸 ‖

2
𝐿2
𝑡 𝐿

3 ‖𝐵‖
2
𝐿∞
𝑡 𝐿

6 + 𝜀
(
‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2 +

���𝜔𝜃
𝑟

���2
𝐿2
𝑡 𝐿

2

)
≤
𝐶𝜀
𝑐2 ‖𝜕𝑡𝐸 ‖

2
𝐿2
𝑡
�𝐻

1
2
‖𝐵‖2

𝐿∞
𝑡

�𝐻 1 + 𝜀
(
‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2 +

���𝜔𝜃
𝑟

���2
𝐿2
𝑡 𝐿

2

)
.

(3.8)
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All in all, incorporating (3.6), (3.7) and (3.8) into (3.5), and choosing 𝜀 small enough yields that

‖𝜔(𝑡)‖2
𝐿2 + ‖∇𝜔𝜃 ‖

2
𝐿2
𝑡 𝐿

2 +

���𝜔𝜃
𝑟

���2
𝐿2
𝑡 𝐿

2

≤ ‖𝜔0‖
2
𝐿2 +

1
4
‖Ω‖2

𝐿2
𝑡
�𝐻 1 + 𝐶

∫ 𝑡

0
‖𝑢(𝜏)‖2

�𝐻 1 ‖𝜔(𝜏)‖
2
𝐿2𝑑𝜏

+ 𝐶‖Γ‖2
𝐿∞
𝑡 𝐿

3 ‖𝐵‖
2
𝐿2
𝑡
�𝐻 1 +

𝐶

𝑐2 ‖𝜕𝑡𝐸 ‖
2
𝐿2
𝑡
�𝐻

1
2
‖𝐵‖2

𝐿∞
𝑡

�𝐻 1 ,

(3.9)

where we have utilized (3.4).
Now, we show how to estimate Ω in the right-hand side above. To that end, we first perform an

𝐿2-energy estimate on (3.3) followed by a standard application of paraproduct laws to find, for any
𝑡 ∈ [0, 𝑇), that

1
2
‖Ω(𝑡)‖2

𝐿2 + ‖Ω‖2
𝐿2
𝑡
�𝐻 1 ≤

1
2
‖Ω0‖

2
𝐿2 +

��Γ2��
𝐿2
𝑡 𝐿

2 ‖Ω‖𝐿2
𝑡
�𝐻 1 +

1
𝑐
‖𝜕𝑡𝐸 · ∇Γ‖𝐿2

𝑡
�𝐻−1 ‖Ω‖𝐿2

𝑡
�𝐻 1

≤
1
2
‖Ω0‖

2
𝐿2 + 𝐶‖Γ‖4

𝐿4
𝑡 𝐿

4 +
𝐶

𝑐2 ‖𝜕𝑡𝐸 ‖
2
𝐿2
𝑡
�𝐻

1
2
‖Γ‖2

𝐿∞
𝑡

�𝐻 1 +
1
2
‖Ω‖2

𝐿2
𝑡
�𝐻 1 ,

for some universal constant𝐶 > 0. Therefore, by further employing Hölder’s and embedding inequalities,
we obtain that

‖Ω(𝑡)‖2
𝐿2 + ‖Ω‖2

𝐿2
𝑡
�𝐻 1 ≤ ‖Ω0‖

2
𝐿2 + 𝐶‖Γ‖2

𝐿∞
𝑡 𝐿

3 ‖Γ‖
2
𝐿2
𝑡
�𝐻 1 +

𝐶

𝑐2 ‖𝜕𝑡𝐸 ‖
2
𝐿2
𝑡
�𝐻

1
2
‖Γ‖2

𝐿∞
𝑡

�𝐻 1 .

Hence, recalling that

Γ =
𝐵𝜃
𝑟
,

and employing Lemma 2.2, we arrive at the bound

‖Ω(𝑡)‖2
𝐿2 + ‖Ω‖2

𝐿2
𝑡
�𝐻 1 ≤ ‖Ω0‖

2
𝐿2 + 𝐶‖Γ‖2

𝐿∞
𝑡 𝐿

3 ‖Γ‖
2
𝐿2
𝑡
�𝐻 1 +

𝐶

𝑐2 ‖𝜕𝑡𝐸 ‖
2
𝐿2
𝑡
�𝐻

1
2
‖𝐵‖2

𝐿∞
𝑡

�𝐻 2 . (3.10)

At last, summing (3.9) and (3.10), and utilizing (3.4), we arrive at the estimate

‖𝜔(𝑡)‖2
𝐿2 + ‖𝜔‖2

𝐿2
𝑡
�𝐻 1 + ‖Ω(𝑡)‖2

𝐿2 + ‖Ω‖2
𝐿2
𝑡
�𝐻 1

� ‖𝜔0‖
2
𝐿2 + ‖Ω0‖

2
𝐿2 +

∫ 𝑡

0
‖𝑢(𝜏)‖2

�𝐻 1 ‖𝜔(𝜏)‖
2
𝐿2𝑑𝜏

+

(����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 + ‖Γ‖𝐿∞

𝑡 𝐿
3 ‖(𝐵, Γ)‖𝐿2

𝑡
�𝐻 1

)2
.

Finally, an application of the classical Grönwall inequality yields that

‖(𝜔,Ω)‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 �

(
‖(𝜔0,Ω0)‖𝐿2 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 + ‖Γ‖𝐿∞

𝑡 𝐿
3 ‖(𝐵, Γ)‖𝐿2

𝑡
�𝐻 1

)
× exp

(
𝐶

∫ 𝑡

0
‖𝑢(𝜏)‖2

�𝐻 1𝑑𝜏

)
,

which, in view of the energy inequality (3.1), concludes the proof of the proposition. �
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In view of the estimates on the velocity field given in the preceding proposition, we now need to
establish the following bounds on the electromagnetic field:

◦ An asymptotically vanishing bound for 1
𝑐 𝜕𝑡𝐸 of the form

1
𝑐
‖𝜕𝑡𝐸 ‖

𝐿2
𝑡
�𝐻

1
2
� 𝑐−𝛼𝐹

(
‖(𝑢, 𝐸, 𝐵)‖𝑋

)
, (3.11)

for some 𝛼 > 0, a (nonlinear) function F and a suitable functional space X.
◦ An asymptotically global bound for 𝐵 in 𝐿2

𝑡
�𝐻1 and Γ in 𝐿∞𝑡 𝐿3 ∩ 𝐿2

𝑡
�𝐻1 of the form

‖𝐵‖𝐿2
𝑡
�𝐻 1 + ‖Γ‖𝐿∞

𝑡 𝐿
3∩𝐿2

𝑡
�𝐻 1 ≤ 𝐶0 + 𝑐

−𝛽𝐹
(
‖(𝑢, 𝐸, 𝐵)‖𝑋

)
, (3.12)

for some 𝛽 > 0 and 𝐶0 > 0 depending only on the initial data.

The complete justification of these bounds will be the subject of Section 4, later on.

3.2. Controlling the electromagnetic field

Here, we establish several estimates combining the refined study of the dispersive properties of Maxwell’s
equations from [3] with the axisymmetric structure. The principal results of this part of the article are
obtained in Sections 3.2.1 and 3.2.2, below.

The ensuing bounds will be further combined with the results from the previous section to arrive at
a global control of solutions to (1.1) in Section 5, later on.

For the sake of clarity, we recall first the essential results from [3] on Strichartz estimates and maximal
parabolic regularity for the three-dimensional damped Maxwell system, which are useful in the present
work.

Lemma 3.2 [3, Corollary 2.12]. Consider a solution (𝐸, 𝐵) : [0, 𝑇) ×R3 → R6 of the damped Maxwell
system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
𝑐
𝜕𝑡𝐸 − ∇ × 𝐵 + 𝜎𝑐𝐸 = 𝐺,

1
𝑐
𝜕𝑡𝐵 + ∇ × 𝐸 = 0,

div 𝐵 = 0,

(3.13)

for some initial data (𝐸, 𝐵) (0, 𝑥) = (𝐸0, 𝐵0) (𝑥), where 𝜎 > 0 and 𝑐 > 0.
For any exponent pairs (𝑞, 𝑟), (𝑞, 𝑟) ∈ [1,∞] × [2,∞) that are admissible in the sense that

1
𝑞
+

1
𝑟
≥

1
2

and
1
𝑞
+

1
𝑟
≥

1
2
,

and such that

1
𝑞
+

1
𝑞
≤ 1,

one has the high-frequency estimate

2− 𝑗 (1− 2
𝑟 )
��Δ 𝑗 (𝑃𝐸, 𝐵)

��
𝐿𝑞 ( [0,𝑇 );𝐿𝑟 )

� 𝑐
1
2−

1
𝑟 −

2
𝑞
��Δ 𝑗 (𝑃𝐸0, 𝐵0)

��
𝐿2 + 𝑐2− 1

𝑟 −
1
𝑟 −

2
𝑞 −

2
�̃� 2 𝑗 (1− 2

𝑟 )
��Δ 𝑗𝑃𝐺

��
𝐿�̃�′ ( [0,𝑇 );𝐿�̃�′ ) ,
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for all 𝑗 ∈ Z with 2 𝑗 ≥ 𝜎𝑐, and the low-frequency estimates

2− 𝑗 (
3
2−

3
𝑟 )
��Δ 𝑗𝑃𝐸

��
𝐿𝑞 ( [0,𝑇 );𝐿𝑟 )

� 𝑐−
2
𝑞
��Δ 𝑗𝑃𝐸0

��
𝐿2 + 𝑐−12 𝑗

(
1− 2

𝑞

) ��Δ 𝑗𝐵0
��
𝐿2 + 𝑐1− 2

𝑞 −
2
�̃� 2 𝑗 (

3
2−

3
𝑟 )
��Δ 𝑗𝑃𝐺

��
𝐿�̃�′ ( [0,𝑇 );𝐿�̃�′ )

and

2− 𝑗
(

3
2−

3
𝑟 −

2
𝑞

) ��Δ 𝑗𝐵
��
𝐿𝑞 ( [0,𝑇 );𝐿𝑟 )

� 𝑐−12 𝑗
��Δ 𝑗𝑃𝐸0

��
𝐿2 +

��Δ 𝑗𝐵0
��
𝐿2 + 2 𝑗

(
5
2−

3
𝑟 −

2
�̃�

) ��Δ 𝑗𝑃𝐺
��
𝐿�̃�′ ( [0,𝑇 );𝐿𝑟′ ) ,

for all 𝑗 ∈ Z with 2 𝑗 ≤ 𝜎𝑐.
Lemma 3.3. [3, Corollary 2.14] Consider a solution (𝐸, 𝐵) : [0, 𝑇) ×R3 → R6 of the damped Maxwell
system (3.13), for some initial data (𝐸, 𝐵) (0, 𝑥) = (𝐸0, 𝐵0) (𝑥), where 𝜎 > 0 and 𝑐 > 0.

For any 𝜒 ∈ 𝐶∞
𝑐 (R𝑑) and 𝑠 ∈ R, one has the low-frequency estimates��𝜒(𝑐−1𝐷)𝑃𝐸

��
𝐿𝑚
𝑡 ( [0,𝑇 ); �𝐵𝑠+ 2

𝑚
2,𝑞 )

� 𝑐−
2
𝑚 ‖𝑃𝐸0‖

�𝐵
𝑠+ 2

𝑚
2,𝑞

+ 𝑐−1‖𝐵0‖ �𝐵𝑠+1
2,𝑚

+ 𝑐−1+ 2
𝑟 −

2
𝑚 ‖𝑃𝐺‖

𝐿𝑟
𝑡 ( [0,𝑇 ); �𝐵

𝑠+ 2
𝑚

2,𝑞 )
,

for any 1 < 𝑟 ≤ 𝑚 < ∞ and 1 ≤ 𝑞 ≤ ∞, as well as��𝜒(𝑐−1𝐷)𝐵
��
𝐿𝑚
𝑡 ( [0,𝑇 ); �𝐵𝑠+ 2

𝑚
2,1 )

� 𝑐−1‖𝑃𝐸0‖ �𝐵𝑠+1
2,𝑚

+ ‖𝐵0‖ �𝐵𝑠
2,𝑚

+ ‖𝑃𝐺‖
𝐿𝑟
𝑡 ( [0,𝑇 ); �𝐵

𝑠−1+ 2
𝑟

2,∞ )
,

for any 1 < 𝑟 < 𝑚 < ∞, and��𝜒(𝑐−1𝐷)𝐵
��
𝐿𝑚
𝑡 ( [0,𝑇 ); �𝐵𝑠+ 2

𝑚
2,𝑞 )

� 𝑐−1‖𝑃𝐸0‖ �𝐵𝑠+1
2,𝑚

+ ‖𝐵0‖ �𝐵𝑠
2,𝑚

+ ‖𝑃𝐺‖
𝐿𝑚
𝑡 ( [0,𝑇 ); �𝐵𝑠−1+ 2

𝑚
2,𝑞 )

,

for any 1 < 𝑚 < ∞ and 1 ≤ 𝑞 ≤ ∞.
Let us now be more precise about the source term G that will be used in the application of the

preceding two lemmas. Specifically, we will consider the Maxwell system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
𝑐
𝜕𝑡𝐸 − ∇ × 𝐵 + 𝜎𝑐𝐸 = −𝜎𝑃(𝑢 × 𝐵), div 𝐸 = 0,

1
𝑐
𝜕𝑡𝐵 + ∇ × 𝐸 = 0, div 𝐵 = 0,

div 𝑢 = 0.

(3.14)

Furthermore, in order to exploit the dichotomy between high and low frequencies featured in the
estimates from the above lemmas, we consider the variants of Besov semi-norms

‖ 𝑓 ‖ �𝐵𝑠
𝑝,𝑞,<

def
=

����
∑
𝑘∈Z

2𝑘<𝜎𝑐

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑝

����
1
𝑞

and ‖ 𝑓 ‖ �𝐵𝑠
𝑝,𝑞,>

def
=

����
∑
𝑘∈Z

2𝑘 ≥𝜎𝑐

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑝

����
1
𝑞

,

as well as the corresponding variants of Chemin–Lerner semi-norms

‖ 𝑓 ‖𝐿𝑟
𝑡
�𝐵𝑠
𝑝,𝑞,<

def
=

����
∑
𝑘∈Z

2𝑘<𝜎𝑐

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑟
𝑡 𝐿

𝑝
𝑥

����
1
𝑞

and ‖ 𝑓 ‖𝐿𝑟
𝑡
�𝐵𝑠
𝑝,𝑞,>

def
=

����
∑
𝑘∈Z

2𝑘 ≥𝜎𝑐

2𝑘𝑠𝑞 ‖Δ 𝑘 𝑓 ‖𝑞𝐿𝑟
𝑡 𝐿

𝑝
𝑥

����
1
𝑞

,
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for any 𝑠 ∈ R and 0 < 𝑝, 𝑞, 𝑟 ≤ ∞ (with obvious modifications if q is infinite). These families of semi-
norms have been introduced in [3]. We will utilize them extensively throughout the upcoming sections
of our work.

3.2.1. Control of high-frequency electromagnetic waves
Here, we establish key bounds on high frequencies of electromagnetic fields. Lemma 3.4 below com-
bines the damped Strichartz estimates for high electromagnetic frequencies from Lemma 3.2 with the
paradifferential product laws on axisymmetric vector fields from Lemma 2.3.

The method behind the proof of this lemma is similar to the one used in [3] (see Lemma 3.8,
therein). However, here, we further refine the method by introducing an additional high–low frequency
decomposition of the source term 𝑃(𝑢 × 𝐵) in (3.4). This will allow us to obtain stronger estimates (see
(3.15), below).

Lemma 3.4. Let 𝑇 ∈ (0,∞] and (𝐸, 𝐵) be a smooth axisymmetric solution to (3.14), defined on [0, 𝑇),
for some initial data (𝐸0, 𝐵0) and some axisymmetric divergence-free vector field u. Assume further that
𝐸 and u are both without swirl and that B has pure swirl.

Then, for any 𝑠 ∈ (− 3
2 ,

5
2 ), 𝑛 ∈ [1,∞] and any 𝑞 ∈ [ 4

3 ,∞], it holds that

‖(𝐸, 𝐵)‖𝐿𝑞
𝑡
�𝐵𝑠

2,𝑛,>
� 𝑐−

2
𝑞 ‖(𝐸0, 𝐵0)‖ �𝐵𝑠

2,𝑛,>
+ 𝑐

1
2−

2
𝑞 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ‖𝐵‖𝐿2

𝑡
�𝐵𝑠

2,𝑛
.

Moreover, at the endpoint 𝑠 = 5
2 , we have that

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐−
1
2+

2
𝑝−

2
𝑞 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ‖𝐵‖

𝐿
𝑝
𝑡

�𝐵
5
2

2,1

,

as soon as 2 ≤ 𝑝 ≤ 𝑞 ≤ ∞. Furthermore, in the case 𝑝 = 2, it holds that

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐
1
2−

2
𝑞 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
,

(3.15)

for all 𝑞 ∈ [2,∞].

Proof. Applying Lemma 3.2 yields that��Δ 𝑗 (𝐸, 𝐵)
��
𝐿
𝑞
𝑡 𝐿

2 � 𝑐−
2
𝑞
��Δ 𝑗 (𝐸0, 𝐵0)

��
𝐿2 + 𝑐−1+2( 1

𝑝 −
1
𝑞 )
��Δ 𝑗𝑃

(
𝑢 × 𝐵

)��
𝐿
𝑝
𝑡 𝐿

2 ,

for all 𝑗 ∈ Z, with 2 𝑗 ≥ 𝜎𝑐, and any 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞. It then follows, for any 𝑠 ∈ R and any 𝑛 ∈ [1,∞],
that

‖(𝐸, 𝐵)‖𝐿𝑞
𝑡
�𝐵𝑠

2,𝑛,>
� 𝑐−

2
𝑞 ‖(𝐸0, 𝐵0)‖ �𝐵𝑠

2,𝑛,>
+ 𝑐−1+2( 1

𝑝−
1
𝑞 )
��𝑃 (𝑢 × 𝐵

)��
𝐿
𝑝
𝑡

�𝐵𝑠
2,𝑛
. (3.16)

Thus, choosing 𝑝 = 4
3 and utilizing (2.4) we find, for all 𝑠 ∈ (− 3

2 ,
5
2 ), 𝑛 ∈ [1,∞] and any 𝑞 ∈ [ 4

3 ,∞],
that

‖(𝐸, 𝐵)‖𝐿𝑞
𝑡
�𝐵𝑠

2,𝑛,>
� 𝑐−

2
𝑞 ‖(𝐸0, 𝐵0)‖ �𝐵𝑠

2,𝑛,>
+ 𝑐

1
2−

2
𝑞 ‖𝑢‖

𝐿4
𝑡 𝐿

∞∩𝐿4
𝑡
�𝐵

3
2

2,∞

‖𝐵‖𝐿2
𝑡
�𝐵𝑠

2,𝑛
.

Hence, we conclude the proof of the first claim in the lemma by employing the embedding

𝐿∞𝑡 �𝐻1 ∩ 𝐿2
𝑡
�𝐻2 ↩→ 𝐿4

𝑡
�𝐵

3
2
2,1 ↩→ 𝐿4

𝑡 𝐿
∞ ∩ �̃�4

𝑡
�𝐵

3
2
2,∞.
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We now turn to the endpoint case (𝑠, 𝑛) = ( 5
2 , 1), which corresponds to the second bound in the

statement of the lemma. The natural attempt to estimate the product 𝑃(𝑢 × 𝐵) in that case would be by
applying (2.5), which is the corresponding extension of (2.4). Doing so would lead to the control

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐
−1+2

(
1
4+

1
𝑝−

1
𝑞

) ��𝑃 (𝑢 × 𝐵
)��
𝐿
( 1

4 + 1
𝑝 )

−1

𝑡
�𝐵

5
2

2,1

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐−
1
2−

2
𝑞 +

2
𝑝 ‖𝑢‖

𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿
𝑝
𝑡

�𝐵
5
2

2,1

,

(3.17)

as soon as

1 ≤
4𝑝
𝑝 + 4

≤ 𝑞 ≤ ∞.

Observe then that, in order to conclude, the preceding estimate would require a stronger control on
the velocity field u; even though one has that

�̃�∞𝑡 �𝐻1 ∩ 𝐿2
𝑡
�𝐻2 ↩→ �̃�4

𝑡
�𝐵

3
2
2,1,

it is unclear whether the embedding

𝐿∞𝑡 �𝐻1 ∩ 𝐿2
𝑡
�𝐻2 ↩→ �̃�4

𝑡
�𝐵

3
2
2,1

holds or not. Accordingly, (3.17) does not seem to be useful.
Instead, we have to prove the desired estimate by ‘hand’ (that is, by cooking up a suitable interpolation

argument). To that end, we first introduce the decomposition

𝑢 = 𝑢ℓ + 𝑢ℎ
def
=
(
1 |𝐷 |< 𝜎𝑐

2
+ 1 |𝐷 | ≥ 𝜎𝑐

2

)
𝑢.

Then, by splitting the source term 𝑃(𝑢 × 𝐵) according to the latter decomposition of u and by applying
(3.16) to each Maxwell system corresponding to the source terms 𝑃(𝑢ℓ × 𝐵) and 𝑃(𝑢ℎ × 𝐵), with
different values of p, one obtains that

‖(𝐸, 𝐵)‖𝐿𝑞
𝑡
�𝐵𝑠

2,1,>
� 𝑐−

2
𝑞 ‖(𝐸0, 𝐵0)‖ �𝐵𝑠

2,1,>
+ 𝑐−1+ 2

𝑝−
2
𝑞
��𝑃 (𝑢ℓ × 𝐵

)��
𝐿
𝑝
𝑡

�𝐵𝑠
2,1,>

+ 𝑐
2
𝑝−

2
𝑞
��𝑃 (𝑢ℎ × 𝐵

)��
𝐿
( 1

2 + 1
𝑝 )

−1

𝑡
�𝐵𝑠

2,1,>

,
(3.18)

for all 2 ≤ 𝑝 ≤ 𝑞 and all 𝑠 ∈ R. Therefore, applying the product law estimate (2.5), we infer that

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐−1+ 2
𝑝 −

2
𝑞 ‖𝑢ℓ ‖

𝐿∞
𝑡

�𝐵
3
2

2,1

‖𝐵‖
𝐿
𝑝
𝑡

�𝐵
5
2

2,1

+ 𝑐
2
𝑝−

2
𝑞 ‖𝑢ℎ ‖

𝐿2
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿
𝑝
𝑡

�𝐵
5
2

2,1

.

Now, observing that

‖𝑢ℓ ‖
𝐿∞
𝑡

�𝐵
3
2

2,1

� 𝑐
1
2 ‖𝑢ℓ ‖𝐿∞

𝑡
�𝐵1

2,∞
� 𝑐

1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1 (3.19)

and

‖𝑢ℎ ‖
𝐿2
𝑡
�𝐵

3
2

2,1

� 𝑐−
1
2 ‖𝑢‖𝐿2

𝑡
�𝐻 2
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leads to the desired control

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐−
1
2−

2
𝑞 +

2
𝑝 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ‖𝐵‖

𝐿
𝑝
𝑡

�𝐵
5
2

2,1

,

for any 2 ≤ 𝑝 ≤ 𝑞. This takes care of the second bound in the statement of the lemma.
Finally, in order for us to justify the last estimate of the lemma (which is an improvement of the

preceding bound in the case 𝑝 = 2), we need to further decompose B in the source term 𝑃(𝑢ℓ × 𝐵). To
that end, we write

𝐵 = 𝐵ℓ + 𝐵ℎ
def
=
(
1 |𝐷 |< 𝜎𝑐

2
+ 1 |𝐷 | ≥ 𝜎𝑐

2

)
𝐵,

which allows us to deduce from (3.18) that

‖(𝐸, 𝐵)‖
𝐿
𝑞
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
2
𝑞 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ 𝑐−
2
𝑞
��𝑃 (𝑢ℓ × 𝐵ℓ

)��
𝐿2
𝑡
�𝐵

5
2

2,1,>

+ 𝑐−
2
𝑞
��𝑃 (𝑢ℓ × 𝐵ℎ

)��
𝐿2
𝑡
�𝐵

5
2

2,1

+ 𝑐1− 2
𝑞
��𝑃 (𝑢ℎ × 𝐵

)��
𝐿1
𝑡
�𝐵

5
2

2,1

,
(3.20)

for all 𝑞 ≥ 2, where we have used that

�̃�1
𝑡
�𝐵

5
2
2,1 = 𝐿1

𝑡
�𝐵

5
2
2,1.

Now, observe that

supp
(�𝑢ℓ × 𝐵ℓ

)
⊂ {𝜉 : |𝜉 | < 𝜎𝑐},

which implies that

Δ 𝑗 (𝑢ℓ × 𝐵ℓ) ≡ 0,

whenever 2 𝑗 ≥ 2𝜎𝑐. Consequently, it follows that��𝑃 (𝑢ℓ × 𝐵ℓ
)��
𝐿2
𝑡
�𝐵

5
2

2,1,>

= 2
5
2 𝑗
��𝑃Δ 𝑗

(
𝑢ℓ × 𝐵ℓ

)��
𝐿2
𝑡 𝐿

2 =
��𝑃 (𝑢ℓ × 𝐵ℓ

)��
𝐿2
𝑡
�𝐵

5
2

2,1,>

,

where j is the only integer value which satisfies 𝜎𝑐 ≤ 2 𝑗 < 2𝜎𝑐.
Hence, by applying (2.5) for classical Besov-space-valued Lebesgue spaces, we obtain that��𝑃 (𝑢ℓ × 𝐵ℓ

)��
𝐿2
𝑡
�𝐵

5
2

2,1,>

=
��𝑃 (𝑢ℓ × 𝐵ℓ

)��
𝐿2
𝑡
�𝐵

5
2

2,1,>

� ‖𝑢ℓ ‖
𝐿∞
𝑡

�𝐵
3
2

2,1

‖𝐵ℓ ‖
𝐿2
𝑡
�𝐵

5
2

2,1

� 𝑐
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1 ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

,

where we used (3.19). Similarly, we find, by employing (2.5) and (3.19), again, that��𝑃 (𝑢ℓ × 𝐵ℎ
)��
𝐿2
𝑡
�𝐵

5
2

2,1

� ‖𝑢ℓ ‖
𝐿∞
𝑡

�𝐵
3
2

2,1

‖𝐵ℎ ‖
𝐿2
𝑡
�𝐵

5
2

2,1

� ‖𝑢ℓ ‖
𝐿∞
𝑡

�𝐵
3
2

2,1


��‖𝐵‖𝐿2
𝑡
�𝐵

5
2

2,1,>

+
∑

𝜎𝑐
4 <2 𝑗<𝜎𝑐

2
5
2 𝑗
��Δ 𝑗𝐵

��
𝐿2
𝑡 𝐿

2
��

� 𝑐
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
.
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As for the last term in (3.20), applying (2.5), again, in classical Besov-space-valued Lebesgue spaces,
entails that ��𝑃 (𝑢ℎ × 𝐵

)��
𝐿1
𝑡
�𝐵

5
2

2,1

� ‖𝑢ℎ ‖
𝐿2
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1

� 𝑐−
1
2 ‖𝑢‖𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
.

All in all, gathering the previous estimates and incorporating them into (3.20) yields the control (3.15),
which completes the proof of the lemma. �

3.2.2. Control of low-frequency electromagnetic waves
It is clear from Lemmas 3.2 and 3.3 that solutions to the damped Maxwell system enjoy various types
of bounds in different regions of low and high frequencies.

Here, we intend to shed light on the low-frequency control of electromagnetic fields solving (3.14).
In broad terms, the low-frequency bounds on the electric field E are similar to the same bounds in the
high-frequency regime. However, the low-frequency part of the magnetic field B enjoys parabolic-type
estimates, which are consistent with the limiting system (MHD) as c goes to infinity. A more precise
formulation of that principle is given in the next lemma.

Lemma 3.5. Let 𝑇 ∈ (0,∞] and (𝐸, 𝐵) be a smooth axisymmetric solution to (3.14) on [0, 𝑇), for some
initial data (𝐸0, 𝐵0) and some axisymmetric divergence-free vector field u. Assume further that 𝐸 and
u are both without swirl and that B has pure swirl.

Then, for any 𝛼 ∈ [0, 1], 𝑛 ∈ [1,∞] and (𝑚, 𝑝) ∈ [2,∞]2, with

𝛼 +
2
𝑚

≤
3
2
,

and for any 𝑠 < 5
2 , with 𝑠 + 𝛼 + 2

𝑚 > 0, one has the following low-frequency estimates

‖𝐸 ‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛,<

� 𝑐−
2
𝑞 ‖𝐸0‖

�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛,<

+ 𝑐−1‖𝐵0‖
�𝐵
𝑠+𝛼+ 2

𝑚 − 1
2 − 2

𝑞
2,𝑞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑢‖

𝐿𝑚
𝑡

�𝐵
𝛼+ 2

𝑚
2,1

‖𝐵‖𝐿𝑝
𝑡

�𝐵𝑠
2,𝑛
,

(3.21)

as soon as 1 <
(

1
𝑚 + 1

𝑝

)−1
≤ 𝑞 < ∞, as well as

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼− 1

2 + 2
𝑞 − 2

𝑝
2,1,<

� 𝑐−1‖𝐸0‖
�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑢‖
𝐿𝑚
𝑡

�𝐵
𝛼+ 2

𝑚
2,1

‖𝐵‖𝐿𝑝
𝑡

�𝐵𝑠
2,∞
,

(3.22)

whenever 1 <
(

1
𝑚 + 1

𝑝

)−1
< 𝑞 < ∞.

Moreover, in the case where

1 <
(

1
𝑚

+
1
𝑝

)−1
= 𝑞 < ∞,

it holds that

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼− 1

2 + 2
𝑞 − 2

𝑝
2,𝑛,<

� 𝑐−1‖𝐸0‖
�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑢‖
𝐿𝑚
𝑡

�𝐵
𝛼+ 2

𝑚
2,1

‖𝐵‖𝐿𝑝
𝑡

�𝐵𝑠
2,𝑛
. (3.23)
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At last, at the endpoint 𝑠 = 5
2 , we have

‖𝐸 ‖
𝐿
𝑞
𝑡
�𝐵

1+𝛼+ 2
𝑚

2,𝑛,<

� 𝑐−
2
𝑞 ‖𝐸0‖

�𝐵
1+𝛼+ 2

𝑚
2,𝑛,<

+ 𝑐−1‖𝐵0‖
�𝐵

2+𝛼+ 2
𝑚 − 2

𝑞
2,𝑞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑢‖

𝐿𝑚
𝑡

�𝐵
𝛼+ 2

𝑚
2,1

‖𝐵‖
𝐿
𝑝
𝑡

�𝐵
5
2

2,1

,

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵

2+𝛼+ 2
𝑞 − 2

𝑝
2,𝑛,<

� 𝑐−1‖𝐸0‖
�𝐵

3+𝛼− 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵

2+𝛼− 2
𝑝

2,𝑞,<

+ ‖𝑢‖
𝐿𝑚
𝑡

�𝐵
𝛼+ 2

𝑚
2,1

‖𝐵‖
𝐿
𝑝
𝑡

�𝐵
5
2

2,1

,

(3.24)

as long as 1 <
(

1
𝑚 + 1

𝑝

)−1
≤ 𝑞 < ∞.

Proof. Similarly to [3, Lemma 3.9], the proof hinges upon the combination of Lemmas 2.3, 3.2 and
3.3. Thus, on the one hand, applying the low-frequency estimate from Lemma 3.2, for parameter values
such that

𝑟 = 𝑟 = 2

and

𝑞′ =

(
1
𝑚

+
1
𝑝

)−1
,

yields, as soon as 1 ≤
(

1
𝑚 + 1

𝑝

)−1
≤ 𝑞 ≤ ∞, that

2 𝑗 (𝑠+𝛼+
2
𝑚− 3

2 )
��Δ 𝑗𝐸

��
𝐿
𝑞
𝑡 𝐿

2 � 𝑐−
2
𝑞 ‖𝐸0‖

�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,∞,<

+ 𝑐−1‖𝐵0‖
�𝐵
𝑠+𝛼+ 2

𝑚 − 1
2 − 2

𝑞
2,∞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑃(𝑢 × 𝐵)‖

𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,∞

)
and

2 𝑗
(
𝑠+𝛼− 1

2−
2
𝑝 +

2
𝑞

) ��Δ 𝑗𝐵
��
𝐿
𝑞
𝑡 𝐿

2 � 𝑐−1‖𝐸0‖
�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,∞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,∞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,∞

) , (3.25)

for all 𝑗 ∈ Z with 𝜎𝑐
2 ≤ 2 𝑗 < 𝜎𝑐.

On the other hand, employing the first and the second estimates from Lemma 3.3 entails���1{2 𝑗< 𝜎𝑐
2 }2 𝑗 (𝑠+𝛼+

2
𝑚− 3

2 )
��Δ 𝑗𝐸

��
𝐿2
𝑥

���𝐿𝑞
𝑡 ℓ

𝑛
𝑗
� 𝑐−

2
𝑞 ‖𝐸0‖

�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛,<

+ 𝑐−1‖𝐵0‖
�𝐵
𝑠+𝛼+ 2

𝑚 − 1
2 − 2

𝑞
2,𝑞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑃(𝑢 × 𝐵)‖

𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛

) ,
for any 1 <

(
1
𝑚 + 1

𝑝

)−1
≤ 𝑞 < ∞ and 1 ≤ 𝑛 ≤ ∞, as well as����1{2 𝑗< 𝜎𝑐

2 }2
𝑗
(
𝑠+𝛼− 1

2+
2
𝑞 −

2
𝑝

) ��Δ 𝑗𝐵
��
𝐿2
𝑥

����𝐿𝑞
𝑡 ℓ

1
𝑗
� 𝑐−1‖𝐸0‖

�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,∞

) ,
for any 1 <

(
1
𝑚 + 1

𝑝

)−1
< 𝑞 < ∞.
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All in all, by combining the preceding estimates, we arrive at the conclusion that

‖𝐸 ‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛,<

� 𝑐−
2
𝑞 ‖𝐸0‖

�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛,<

+ 𝑐−1‖𝐵0‖
�𝐵
𝑠+𝛼+ 2

𝑚 − 1
2 − 2

𝑞
2,𝑞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑃(𝑢 × 𝐵)‖

𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛

,

for any 1 <
(

1
𝑚 + 1

𝑝

)−1
≤ 𝑞 < ∞ and 1 ≤ 𝑛 ≤ ∞, as well as

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼− 1

2 + 2
𝑞 − 2

𝑝
2,1,<

� 𝑐−1‖𝐸0‖
�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,∞

) ,

for any 1 <
(

1
𝑚 + 1

𝑝

)−1
< 𝑞 < ∞. Therefore, applying the product estimates from Lemma 2.3 concludes

the proof of (3.21) and (3.22).

As for the case 1 <
(

1
𝑚 + 1

𝑝

)−1
= 𝑞 < ∞, we apply the third estimate from Lemma 3.3 instead of the

second one to infer that����1{2 𝑗< 𝜎𝑐
2 }2

𝑗
(
𝑠+𝛼− 1

2+
2
𝑞 −

2
𝑝

) ��Δ 𝑗𝐵
��
𝐿2
𝑥

����𝐿𝑞
𝑡 ℓ

𝑛
𝑗
� 𝑐−1‖𝐸0‖

�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛

) .
Hence, combining the latter estimate with (3.25), we obtain that

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵
𝑠+𝛼− 1

2 + 2
𝑞 − 2

𝑝
2,𝑛,<

� 𝑐−1‖𝐸0‖
�𝐵
𝑠+𝛼+ 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵
𝑠+𝛼− 1

2 − 2
𝑝

2,𝑞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵
𝑠+𝛼+ 2

𝑚 − 3
2

2,𝑛

) .
Our claim (3.23) follows then by employing Lemma 2.3, again.

At last, for the endpoint case 𝑠 = 5
2 , we deduce from the previous cases above, for any 𝑛 ∈ [1,∞], that

‖𝐸 ‖
𝐿
𝑞
𝑡
�𝐵

1+𝛼+ 2
𝑚

2,𝑛,<

� 𝑐−
2
𝑞 ‖𝐸0‖

�𝐵
1+𝛼+ 2

𝑚
2,𝑛,<

+ 𝑐−1‖𝐵0‖
�𝐵

2+𝛼+ 2
𝑚 − 2

𝑞
2,𝑞,<

+ 𝑐
2
(

1
𝑝 +

1
𝑚− 1

𝑞

)
−1
‖𝑃(𝑢 × 𝐵)‖

𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡
�𝐵

1+𝛼+ 2
𝑚

2,𝑛

,

and

‖𝐵‖
𝐿
𝑞
𝑡
�𝐵

2+𝛼+ 2
𝑞 − 2

𝑝
2,𝑛,<

� 𝑐−1‖𝐸0‖
�𝐵

3+𝛼− 2
𝑝

2,𝑞,<

+ ‖𝐵0‖
�𝐵

2+𝛼− 2
𝑝

2,𝑞,<

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿
( 1
𝑚 + 1

𝑝 )
−1

𝑡

(
�𝐵

1+𝛼+ 2
𝑚

2,𝑛

) ,

as long as 1 <
(

1
𝑚 + 1

𝑝

)−1
≤ 𝑞 < ∞. Therefore, applying Lemma 2.3, again, to estimate the source term

concludes the proof. �

Remark. Observe that combining (3.15) and (3.24), with the choice of parameters

𝑞 = 𝑝 = 2, 𝑚 = 4, 𝛼 = 𝑛 = 1,
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and employing the interpolation inequality

‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

� ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

produces the useful bound

‖𝐸 ‖
𝐿2
𝑡
�𝐵

5
2

2,1

� 𝑐−1‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ 𝑐−
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
. (3.26)

The latter control of the electric field will come in handy, later on.

3.2.3. Persistence of regularity
Observe that the case 𝑞 = ∞ is missing in the bounds from Lemma 3.5, above. Although it is possible
to extend the results from Lemma 3.5 to cover that case (at the cost of more restrictive assumptions on
the third summability index of Besov norms of the initial data), it is simpler to establish these missing
bounds by utilizing an elementary energy estimate for Maxwell’s equations, which is the content of the
next lemma.

Lemma 3.6. Let 𝑇 ∈ (0,∞] and (𝐸, 𝐵) be a smooth axisymmetric solution to (3.14) on [0, 𝑇), for some
divergence-free initial data (𝐸0, 𝐵0) and vector field u. Assume further that 𝐸 and u are both without
swirl and that B is a vector field with pure swirl.

Then, for any 𝑠 ∈ (− 3
2 ,

5
2 ), 𝜖 > 0 with 𝑠+ 𝜖 < 5

2 and for all 𝑝, 𝑞 ∈ [2,∞] with 1
2 = 1

𝑝 +
1
𝑞 , it holds that

‖(𝐸, 𝐵)‖𝐿∞
𝑡

�𝐻 𝑠 + 𝑐‖𝐸 ‖𝐿2
𝑡
�𝐻 𝑠 � ‖(𝐸0, 𝐵0)‖ �𝐻 𝑠 + ‖𝑢‖

𝐿
𝑞
𝑡

�𝐻
3
2 −𝜖 ‖𝐵‖𝐿𝑝

𝑡
�𝐻 𝑠+𝜖 ,

on the time interval [0, 𝑇). Moreover, in the endpoint case 𝜖 = 0, we have that

‖(𝐸, 𝐵)‖𝐿∞
𝑡

�𝐻 𝑠 + 𝑐‖𝐸 ‖𝐿2
𝑡
�𝐻 𝑠 � ‖(𝐸0, 𝐵0)‖ �𝐻 𝑠 + ‖𝑢‖

𝐿
𝑞
𝑡
�𝐵

3
2

2,1

‖𝐵‖𝐿𝑝
𝑡

�𝐻 𝑠 ,

on the time interval [0, 𝑇).

Proof. We begin with localizing (3.14) in frequencies by applying Δ 𝑗 , for 𝑗 ∈ Z. Then, by an 𝐿2 energy
estimate, we find, for any 𝑗 ∈ Z, that

1
2𝑐
��Δ 𝑗 (𝐸, 𝐵) (𝑡)

��2
𝐿2 + 𝜎𝑐

��Δ 𝑗𝐸
��2
𝐿2
𝑡 𝐿

2 ≤
1
2𝑐
��Δ 𝑗 (𝐸0, 𝐵0)

��2
𝐿2 + 𝜎

��Δ 𝑗𝑃(𝑢 × 𝐵)
��
𝐿2
𝑡 𝐿

2

��Δ 𝑗𝐸
��
𝐿2
𝑡 𝐿

2

≤
1
2𝑐
��Δ 𝑗 (𝐸0, 𝐵0)

��2
𝐿2 +

𝜎

2𝑐
��Δ 𝑗𝑃(𝑢 × 𝐵)

��2
𝐿2
𝑡 𝐿

2

+
𝜎𝑐

2
��Δ 𝑗𝐸

��2
𝐿2
𝑡 𝐿

2 .

Therefore, it follows that

‖(𝐸, 𝐵) (𝑡)‖2
�𝐻 𝑠 + 𝜎𝑐

2‖𝐸 ‖2
𝐿2
𝑡
�𝐻 𝑠 ≤ ‖(𝐸0, 𝐵0)‖

2
�𝐻 𝑠 + 𝜎‖𝑃(𝑢 × 𝐵)‖2

𝐿2
𝑡
�𝐻 𝑠 ,

for any 𝑠 ∈ (− 3
2 ,

5
2 ).

Finally, we conclude the proof by employing Lemma 2.3 to control the source term in the right-hand
side, above. �
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4. Asymptotic analysis of electromagnetic fields

In this section, we are going to make (3.11) and (3.12) precise. In particular, we are going to study the
convergence

1
𝑐
𝜕𝑡𝐸 → 0,

as 𝑐 → ∞.
For simplicity, we will drop 𝜎 from the equations (1.1) by fixing its value 𝜎 = 1, and we emphasize

that the analysis we perform here holds for any non-negative value of that parameter.

4.1. Asymptotic analysis of Ampère’s equation

From (1.1), observe, at least formally, that E vanishes when c goes to infinity. Moreover, Ampère’s
equation allows us to obtain

𝑗 → ∇ × 𝐵,

as 𝑐 → ∞, in some suitable weak sense.
In the next lemma, we establish a more precise description of the preceding convergence in adequate

functional spaces. This step is crucial in the proof of Theorem 1.1 and will come in handy in Section 5.

Proposition 4.1. Let 𝑇 ∈ (0,∞] and (𝑢, 𝐸, 𝐵) be smooth solution to the Navier–Stokes–Maxwell
equations (1.1), defined on [0, 𝑇), where u and E have no swirl and B has pure swirl.

Then, on the time interval [0, 𝑇), for all 𝑠 ∈ [0, 1
2 ], 𝑝 ∈ [2,∞] and for any 𝑐 > 0, it holds that����1

𝑐
𝜕𝑡𝐸

����𝐿𝑝
𝑡

�𝐻 𝑠 = ‖ 𝑗 − ∇ × 𝐵‖𝐿𝑝
𝑡

�𝐻 𝑠 � 𝑐−
2
𝑝 ‖∇ × 𝐵0 − 𝑗0‖ �𝐻 𝑠 + 𝑐

− 2
𝑝 ‖𝐸0‖ �𝐻 𝑠+1 + 𝑐

−
(

2
𝑝 +1

)
A𝑠 (𝑢, 𝐸, 𝐵),

where

A𝑠 (𝑢, 𝐸, 𝐵)
def
=
(
‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 + E0‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2

) (
‖𝐵‖

𝐿∞
𝑡

�𝐻 𝑠+ 3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻 𝑠+ 3

2

)
+ ‖𝑢‖

1
2−𝑠

𝐿∞
𝑡 𝐿

2 ‖𝑢‖
𝑠+ 1

2
𝐿∞
𝑡

�𝐻 1 ‖𝑢‖𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
.

Proof. The proof relies on a key idea from [4, Proposition 3.3], which we adapt to the three-dimensional
setting.

We begin by applying a time derivative to Ampère’s equation to obtain the following damped wave
equation for 𝐸

1
𝑐
𝜕𝑡𝑡𝐸 − 𝑐Δ𝐸 + 𝑐 𝜕𝑡𝐸 = −𝜕𝑡𝑃(𝑢 × 𝐵),

where we have used Faraday’s equation and Ohm’s law, as well.
Then, we localize in frequencies by applying Δ 𝑗 , for 𝑗 ∈ Z, and we perform an 𝐿2 energy estimate

followed by Hölder’s inequality to find, for all 𝑡 ∈ [0, 𝑇), that

1
2
𝑑

𝑑𝑡

(
1
𝑐4

��Δ 𝑗𝜕𝑡𝐸 (𝑡)
��2
𝐿2 +

1
𝑐2

��Δ 𝑗∇𝐸 (𝑡)
��2
𝐿2

)
+

1
𝑐2

��Δ 𝑗𝜕𝑡𝐸 (𝑡)
��2
𝐿2

≤
1
𝑐3

����∫
R3

Δ 𝑗𝜕𝑡𝑃(𝑢 × 𝐵)Δ 𝑗𝜕𝑡𝐸 (𝑡, 𝑥)𝑑𝑥

����
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≤
1
𝑐3

��Δ 𝑗𝜕𝑡𝑃(𝑢 × 𝐵) (𝑡)
��
𝐿2
��Δ 𝑗𝜕𝑡𝐸 (𝑡)

��
𝐿2

≤
1

2𝑐4

��Δ 𝑗𝜕𝑡𝑃(𝑢 × 𝐵) (𝑡)
��2
𝐿2 +

1
2𝑐2

��Δ 𝑗𝜕𝑡𝐸 (𝑡)
��2
𝐿2 .

Therefore, we find, for any 𝑠 ∈ R, that

𝑑

𝑑𝑡

(
1
𝑐4 ‖𝜕𝑡𝐸 (𝑡)‖

2
�𝐻 𝑠 +

1
𝑐2 ‖𝐸 (𝑡)‖

2
�𝐻 𝑠+1

)
+

1
𝑐2 ‖𝜕𝑡𝐸 (𝑡)‖

2
�𝐻 𝑠 ≤

1
𝑐4 ‖𝜕𝑡𝑃(𝑢 × 𝐵) (𝑡)‖2

�𝐻 𝑠 .

Consequently, employing Hölder’s inequality followed by Young’s inequality for products, we obtain
that

1

𝑐2− 2
𝑝

‖𝜕𝑡𝐸 ‖𝐿𝑝
𝑡

�𝐻 𝑠 �
1
𝑐2 ‖𝜕𝑡𝐸 ‖𝐿∞

𝑡
�𝐻 𝑠 +

1
𝑐
‖𝜕𝑡𝐸 ‖𝐿2

𝑡
�𝐻 𝑠

�
1
𝑐

(
‖∇ × 𝐵0 − 𝑗0‖ �𝐻 𝑠 + ‖𝐸0‖ �𝐻 𝑠+1

)
+

1
𝑐2 ‖𝜕𝑡𝑃(𝑢 × 𝐵)‖𝐿2

𝑡
�𝐻 𝑠 ,

(4.1)

for every 𝑝 ∈ [2,∞], where we have used Ampère’s equation to express the initial data of 1
𝑐 𝜕𝑡𝐸 in terms

of 𝐵0 and 𝑗0.
Hence, we are now left to control 𝜕𝑡𝑃(𝑢× 𝐵). To this end, we shall first transform the time derivative

into spatial derivatives by using the momentum and Faraday’s equations from (1.1). Accordingly, we
obtain that

𝜕𝑡𝑃(𝑢 × 𝐵) = 𝑃(𝜕𝑡𝑢 × 𝐵) + 𝑃(𝑢 × 𝜕𝑡𝐵) = −

4∑
𝑖=1

I𝑖 ,

where

I1
def
= 𝑃

(
𝑃(𝑢 · ∇𝑢) × 𝐵

)
, I2

def
= −𝑃

(
Δ𝑢 × 𝐵

)
,

I3
def
= −𝑃

(
𝑃( 𝑗 × 𝐵) × 𝐵

)
, I4

def
= 𝑐𝑃

(
𝑢 × (∇ × 𝐸)

)
.

We are now going to utilize (2.3) from Lemma 2.3 to estimate each term separately.
For I1, we find that

‖I1‖𝐿2
𝑡
�𝐻 𝑠 � ‖𝑢 · ∇𝑢‖𝐿2

𝑡
�𝐻 𝑠 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2

� ‖𝑢‖
𝐿∞
𝑡

�𝐻 𝑠+ 1
2
‖∇𝑢‖𝐿2

𝑡
�𝐻 1 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
.

Therefore, as long as 𝑠 ∈ [0, 1
2 ], we obtain, by interpolation, that

‖I1‖𝐿2
𝑡
�𝐻 𝑠 � ‖𝑢‖

1
2−𝑠

𝐿∞
𝑡 𝐿

2 ‖𝑢‖
𝑠+ 1

2
𝐿∞
𝑡

�𝐻 1 ‖𝑢‖𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
.

As for I2, we employ Lemma 2.3, again, to find, for any 𝑠 ∈ [0, 1
2 ], that

‖I2‖𝐿2
𝑡
�𝐻 𝑠 � ‖Δ𝑢‖𝐿2

𝑡 𝐿
2 ‖𝐵‖

𝐿∞
𝑡

�𝐻 𝑠+ 3
2

� ‖𝑢‖𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿∞
𝑡

�𝐻 𝑠+ 3
2
.
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In order to estimate I3, we utilize Lemma 2.3 twice to obtain, for any 𝑠 ∈ [0, 1
2 ], that

‖I3‖𝐿2
𝑡
�𝐻 𝑠 �

��𝑃 ( 𝑗 × 𝐵
)��
𝐿2
𝑡 𝐿

2 ‖𝐵‖
𝐿∞
𝑡

�𝐻 𝑠+ 3
2

� ‖ 𝑗 ‖𝐿2
𝑡 𝐿

2 ‖𝐵‖
𝐿∞
𝑡

�𝐻
3
2
‖𝐵‖

𝐿∞
𝑡

�𝐻 𝑠+ 3
2

� E0‖𝐵‖
𝐿∞
𝑡

�𝐻
3
2
‖𝐵‖

𝐿∞
𝑡

�𝐻 𝑠+ 3
2
,

where we have used the energy estimate (3.1) in the last inequality. Finally, the control of the last term
I4 is achieved by classical product laws, which give that

‖I4‖𝐿2
𝑡
�𝐻 𝑠 � ‖𝑢‖𝐿∞

𝑡
�𝐻 1 ‖𝑐𝐸 ‖

𝐿2
𝑡
�𝐻 𝑠+ 3

2
.

All in all, gathering the previous bounds yields

‖𝜕𝑡 (𝑢 × 𝐵)‖𝐿2
𝑡
�𝐻 𝑠 � A𝑠 (𝑢, 𝐸, 𝐵), (4.2)

where A𝑠 (𝑢, 𝐸, 𝐵) is defined in the statement of the proposition, above. The proof is then concluded by
incorporating (4.2) into (4.1). �

4.2. Almost-parabolic estimates on the magnetic field

When considering the limiting system (MHD), one can show, with standard energy estimates, that the
quantities 𝐵 and Γ = 𝐵𝜃

𝑟 are globally controlled in 𝐿2
𝑡
�𝐻1 and 𝐿∞𝑡 𝐿

𝑝 ∩ 𝐿2
𝑡
�𝐻1, for all 𝑝 ∈ [1,∞],

respectively.
Here, we establish an asymptotic version of these bounds for (1.1), thereby justifying (3.12). The key

observation in the proof below consists in considering the term 1
𝑐2 𝜕𝑡𝑡Γ in the equation

1
𝑐2 𝜕𝑡𝑡Γ + 𝜕𝑡Γ + 𝑢 · ∇Γ −

(
Δ +

𝜕𝑟
𝑟

)
Γ = 0 (4.3)

as an error, for large values of c. Accordingly, one should treat (4.3) as a parabolic equation with a
vanishing source term, as 𝑐 → ∞. A more precise statement of that is given in the next proposition.

Proposition 4.2. Let 𝑇 ∈ R+ ∪ {∞} and (𝑢, 𝐸, 𝐵) be a smooth axisymmetric solution to (1.1), defined
on [0, 𝑇), where u and E have no swirl and B has pure swirl.

Then, it holds that

‖𝐵‖𝐿2
𝑡
�𝐻 1 ≤ E0 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡 𝐿

2 . (4.4)

Moreover, Γ enjoys the bounds

‖Γ‖𝐿2
𝑡
�𝐻 1 � ‖Γ0‖𝐿2 + 𝑐−1‖𝐸0‖ �𝐻 2 + 𝑐−1

(
‖𝐵‖𝐿∞

𝑡
�𝐻 2 + 𝑐‖𝐸 ‖𝐿2

𝑡
�𝐻 2

)
, (4.5)

and, for any 𝑝 ∈ [2,∞),

‖Γ‖𝐿∞
𝑡 𝐿

𝑝 � ‖Γ0‖𝐿𝑝 + 𝑐−1‖𝐸0‖ �𝑊 2, 𝑝 + ‖𝐸 ‖𝐿2
𝑡
�𝑊 2, 𝑝 , (4.6)

where all the time norms above are taken over the whole interval [0, 𝑇).

Remark. Due to Lemma 3.6 and Proposition 4.1, observe that the last terms in the right-hand side of
(4.4) and (4.5) can be seen as errors for large values of c.

https://doi.org/10.1017/fms.2024.60 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.60


Forum of Mathematics, Sigma 35

Likewise, by virtue of (3.26) and the embedding

�𝐵
5
2
2,1 ↩→

�𝑊2,3 (R3),

note that (4.6) implies, for 𝑝 = 3, that

‖Γ‖𝐿∞
𝑡 𝐿

3 � ‖Γ0‖𝐿3 + 𝑐−1‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ 𝑐−
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
.

This bound will come in handy, later on.

Proof. It is readily seen that, by virtue of the energy inequality (3.1), Ampère’s equation from (1.1)
entails that

‖𝐵‖𝐿2
𝑡
�𝐻 1 ≤ ‖ 𝑗 ‖𝐿2

𝑡 𝐿
2 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡 𝐿

2 ≤ E0 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡 𝐿

2 ,

thereby establishing (4.4).
We now focus on the proof of (4.5) and (4.6). To that end, multiplying (4.3) by Γ|Γ|𝑝−2, integrating

with respect to space variables and using the identities

−

∫
R3
(ΔΓ)Γ|Γ|𝑝−2𝑑𝑥 −

∫
R3

𝜕𝑟Γ
𝑟

Γ|Γ|𝑝−2𝑑𝑥 =
4(𝑝 − 1)

𝑝2

���∇(|Γ(𝑡) | 𝑝2 )���2
𝐿2 +

2𝜋
𝑝

∫
R

|Γ(𝑡, 𝑟 = 0, 𝑧) |𝑝𝑑𝑧︸�����������������������������������������������������������������︷︷�����������������������������������������������������������������︸
def
= 𝑋𝑝 (𝑡)

and ∫
R3
(𝜕𝑡𝑡Γ)Γ|Γ|

𝑝−2𝑑𝑥 = 𝜕𝑡𝑡

( 1
𝑝
‖Γ(𝑡)‖𝑝𝐿𝑝︸��������︷︷��������︸
def
=𝑌𝑝 (𝑡)

)
− (𝑝 − 1)

∫
R3

|𝜕𝑡Γ|
2 |Γ|𝑝−2𝑑𝑥︸�����������������������������︷︷�����������������������������︸

def
= 𝐴𝑝 (𝑡)

,

yields, for all 𝑡 ∈ [0, 𝑇), that

1
𝑐2𝑌

′′
𝑝 (𝑡) + 𝑌

′
𝑝 (𝑡) + 𝑋𝑝 (𝑡) =

1
𝑐2 𝐴𝑝 (𝑡). (4.7)

Therefore, integrating in time, we obtain that

𝑌𝑝 (𝑡) +

∫ 𝑡

0
𝑋𝑝 (𝜏)𝑑𝜏 = 𝑌𝑝 (0) +

1
𝑐2𝑌

′
𝑝 (0) −

1
𝑐2𝑌

′
𝑝 (𝑡) +

1
𝑐2

∫ 𝑡

0
𝐴𝑝 (𝜏)𝑑𝜏. (4.8)

Now, we need to take care of the term − 1
𝑐2𝑌

′
𝑝 (𝑡), above. To that end, observing that (4.7) can be

rewritten as

1
𝑐2

𝑑

𝑑𝑡

(
𝑌 ′
𝑝 (𝑡)𝑒

𝑐2𝑡
)
=
( 1
𝑐2 𝐴𝑝 (𝑡) − 𝑋𝑝 (𝑡),

)
𝑒𝑐

2𝑡 ,

which we then integrate with respect to the time variable, we find that

−
1
𝑐2𝑌

′
𝑝 (𝑡) = −

1
𝑐2𝑌

′
𝑝 (0)𝑒−𝑐

2𝑡 +

∫ 𝑡

0
𝑒−𝑐

2 (𝑡−𝜏)
(
𝑋𝑝 (𝜏) −

1
𝑐2 𝐴𝑝 (𝜏)

)
𝑑𝜏.
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Hence, plugging the latter identity into (4.8) yields that

𝑌𝑝 (𝑡) +

∫ 𝑡

0
𝑋𝑝 (𝜏)𝑑𝜏 = 𝑌𝑝 (0) +

1 − 𝑒−𝑐
2𝑡

𝑐2 𝑌 ′
𝑝 (0) +

∫ 𝑡

0
𝑒−𝑐

2 (𝑡−𝜏)𝑋𝑝 (𝜏)𝑑𝜏

+
1
𝑐2

∫ 𝑡

0
𝐴𝑝 (𝜏)𝑑𝜏 −

1
𝑐2

∫ 𝑡

0
𝑒−𝑐

2 (𝑡−𝜏)𝐴𝑝 (𝜏)𝑑𝜏.

(4.9)

Next, utilizing Faraday’s equation from (1.1), we write, for any 𝑡 ∈ (0, 𝑇), that

(𝜕𝑡Γ) =

(
𝜕𝑡𝐵

𝑟

)
· 𝑒𝜃 = −𝑐

(
∇ × 𝐸

𝑟

)
· 𝑒𝜃 , (4.10)

whereby

(𝜕𝑡Γ) |𝑡=0 = −𝑐

(
∇ × 𝐸0
𝑟

)
· 𝑒𝜃 .

Accordingly, it follows that

1
𝑐2 |𝑌

′
𝑝 (0) | =

1
𝑐2

����( ∫
R3
(𝜕𝑡Γ)Γ|Γ|

𝑝−2𝑑𝑥
)
|𝑡=0

���� ≤ 1
𝑐

∫
R3

|∇ × 𝐸0 |

𝑟
|Γ0 |

𝑝−1𝑑𝑥

≤
1
𝑐

����∇ × 𝐸0
𝑟

����𝐿𝑝 ‖Γ0‖
𝑝−1
𝐿𝑝 .

Thus, recalling the inequality

𝑎𝑏 ≤ 𝜀𝛼
𝑎𝛼

𝛼
+ 𝜀−𝛼

′ 𝑏𝛼
′

𝛼′
, (4.11)

for any 𝜀 > 0 and 𝛼 ∈ (1,∞), where 𝛼′ denotes the conjugate of 𝛼, and by virtue of Lemma 2.2, we
end up with

1
𝑐2 |𝑌

′
𝑝 (0) | ≤

((
1
𝑐

����∇ × 𝐸0
𝑟

����𝐿𝑝

) 1
𝑝

‖Γ0‖
1
𝑝′

𝐿𝑝

) 𝑝
≤

(
1
𝑝𝑐

����∇ × 𝐸0
𝑟

����𝐿𝑝 +
1
𝑝′

‖Γ0‖𝐿𝑝

) 𝑝
�
(1
𝑐
‖𝐸0‖ �𝑊 2, 𝑝 + ‖Γ0‖𝐿𝑝

) 𝑝
.

(4.12)

Consequently, for 𝑝 = 2, we find that (4.9) entails that

‖Γ(𝑡)‖2
𝐿2 � ‖Γ0‖

2
𝐿2 + 𝑐

−2
(
‖𝐸0‖ �𝐻 2 + ‖𝜕𝑡Γ‖𝐿2

𝑡 𝐿
2

)2

and

‖Γ‖2
𝐿2
𝑡
�𝐻 1 � ‖Γ0‖

2
𝐿2 + 𝑐

−2
(
‖𝐸0‖ �𝐻 2 + ‖Γ‖𝐿∞

𝑡
�𝐻 1 + ‖𝜕𝑡Γ‖𝐿2

𝑡 𝐿
2

)2
.

Finally, employing (4.10) and Lemma 2.2 in the last bound leads to (4.5), and (4.6) in the case 𝑝 = 2.
Then, in order to deal with the range 𝑝 ∈ (2,∞), we deduce from (4.9) that

‖Γ‖ 𝑝
𝐿∞
𝑡 𝐿

𝑝 � ‖Γ0‖
𝑝
𝐿∞
𝑡 (𝐿𝑝)

+
1
𝑐2 |𝑌

′
𝑝 (0) | +

1
𝑐2

∫ 𝑡

0
‖𝜕𝑡Γ(𝜏)‖

2
𝐿𝑝 ‖Γ(𝜏)‖

𝑝−2
𝐿𝑝 𝑑𝜏.
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Therefore, employing (4.12) to control 𝑌 ′
𝑝 (0) yields

‖Γ‖ 𝑝
𝐿∞
𝑡 𝐿

𝑝 � ‖Γ0‖
𝑝
𝐿∞
𝑡 𝐿

𝑝 +
(1
𝑐
‖𝐸0‖ �𝑊 2, 𝑝 + ‖Γ0‖𝐿𝑝

) 𝑝
+

1
𝑐2 ‖𝜕𝑡Γ‖

2
𝐿2
𝑡 𝐿

𝑝 ‖Γ‖
𝑝−2
𝐿∞
𝑡 𝐿

𝑝 .

After that, we utilize (4.11) to obtain that

‖Γ‖ 𝑝
𝐿∞
𝑡 𝐿

𝑝 � ‖Γ0‖
𝑝
𝐿∞
𝑡 𝐿

𝑝 +
(1
𝑐
‖𝐸0‖ �𝑊 2, 𝑝 + ‖Γ0‖𝐿𝑝

) 𝑝
+

1
𝑐𝑝

‖𝜕𝑡Γ‖
𝑝

𝐿2
𝑡 𝐿

𝑝
.

At last, by using (4.10) and Lemma 2.2, again, we arrive at the desired bound (4.6). This completes the
proof of the proposition. �

5. Closing the estimates and proof of Theorem 1.1

We are now ready to establish the final global bounds that lead to the existence of global solutions of the
Navier–Stokes–Maxwell equations (1.1). This is going to be done, first, by gathering all the estimates
from the previous sections to produce a nonlinear energy estimate. Then, under adequate assumptions
in the regime 𝑐 → ∞, the nonlinear energy bound will allow us to deduce the desired global control,
uniformly with respect to the speed of light.

Throughout this section, for the sake of simplicity and clarity, the subscript ‘t’ that appears in time-
Lebesgue spaces 𝐿𝑝𝑡 should be understood as the endpoint of the time interval; that is, for example, we
will be using the notation

‖ 𝑓 ‖𝐿𝑝
𝑡

�𝐻 𝑠
def
= ‖ 𝑓 ‖𝐿𝑝 ( [0,𝑡); �𝐻 𝑠 (R3)) .

Accordingly, all the quantities involving time-Lebesgue norms are continuous functions on the real
half-line [0,∞), for all 𝑝 ∈ [1,∞].

5.1. Approximation scheme and compactness

Solutions of (1.1) will be constructed by a standard compactness method based on the smooth approxi-
mation of solutions. Although this is now classical in the literature, we briefly recall here the principle
ideas in that method. This will allow us to justify all the formal computations in the derivation of our
global a priori bounds, below.

We follow the approach laid out in [3, Section 3.1], for instance. Thus, we begin with approximating
the Navier–Stokes–Maxwell equations (1.1) by a new system of equations which has a unique smooth
solution.

An admissible approximation should preserve the structures satisfied by the original system such
as, in our case, the energy inequality (1.2) and the axisymmetric properties. A possible choice of that
approximation is given, for 𝑛 ∈ N, by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝑡𝑢𝑛 + (𝑆𝑛𝑢𝑛) · ∇𝑢𝑛 = 𝜈Δ𝑢𝑛 − ∇𝑝𝑛 + 𝑗𝑛 × 𝐵𝑛, div 𝑢𝑛 = 0,
1
𝑐
𝜕𝑡𝐸𝑛 − ∇ × 𝐵𝑛 = −(𝑆𝑛 𝑗𝑛), div 𝐸𝑛 = 0,

1
𝑐
𝜕𝑡𝐵𝑛 + ∇ × 𝐸𝑛 = 0, div 𝐵𝑛 = 0,

𝑗𝑛 = 𝜎
(
𝑐𝑒 : 𝑛 + 𝑆𝑛𝑃(𝑢𝑛 × 𝐵𝑛)

)
, div 𝑗𝑛 = 0,

supplemented with the initial data (𝑢𝑛, 𝐸𝑛, 𝐵𝑛) |𝑡=0
def
= 𝑆𝑛 (𝑢0, 𝐸0, 𝐵0), where 𝑆𝑛 is a radial cutoff Fourier

multiplier that restricts the frequencies to the set {|𝜉 | ≤ 2𝑛} and converges to the identity as 𝑛 → ∞.
Showing that the approximate system, for any fixed 𝑛 ∈ N, has a unique global solution is a routine

procedure based on standard methods. Moreover, one can show that the corresponding solutions are
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smooth in time and space and satisfy the energy inequality

‖(𝑢𝑛, 𝐸𝑛, 𝐵𝑛)(𝑡)‖
2
𝐿2 + 2𝜈

∫ 𝑡

0
‖∇𝑢𝑛 (𝜏)‖

2
𝐿2𝑑𝜏 +

2
𝜎

∫ 𝑡

0
‖ 𝑗𝑛 (𝜏)‖

2
𝐿2𝑑𝜏 = ‖𝑆𝑛 (𝑢0, 𝐸0, 𝐵0)‖

2
𝐿2 ≤ E2

0 ,

where we recall that

E0 = ‖(𝑢0, 𝐸0, 𝐵0)‖𝐿2 .

If, furthermore, the initial data are assumed to be axisymmetric, and the cutoff operator 𝑆𝑛 does not alter
that structure (which is the case when 𝑆𝑛 can be characterized as a convolution with a radial function),
then the approximate smooth solution remains axisymmetric for all times.

Noting, once again, that the energy inequality above is not sufficient to ensure the stability, as 𝑛 → ∞,
of the nonlinear term

𝑗𝑛 × 𝐵𝑛,

our strategy thus consists in looking for better bounds in higher regularity spaces, uniformly with respect
to the regularizing parameter n. In particular, we will obtain new bounds that will allow us to establish
the strong relative compactness of all vector fields 𝑢𝑛, 𝐸𝑛, 𝐵𝑛 and 𝑗𝑛 in 𝐿2

loc,𝑡 ,𝑥 and, then, conclude that
the approximate solutions converge, as 𝑛 → ∞, to an exact solution of (1.1).

With such strong bounds, the full justification of the stability of the approximate system follows
from standard compactness arguments, which we will therefore omit. We refer to [3] for some details
on similar arguments applied to construction of global solutions of the Euler–Maxwell system in two
dimensions of space.

Normally, we should prove the a priori estimates on the approximate system above. However, as
usual, since the approximate system enjoys the same structure as the original one, we will, from now
on, assume that the solutions to (1.1) are smooth, and we will perform all estimates directly on (1.1).

5.2. Weak–strong uniqueness

The functional spaces used in Theorem 1.1 are sufficient to prove uniqueness results for (1.1). Although
this is not hard to show, we choose to provide in the following proposition a weak–strong stability result
with a self-contained proof that covers the uniqueness of solutions claimed in Theorem 1.1. See also [6,
Proposition 3.11] for a similar weak–strong principle for the same system.

Proposition 5.1 (𝐿2 weak–strong stability). Let 𝑐 > 0 and (𝑢𝑖 , 𝐸𝑖 , 𝐵𝑖)𝑖∈{1,2} be two weak solutions of
(1.1) associated with the same initial data and satisfying the energy inequality (1.2). Assume moreover
that

𝑢2 ∈ 𝐿2
loc(R

+; 𝐿∞), 𝐸2 ∈ 𝐿2
loc(R

+; 𝐿3), 𝐵2 ∈ 𝐿∞loc(R
+; 𝐿3).

Then, the two solutions are equal.

Proof. We define the difference of the two solutions by

�̃�
def
= 𝑢1 − 𝑢2, 𝐸

def
= 𝐸1 − 𝐸2, 𝐵

def
= 𝐵1 − 𝐵2, �̃�

def
= 𝑗1 − 𝑗2,

and we compute, for any 𝑡 > 0, that∫
R3
(𝑢1 · 𝑢2 + 𝐸1 · 𝐸2 + 𝐵1 · 𝐵2)(𝑡)𝑑𝑥 +

2
𝜎

∫ 𝑡

0

∫
R3
𝑗1 · 𝑗2𝑑𝑥𝑑𝜏 + 2𝜈

∫ 𝑡

0

∫
R3

∇𝑢1 · ∇𝑢2𝑑𝑥𝑑𝜏

= −

∫ 𝑡

0

∫
R3
( 𝑗2 × 𝐵) · �̃�𝑑𝑥𝑑𝜏 +

∫ 𝑡

0

∫
R3
( �̃� × 𝐵) · 𝑢2𝑑𝑥𝑑𝜏 −

∫ 𝑡

0

∫
R3
(𝑢2 ⊗ �̃�) : ∇�̃�𝑑𝑥𝑑𝜏.
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Note that the computations above can be rigorously justified by smoothing out the two solutions and
following the proof of [18, Lemma 2.1], for instance.

Therefore, setting

𝐹 (𝑡)
def
=

1
2

(
‖�̃�(𝑡)‖2

𝐿2 + ‖𝐸 (𝑡)‖2
𝐿2 + ‖𝐵(𝑡)‖2

𝐿2

)
,

and making use of the energy inequality (1.2), which is assumed to be satisfied by both solutions, we
obtain, for any 𝜀 > 0, that

𝐹 (𝑡) + 𝜈‖∇�̃�‖2
𝐿2
𝑡,𝑥

+
1
𝜎
‖ �̃� ‖2

𝐿2
𝑡,𝑥

≤

∫ 𝑡

0
‖ 𝑗2(𝜏)‖𝐿3 ‖𝐵(𝜏)‖𝐿2 ‖�̃�(𝜏)‖𝐿6𝑑𝜏

+

∫ 𝑡

0
‖𝑢2(𝜏)‖𝐿∞

(
‖ �̃� (𝜏)‖𝐿2 ‖𝐵(𝜏)‖𝐿2 + ‖�̃�(𝜏)‖𝐿2 ‖∇�̃�(𝜏)‖𝐿2

)
𝑑𝜏

≤ 𝜀 +
𝜈

4
‖∇�̃�‖2

𝐿2
𝑡,𝑥

+
𝐶

𝜈

∫ 𝑡

0
‖ 𝑗2 (𝜏)‖

2
𝐿3 ‖𝐵(𝜏)‖

2
𝐿2𝑑𝜏

+
𝜈

4
‖∇�̃�‖2

𝐿2
𝑡,𝑥

+
1
𝜈

∫ 𝑡

0
‖𝑢2(𝜏)‖

2
𝐿∞ ‖�̃�(𝜏)‖2

𝐿2𝑑𝜏

+
1

2𝜎
‖ �̃� ‖2

𝐿2
𝑡,𝑥

+
𝜎

2

∫ 𝑡

0
‖𝑢2(𝜏)‖

2
𝐿∞ ‖𝐵(𝜏)‖2

𝐿2𝑑𝜏,

where 𝐶 > 0 is the constant from the embedding �𝐻1 ↩→ 𝐿6 (R3).
Hence, by further simplifying the preceding bound and applying Grönwall’s lemma, we arrive at the

conclusion that

𝐹 (𝑡) +
𝜈

2
‖∇�̃�‖2

𝐿2
𝑡,𝑥

+
1

2𝜎
‖ �̃� ‖2

𝐿2
𝑡,𝑥

≤ 𝜀 exp
(
𝐶𝜈,𝜎

∫ 𝑡

0

(
‖ 𝑗2 (𝜏)‖

2
𝐿3 + ‖𝑢2(𝜏)‖

2
𝐿∞

)
𝑑𝜏

)
, (5.1)

for any 𝜀 > 0 and some constant 𝐶𝜈,𝜎 > 0.
Accordingly, by further exploiting Ohm’s law

𝑗2 = 𝑐𝑒 : 2 + 𝑃(𝑢2 × 𝐵2),

and employing the additional bounds on the second solution (𝑢2, 𝐸2, 𝐵2), it is readily seen then that the
right-hand side in (5.1) is finite and vanishes as 𝜀 → 0. This concludes the proof of the weak–strong
uniqueness. �

5.3. Existence of global solutions

Here, we prove existence of global solutions of (1.1), as it is claimed in Theorem 1.1. In view of the
arguments laid out in Section 5.1, above, this proof is reduced to establishing adequate a priori global
estimates for (1.1).

The proof is split into two parts. The first part is devoted to the case of rough profiles

𝑐−1 (𝐸𝑐0 , 𝐵
𝑐
0 ) ∈

�𝐵
5
2
2,1,

uniformly in 𝑐 > 0. This means that the �𝐵
5
2
2,1 norm of the initial data is allowed to blow up, as 𝑐 → ∞,

with a rate which is at most of order c.
In the second part of the proof below, we deal with the case of regular profiles; that is,

(𝐸𝑐0 , 𝐵
𝑐
0 ) ∈

�𝐵
5
2
2,1,

uniformly with respect to 𝑐 > 0.
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5.3.1. Rough profiles
Here, we assume that

𝑐−1 (𝑢𝑐0 , 𝐸
𝑐
0 , 𝐵

𝑐
0 ) ∈

�𝐵
5
2
2,1,

uniformly with respect to 𝑐 ∈ (0,∞), meaning that (𝑢𝑐0 , 𝐸
𝑐
0 , 𝐵

𝑐
0 ) can be unbounded in �𝐵

5
2
2,1 as 𝑐 → ∞.

Control of the velocity field. The principal control of velocity fields is obtained in Proposition 4.2.
For convenience, we rewrite here its main estimate:

‖(𝜔,Ω)‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1

�
(
‖(𝜔0,Ω0)‖𝐿2 +

����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 + ‖Γ‖𝐿∞

𝑡 𝐿
3 ‖(𝐵, Γ)‖𝐿2

𝑡
�𝐻 1

)
𝑒𝐶E2

0 .
(5.2)

We also notice, due to the energy inequality (1.2), that

E0 ≤ E𝑡
def
= ‖(𝑢, 𝐸, 𝐵)‖𝐿∞

𝑡 𝐿
2 + ‖𝑢‖𝐿2

𝑡
�𝐻 1 + ‖ 𝑗 ‖𝐿2

𝑡 𝐿
2 � E0. (5.3)

Moreover, the standard embeddings

‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

� ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 � ‖𝜔‖𝐿∞

𝑡 𝐿
2∩𝐿2

𝑡
�𝐻 1

will be used regularly without explicit reference. The justification of the first inequality above is done
by applying an abstract interpolation argument, whereas the second one straightforwardly follows from
the Biot–Savart law.

Control of high electromagnetic frequencies. The control of high electromagnetic frequencies is
given by Lemma 3.4. More precisely, we obtain from (3.15), with the specific values 𝑞 ∈ {2,∞}, that

𝑐−1‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,>

+ ‖(𝐸, 𝐵)‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

� 𝑐−1‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1,>

+ 𝑐−
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
.

(5.4)

Control of low electromagnetic frequencies – Part A. The control of low electromagnetic frequencies
relies on Lemma 3.5, above. Specifically, applying (3.23) with the values 𝑞 = 2, 𝑝 = 𝑚 = 4, 𝛼 = 1 and
𝑠 = 3

2 yields that

‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

� 𝑐−1‖𝐸0‖
�𝐵

5
2

2,2,<

+ ‖𝐵0‖
�𝐵

3
2

2,2,<

+ ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿4
𝑡
�𝐵

3
2

2,1

.

Likewise, employing (3.23), again, with the values 𝑝 = 2 and 𝑠 = 2 entails that

‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

� 𝑐−1‖𝐸0‖
�𝐵

5
2

2,2,<

+ ‖𝐵0‖
�𝐵

3
2

2,2,<

+ ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵‖𝐿2
𝑡
�𝐵2

2,1
.

Actually, since (3.14) is a linear system, by splitting high and low frequencies of B in the source term
𝑃(𝑢 × 𝐵), one can straightforwardly adapt the proofs of the preceding estimates to obtain the more
useful control
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‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

3
2

2,2,<

+ ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

(���1{ |𝐷 |< 𝜎𝑐
2 }𝐵

���
𝐿4
𝑡
�𝐵

3
2

2,1

+

���1{ |𝐷 | ≥ 𝜎𝑐
2 }𝐵

���𝐿2
𝑡
�𝐵2

2,1

)
� ‖(𝐸0, 𝐵0)‖ �𝐻

3
2

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

(
‖𝐵‖

𝐿4
𝑡
�𝐵

3
2

2,1,<

+ 𝑐−
1
2 ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

+ 𝑐−
1
2 ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

)
.

(5.5)

Before we proceed with the proof, let us establish the energy estimate for (𝐸, 𝐵) in Sobolev spaces,
which will then be combined with the preceding estimate to complete the proof of the low-frequency
bounds on electromagnetic fields.

Energy estimate for electromagnetic fields. Applying Lemma 3.6 with the values 𝑠 = 3
2 and (𝑝, 𝑞, 𝜀) =

(2,∞, 1
2 ), and then with the values (𝑝, 𝑞) = (4, 4) at the endpoint 𝜀 = 0, we find that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
� ‖(𝐸0, 𝐵0)‖ �𝐻

3
2
+ ‖𝑢‖𝐿∞

𝑡
�𝐻 1 ‖𝐵‖𝐿2

𝑡
�𝐻 2 ,

and

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
� ‖(𝐸0, 𝐵0)‖ �𝐻

3
2
+ ‖𝑢‖

𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿4
𝑡
�𝐻

3
2
.

In fact, by spliting high and low frequencies of B in the right-hand side of the preceding estimates, it
is possible to adapt their proofs to obtain the following more useful bound

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
� ‖(𝐸0, 𝐵0)‖ �𝐻

3
2

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

(���1{ |𝐷 |< 𝜎𝑐
2 }𝐵

���
𝐿4
𝑡
�𝐻

3
2
+

���1{ |𝐷 | ≥ 𝜎𝑐
2 }𝐵

���𝐿2
𝑡
�𝐻 2

)
.

Therefore, similarly to (5.5), we infer that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2

� ‖(𝐸0, 𝐵0)‖ �𝐻
3
2

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

(
‖𝐵‖

𝐿4
𝑡
�𝐵

3
2

2,1,<

+ 𝑐−
1
2 ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

+ 𝑐−
1
2 ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

)
.

(5.6)

Control of low electromagnetic frequencies – Part B. Now, we carry on with the estimates of low
frequencies of electromagnetic fields by first combining (5.5) and (5.6) to find that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐻
3
2
+ 𝑐−

1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

)
+ ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ‖𝐵‖

𝐿4
𝑡
�𝐵

3
2

2,1,<

.

(5.7)

Note that one cannot expect to observe any decay, with respect to c, in the nonlinear term

‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿4
𝑡
�𝐵

3
2

2,1,<

.
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Accordingly, at this stage, the bound (5.7) does not seem to be helpful in obtaining a global control
without additional conditions on the size of the initial data.

Nevertheless, our key observation here is that the space 𝐿4
𝑡
�𝐵

3
2
2,1 can be obtained by interpolating

𝐿∞𝑡 �𝐻
3
2 , 𝐿2

𝑡
�𝐵

5
2
2,1 and 𝐿2

𝑡
�𝐻1. Note that 𝐿∞𝑡 �𝐻

3
2 and 𝐿2

𝑡
�𝐵

5
2
2,1,< appear in the left-hand side of (5.7), whereas,

𝐿2
𝑡
�𝐻1 is a good space for B, because, in view of (4.4), the magnetic field is asymptotically globally

bounded in that space. Based on this remark, we write, by interpolation, that

‖𝐵‖
𝐿4
𝑡
�𝐵

3
2

2,1,<

�

(∫ 𝑡

0
‖𝐵(𝜏)‖

4
3
�𝐻 1 ‖𝐵(𝜏)‖

8
3

�𝐵
7
4

2,1,<

𝑑𝜏

) 1
4

� ‖𝐵‖
1
3
𝐿2
𝑡
�𝐻 1 ‖𝐵‖

2
3

𝐿8
𝑡
�𝐵

7
4

2,1,<

� ‖𝐵‖
1
3
𝐿2
𝑡
�𝐻 1

(
‖𝐵‖

𝐿∞
𝑡

�𝐵
3
2

2,2,<

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

) 2
3

,

which leads to
‖(𝐸, 𝐵)‖

𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐻
3
2
+ 𝑐−

1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

)
+ ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ‖𝐵‖

1
3
𝐿2
𝑡
�𝐻 1

(
‖𝐵‖

𝐿∞
𝑡

�𝐵
3
2

2,2,<

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

) 2
3

.

(5.8)

In order to complete our summary of all relevant low-frequency bounds on electromagnetic fields,
we recall the estimate

‖𝐸 ‖
𝐿2
𝑡
�𝐵

5
2

2,1

� 𝑐−1‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ 𝑐−
1
2 ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
, (5.9)

which is established in (3.26).
Decay of electric fields and almost-parabolic bounds on magnetic fields. For later use, we recall and

add some precision to the bounds proved in Section 4.2, above.
More specifically, observe first that Proposition 4.1, with the values 𝑠 ∈ {0, 1

2 }, provides us with the
decay estimates����1

𝑐
𝜕𝑡𝐸

����𝐿2
𝑡 𝐿

2 � 𝑐−1‖∇ × 𝐵0 − 𝑗0‖𝐿2 + 𝑐−1‖𝐸0‖ �𝐻 1 + 𝑐−2‖𝑢‖2
𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖𝐿∞

𝑡
�𝐻

3
2

+ 𝑐−2 (1 + E0)
(
‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 + ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2

)
×
(
‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2

) (5.10)

and ����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
� 𝑐−1‖∇ × 𝐵0 − 𝑗0‖ �𝐻

1
2
+ 𝑐−1‖𝐸0‖ �𝐻

3
2
+ 𝑐−2‖𝑢‖2

𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖𝐿∞

𝑡
�𝐻

3
2

+ 𝑐−2 (1 + E0)
(
‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 + ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2

)
×
(
‖𝐵‖𝐿∞

𝑡
�𝐻 2 + 𝑐‖𝐸 ‖𝐿2

𝑡
�𝐻 2

)
.

(5.11)
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As for the almost-parabolic estimates of B, we first utilize Lemma 2.3 to write that

𝑐−1‖∇ × 𝐵0 − 𝑗0‖𝐿2 = 𝑐−1‖∇ × 𝐵0 − 𝑐𝑒 : 0 − 𝑃(𝑢0 × 𝐵0)‖𝐿2

� 𝑐−1
(
‖𝐵0‖ �𝐻 1 + ‖𝑢0‖𝐿2 ‖𝐵0‖ �𝐻

3
2

)
+ ‖𝐸0‖𝐿2

� 𝑐−1
(
‖𝐵0‖ �𝐻 1 + E0‖𝐵0‖ �𝐻

3
2

)
+ E0.

Then, by substituting the preceding control in (5.10), and by further incorporating the resulting bound
in the estimate from Proposition 4.2, we find that

‖𝐵‖𝐿2
𝑡
�𝐻 1 � E0 + 𝑐

−1 (‖(𝐸0, 𝐵0)‖ �𝐻 1 + E0‖𝐵0‖ �𝐻
3
2

)
+ 𝑐−2‖𝑢‖2

𝐿∞
𝑡 𝐻

1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖𝐿∞

𝑡
�𝐻

3
2

+ 𝑐−2(1 + E0)

(
‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 + ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2

) (
‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
+ ‖𝑐𝐸 ‖

𝐿∞
𝑡

�𝐻
3
2

)
,

(5.12)

which provides an asymptotic parabolic regularity estimate on B.
Finally, we emphasize that we will also make use of the similar almost-parabolic estimates on Γ

obtained in Proposition 4.2. More precisely, the relevant estimates on Γ are

‖Γ‖𝐿2
𝑡
�𝐻 1 � ‖Γ0‖𝐿2 + 𝑐−1‖𝐸0‖ �𝐻 2 + 𝑐−1

(
‖𝐵‖𝐿∞

𝑡
�𝐻 2 + 𝑐‖𝐸 ‖𝐿2

𝑡
�𝐻 2

)
(5.13)

and

‖Γ‖𝐿∞
𝑡 𝐿

3 � ‖Γ0‖𝐿3 + 𝑐−1‖𝐸0‖ �𝐻
5
2
+ ‖𝐸 ‖

𝐿2
𝑡
�𝐻

5
2
. (5.14)

Nonlinear energy estimate. Here, we gather all the bounds above to produce a nonlinear energy
estimate. To that end, let us first introduce, for any 𝑡 ≥ 0, the functional H(𝑡) given by

H(𝑡)
def
= ‖(𝜔,Ω)‖𝐿∞

𝑡 𝐿
2∩𝐿2

𝑡
�𝐻 1 + E𝑡 + ‖Γ‖𝐿∞

𝑡 𝐿
3

+ ‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐−1‖(𝐸, 𝐵)‖

𝐿∞
𝑡

�𝐵
5
2

2,1

+ 𝑐‖𝐸 ‖
𝐿2
𝑡
�𝐻

3
2

+ ‖(𝐸, 𝐵)‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

+ ‖𝐸 ‖
𝐿2
𝑡
�𝐵

5
2

2,1

+ ‖𝐵‖𝐿2
𝑡
�𝐻 1

+ ‖∇ × 𝐵 − 𝑗 ‖
𝐿∞
𝑡

�𝐻
1
2
,

where E𝑡 is given in (5.3) and all the time-norms are taken over the whole interval [0, 𝑡). Accordingly,
we conventionally define

H(0) def
= ‖(𝜔0,Ω0)‖𝐿2 + E0 + ‖Γ0‖𝐿3

+ ‖(𝐸0, 𝐵0)‖ �𝐻
3
2
+ 𝑐−1‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1

+ ‖∇ × 𝐵0 − 𝑗0‖ �𝐻
1
2
.

In particular, note, for all 𝑡 ≥ 0, that

H(0) ≤ H(𝑡). (5.15)

Further observe that ‖Γ0‖𝐿3 � ‖𝐵0‖ �𝐻
3
2
, by virtue of Lemma 2.2.

Now, we claim an estimate of the form

H(𝑡) ≤ 𝐶0 + 𝑃(H(𝑡)),
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for 𝑡 ≥ 0, some constant 𝐶0 > 0 depending only on the initial data, uniformly with respect to c, and
some polynomial 𝑃 ∈ R+[𝑋] whose coefficients vanish asymptotically as 𝑐 → ∞. Owing to the latter
bound above, Lemma 5.2 below will eventually allow us to deduce the desired global estimates, under
adequate conditions on the data.

In order to reach such a bound, we first proceed with the control of 1
𝑐 𝜕𝑡𝐸 by observing that (5.11)

yields that����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
� 𝑐−1H(0) + 𝑐−2H3(𝑡) + 𝑐−2 (1 + E0)H(𝑡)

(
‖𝐵‖𝐿∞

𝑡
�𝐻 2 + 𝑐‖𝐸 ‖𝐿2

𝑡
�𝐻 2

)
.

Therefore, noticing, by an interpolation argument, that

‖𝐵‖𝐿∞
𝑡

�𝐻 2 + 𝑐‖𝐸 ‖𝐿2
𝑡
�𝐻 2 � 𝑐

1
2 H(𝑡), (5.16)

it then follows that ����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
� 𝑐−1H(𝑡) + 𝑐−

3
2 (1 + E0)H2(𝑡) + 𝑐−2H3(𝑡). (5.17)

Next, we exploit the almost-parabolic estimate on B given in (5.12). To that end, note first, by splitting
the frequencies of 𝐵0, that

𝑐−1‖(𝐸0, 𝐵0)‖ �𝐻 1 ≤ 𝑐−1
(
‖(𝐸0, 𝐵0)‖ �𝐵1

2,2,<
+ ‖(𝐸0, 𝐵0)‖ �𝐵1

2,2,>

)
� ‖(𝐸0, 𝐵0)‖𝐿2 + 𝑐−

3
2 ‖(𝐸0, 𝐵0)‖ �𝐻

3
2

� E0 + 𝑐
− 3

2 H(0).

In addition to that, using the fact that H(0) ≤ H(𝑡), one sees that

𝑐−1E0‖𝐵0‖ �𝐻
3
2
≤ E0 + 𝑐

−2E0‖𝐵0‖
2
�𝐻

3
2

≤ E0 + 𝑐
−2 (1 + E0)H2(𝑡).

Accordingly, (5.12) yields, for 𝑐 ≥ 1, that

‖𝐵‖𝐿2
𝑡
�𝐻 1 � H(0) + 𝑐−2 (1 + E0)H2(𝑡) + 𝑐−2H3(𝑡) (5.18)

and, since H(0) ≤ H(𝑡), that

‖𝐵‖𝐿2
𝑡
�𝐻 1 � E0 + 𝑐

− 3
2 H(𝑡) + 𝑐−2 (1 + E0)H2(𝑡) + 𝑐−2H3(𝑡). (5.19)

We turn now our attention to the bounds on Γ given by (5.13) and (5.14). Observing, by a simple
interpolation argument, that

𝑐−1‖𝐸0‖ �𝐻 2 ≤ 𝑐−
1
2

(
𝑐−1‖𝐸0‖ �𝐻

5
2

) 1
2
‖𝐸0‖

1
2

�𝐻
3
2
≤ 𝑐−

1
2 H(0) ≤ 𝑐−

1
2 H(𝑡),

it follows, by incorporating (5.16) into (5.13), that

‖Γ‖𝐿2
𝑡
�𝐻 1 � ‖Γ0‖𝐿2 + 𝑐−

1
2 H(𝑡). (5.20)
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As for the 𝐿∞𝑡 𝐿3 bound on Γ, we begin by deducing from (5.9) that

‖𝐸 ‖
𝐿2
𝑡
�𝐵

5
2

2,1

� H(0) + 𝑐−
1
2 H2(𝑡), (5.21)

which, in view of (5.14), yields that

‖Γ‖𝐿∞
𝑡 𝐿

3 � H(0) + 𝑐−
1
2 H2(𝑡). (5.22)

Now, we establish a control of velocity fields in terms of the functional H(𝑡). To that end, employing
(5.16) and the simple fact that

E0 � E𝑡 ≤ 𝑐
1
2 H(𝑡), for all 𝑐 ≥ 1,

one deduces that

‖𝐵‖𝐿∞
𝑡 𝐻

2 ≤ E0 + 𝑐
1
2 H(𝑡) ≤ 2𝑐

1
2 H(𝑡).

Hence, (5.17) provides us with the bound����1
𝑐
𝜕𝑡𝐸

����𝐿2
𝑡
�𝐻

1
2
‖𝐵‖𝐿∞

𝑡 𝐻
2 �

(
𝑐−

1
2 H2(𝑡) + 𝑐−1H3(𝑡) + 𝑐−

3
2 H4(𝑡)

)
𝑒E

2
0 . (5.23)

However, combining (5.19), (5.20) and (5.22) yields, for any 𝑐 ≥ 1, that

‖Γ‖𝐿∞
𝑡 𝐿

3 ‖(𝐵, Γ)‖𝐿2
𝑡
�𝐻 1

�
(
H(0) + 𝑐−

1
2 H2(𝑡)

) (
‖Γ0‖𝐿2 + E0 + 𝑐

− 1
2 H(𝑡) + 𝑐−2 (1 + E0)H2(𝑡) + 𝑐−2H3(𝑡)

)
� H(0) (‖Γ0‖𝐿2 + E0) + 𝑐

− 1
2 H2(𝑡) (‖Γ0‖𝐿2 + E0)

+H(0) (1 + E0)

(
𝑐−

1
2 H(𝑡) + 𝑐−2H2(𝑡) + 𝑐−2H3(𝑡)

)
+ (1 + E0)

(
𝑐−1H3(𝑡) + 𝑐−

5
2 H4(𝑡) + 𝑐−

5
2 H5(𝑡)

)
.

Accordingly, by employing (5.15) and 𝑐 ≥ 1, again, we find that

‖Γ‖𝐿∞
𝑡 𝐿

3 ‖(𝐵, Γ)‖𝐿2
𝑡
�𝐻 1

� H(0) (‖Γ0‖𝐿2 + 1)𝑒E
2
0

+ (‖Γ0‖𝐿2 + 1)
(
𝑐−

1
2 H2(𝑡) + 𝑐−1H3(𝑡) + 𝑐−

3
2 H4(𝑡) + 𝑐−

5
2 H5(𝑡)

)
𝑒𝐶E2

0︸������������������������������������������������������������������������������������︷︷������������������������������������������������������������������������������������︸
def
= 𝑃∗ (H(𝑡))

.
(5.24)

Consequently, by incorporating (5.23) and (5.24) into (5.2), we end up with

‖(𝜔,Ω)‖𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 � H(0) (‖Γ0‖𝐿2 + 1)𝑒𝐶E2

0 + 𝑃∗(H(𝑡)), (5.25)

where the value of the constant 𝐶 > 0 can be adapted to guarantee the validity of the estimate.
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In the next step, we gather the high- and low-frequency estimates of electromagnetic fields. To that
end, on the one hand, note that (5.4) yields

𝑐−1‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,>

+ ‖(𝐸, 𝐵)‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

� H(0) + 𝑃∗(H(𝑡)). (5.26)

On the other hand, (5.8) entails that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� H(0) + 𝑐−
1
2 H2(𝑡) + ‖𝜔‖𝐿∞

𝑡 𝐿
2∩𝐿2

𝑡
�𝐻 1 ‖𝐵‖

1
3
𝐿2
𝑡
�𝐻 1H

2
3 (𝑡).

Therefore, we employ (5.25) to obtain that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� H(0) + 𝑃∗(H(𝑡)) +
(
H(0) (‖Γ0‖𝐿2 + 1)𝑒𝐶E2

0 + 𝑃∗(H(𝑡))
)
‖𝐵‖

1
3
𝐿2
𝑡
�𝐻 1H

2
3 (𝑡)

� H(0) + (H(𝑡) + 1)𝑃∗(H(𝑡)) +H(0) (‖Γ0‖𝐿2 + 1)𝑒𝐶E2
0 ‖𝐵‖

1
3
𝐿2
𝑡
�𝐻 1H

2
3 (𝑡),

which implies, for any 𝜆 > 0, that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� H(0) + (H(𝑡) + 1)𝑃∗(H(𝑡)) + 𝜆−2H3(0) (‖Γ0‖𝐿2 + 1)3𝑒𝐶E2
0 ‖𝐵‖𝐿2

𝑡
�𝐻 1 + 𝜆H(𝑡).

After that, we employ (5.19), which leads to the control

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� H(0) + (H(𝑡) + 1)𝑃∗(H(𝑡))

+ 𝜆−2H3(0) (‖Γ0‖𝐿2 + 1)3
(
1 + 𝑐−

3
2 H(𝑡) + 𝑐−2H2(𝑡) + 𝑐−2H3(𝑡)

)
𝑒𝐶E2

0 + 𝜆H(𝑡).

At last, in view of (5.15), it follows that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐻
3
2
+ 𝑐‖𝐸 ‖

𝐿2
𝑡
�𝐻

3
2
+ ‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,<

� H(0) + (H(𝑡) + 1)𝑃∗(H(𝑡)) + 𝜆−2H3(0) (‖Γ0‖𝐿2 + 1)3𝑒𝐶E2
0

+ 𝜆−2(‖Γ0‖𝐿2 + 1)3
(
𝑐−

3
2 H4(𝑡) + 𝑐−2H5(𝑡) + 𝑐−2H6(𝑡)

)
𝑒𝐶E2

0 + 𝜆H(𝑡).

(5.27)

As for the remaining piece involving ∇ × 𝐵 − 𝑗 that is required to construct the functional H(𝑡), it is
dealt with by recasting the bound from Proposition 4.1, for 𝑝 = ∞ and 𝑠 = 1

2 , combined with (5.16), to
find that

‖∇ × 𝐵 − 𝑗 ‖
𝐿∞
𝑡

�𝐻
1
2
� H(0) + 𝑐−

1
2 H2(𝑡) + 𝑐−1H3(𝑡),

whereby, obtaining that

‖∇ × 𝐵 − 𝑗 ‖
𝐿∞
𝑡

�𝐻
1
2
� H(0) + 𝑃∗(H(𝑡)). (5.28)
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All in all, gathering the bounds (5.18), (5.21), (5.22), (5.25), (5.26), (5.27) and (5.28) to construct
the functional H(𝑡) and choosing 𝜆 small enough in such a way that the term 𝜆H(𝑡) can be absorbed by
the left-hand side of the final estimate, we end up with the bound

H(𝑡) ≤ 𝐶0 + P (H(𝑡)),

for all 𝑡 ≥ 0, where we set

𝐶0
def
= 𝐶H(0) (1 +H(0))2 (1 + ‖Γ0‖𝐿2)3𝑒𝐶E2

0 , (5.29)

and

P (H(𝑡))
def
= 𝐶 (‖Γ0‖𝐿2 + 1)3

(
𝑐−

1
2 H2(𝑡) + 𝑐−

1
2 H3(𝑡) + 𝑐−1H4(𝑡) + 𝑐−

3
2 H5(𝑡) + 𝑐−2H6(𝑡)

)
𝑒𝐶E2

0 .

We recall that the (possibly large) constant 𝐶 > 0 is universal. From now on, it is fixed.
The completion of the proof hinges now on a direct application of the following simple lemma.

Lemma 5.2. Let 𝑡 ↦→ 𝑥(𝑡) be a non-negative continuous function defined for all 𝑡 ≥ 0. Consider another
function 𝑡 ↦→ 𝐹 (𝑡) which is assumed to be non-negative and increasing. Further suppose that there is
𝑥0 > 0 such that

𝑥(0) ≤ 𝑥0,

and, for any 𝑡 ≥ 0, that

𝑥(𝑡) ≤ 𝑥0 + 𝐹 (𝑥(𝑡)).

If, moreover, F satisfies the condition that

𝐹 (2𝑥0) < 𝑥0,

then, 𝑥(𝑡) enjoys the bound

𝑥(𝑡) < 2𝑥0,

for all 𝑡 ≥ 0.

Proof. Define the set

I def
= {𝑡 ≥ 0 : 𝑥(𝑡) < 2𝑥0}.

This set is nonempty and open in [0,∞). In order to prove the desired global bound, we only have to
show that I is closed, as well.

To that end, let (𝑡𝑛)𝑛∈N be a sequence of elements in I, converging to some limit point 𝑡 ∈ [0,∞).
Since 𝑡𝑛 ∈ I, we deduce, for all 𝑛 ∈ N, that

𝑥(𝑡𝑛) ≤ 𝑥0 + 𝐹 (𝑥(𝑡𝑛)) ≤ 𝑥0 + 𝐹 (2𝑥0) < 2𝑥0.

By continuity of 𝑡 ↦→ 𝑥(𝑡), taking 𝑛 → ∞ in the foregoing inequalities yields that 𝑡 ∈ I, thereby showing
that I is closed and completing the proof of the lemma. �

We are now back to the proof of Theorem 1.1. By applying Lemma 5.2 with 𝐹 (𝑡) = P (𝑡), we arrive
at the conclusion, for all 𝑡 ≥ 0, that

H(𝑡) ≤ 2𝐶0,
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as soon as

P (2𝐶0) < 𝐶0. (5.30)

In particular, recall that

lim
𝑐→∞

P (2𝐶0) = 0,

which implies the existence of another constant 𝑐0 > 0, which only depends on the initial data, such
that (5.30) is satisfied for all 𝑐 > 𝑐0. It then follows that all the norms involved in the construction of
H(𝑡) are bounded.

Finally, in order to complete the justification of all uniform bounds claimed in the statement of
Theorem 1.1, we only need to observe that the control of j in 𝐿∞𝑡 𝐿

2 ∩ 𝐿2
𝑡
�𝐻

1
2 follows directly from an

application of Proposition 4.1. This completes the proof of Theorem 1.1 in the case of rough profiles.

5.3.2. Regular profiles
We proceed with the completion of the proof of Theorem 1.1 in the case of regular profiles. Specifically,
our task now consists in showing that if, furthermore, we assume initially that

(𝐸𝑐0 , 𝐵
𝑐
0 ) ∈

�𝐵
5
2
2,1,

uniformly in 𝑐 > 0, then the regularity of (𝐸, 𝐵) in �𝐵
5
2
2,1 is propagated for all times 𝑡 > 0, uniformly in

𝑐 ∈ (𝑐0,∞). Note that this cannot be done by a direct application of the energy estimates from Lemma
3.6. Instead, we need to exploit the techniques from Lemmas 3.4 and 3.5.

Again, for simplicity, we will henceforth omit the index ‘c’ referring to the dependence of the solution
on the speed of light. Also, let us point out that all the Lebesgue spaces in time are now taken over the
whole positive real-line R+. Moreover, the constant 𝐶0 defined in (5.29) will be allowed to change from
one line to another, as long as that change only involves norms of the initial data that remain uniformly
bounded in c.

Preliminary bounds on magnetic fields. The control of high frequencies is deduced, again, from
Lemma 3.4 with a suitable choice of parameters. To see that, we proceed with a bootstrap argument by
first recasting the bound

‖(𝐸, 𝐵)‖
𝐿4
𝑡
�𝐵

5
2

2,1,>

� 𝑐−
1
2 ‖(𝐸0, 𝐵0)‖

�𝐵
5
2

2,1,>

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

(
‖𝐵‖

𝐿2
𝑡
�𝐵

5
2

2,1,>

+ ‖𝐵‖
𝐿2
𝑡
�𝐵

5
2

2,1,<

)
,

from (3.15), by setting 𝑞 = 4 therein. Therefore, recalling that we have already established the uniform
estimates

𝑢 ∈ 𝐿∞𝑡 �𝐻1 ∩ 𝐿2
𝑡
�𝐻2,

𝐵 ∈ �̃�2
𝑡
�𝐵

5
2
2,1,> ∩ 𝐿2

𝑡
�𝐵

5
2
2,1,< ∩ 𝐿∞𝑡 𝐿

2 ∩ 𝐿2
𝑡
�𝐻1,

𝑐−1𝐵 ∈ 𝐿∞𝑡 �𝐵
5
2
2,1,<,

(5.31)

one directly deduces that

𝐵 ∈ �̃�4
𝑡
�𝐵

5
2
2,1,>,

uniformly with respect to 𝑐 ∈ (𝑐0,∞).
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Now, we take care of the low frequencies by first applying the last estimate from Lemma 3.3 with
values

𝑠 = 2, 𝑚 = 4 and 𝑞 = 1,

to find that

‖𝐵‖
𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿4
𝑡
�𝐵

3
2

2,1

.

Therefore, by further employing classical product laws, which are contained in Lemma 2.3, and inter-
polation inequalities, we obtain that

‖𝐵‖
𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵‖
𝐿∞
𝑡

�𝐵
3
2

2,1

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿∞
𝑡

�𝐵
3
2

2,1

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

(
‖𝐵‖

𝐿∞
𝑡

�𝐵
3
2

2,1,>

+ ‖𝐵‖
𝐿∞
𝑡

�𝐵
3
2

2,1,<

)
� ‖(𝐸0, 𝐵0)‖ �𝐵2

2,1
+ ‖𝑢‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2

(
𝑐−1‖𝐵‖

𝐿∞
𝑡

�𝐵
5
2

2,1,>

+ ‖𝐵‖
𝐿∞
𝑡

�𝐵
3
2

2,1,<

)
.

Thus, in view of the uniform bounds recalled in (5.31), in order to control low frequencies, it only
remains to show that

𝐵 ∈ 𝐿∞𝑡 �𝐵
3
2
2,1,< .

Instead, we are going to prove the slightly better bound

𝐵 ∈ �̃�∞𝑡 �𝐵
3
2
2,1,< . (5.32)

To that end, we employ the low-frequency estimates from Lemma 3.2 with the values

𝑞 = ∞ and 𝑟 = �̃� = 𝑞 = 2

to deduce that

‖𝐵‖
𝐿∞
𝑡

�𝐵
3
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

3
2

2,1

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿2
𝑡
�𝐵

3
2

2,1

.

Therefore, by further applying the paraproduct estimate (2.3), we obtain that

‖𝐵‖
𝐿∞
𝑡

�𝐵
3
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

3
2

2,1

+ ‖𝑢‖𝐿∞
𝑡

�𝐵1
2,∞

‖𝐵‖𝐿2
𝑡
�𝐵2

2,1
.

Accordingly, we conclude that the bound (5.32) holds uniformly, by an application of the embeddings

𝐿2
𝑡
�𝐵1

2,∞ ∩ 𝐿2
𝑡
�𝐵

5
2
2,∞ ↩→ �̃�2

𝑡
�𝐵1

2,∞ ∩ �̃�2
𝑡
�𝐵

5
2
2,∞ ↩→ �̃�2

𝑡
�𝐵2

2,1

combined with the bounds (5.31).
All in all, gathering the preceding high- and low-frequency estimates, we have shown that

𝐵 ∈ 𝐿4
𝑡
�𝐵

5
2
2,1, (5.33)

uniformly in c.
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Next, we improve the previous bound to obtain

𝐵 ∈ �̃�4
𝑡
�𝐵

5
2
2,1. (5.34)

Note that the same bound on high frequencies is already established at the start of this step and, thus,
we only need to take care of the corresponding estimate on the remaining frequencies. To that end, we
first apply the low-frequency estimates from Lemma 3.2 with values

𝑞 = 4, 𝑞 =
4
3

and 𝑟 = �̃� = 2

to obtain that

‖𝐵‖
𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑃(𝑢 × 𝐵)‖
𝐿4
𝑡
�𝐵

3
2

2,1

.

Therefore, by further employing (2.3) to estimate the product above, we find that

‖𝐵‖
𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑢‖𝐿∞
𝑡

�𝐵1
2,∞

‖𝐵‖𝐿4
𝑡
�𝐵2

2,1
.

Thus, one deduces, thanks to the embeddings

𝐿4
𝑡
�𝐵

3
2
2,1 ∩ 𝐿4

𝑡
�𝐵

5
2
2,1 ↩→ �̃�4

𝑡
�𝐵

3
2
2,∞ ∩ �̃�4

𝑡
�𝐵

5
2
2,∞ ↩→ �̃�4

𝑡
�𝐵2

2,1,

that

‖𝐵‖
𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖ �𝐵2
2,1

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1 ‖𝐵‖
𝐿4
𝑡
�𝐵

3
2

2,1∩𝐿
4
𝑡
�𝐵

5
2

2,1

.

Hence, due to the bounds (5.31) and (5.33), we see that the right-hand side in the preceding estimate is
finite as soon as 𝐵 ∈ 𝐿4

𝑡
�𝐵

3
2
2,1. This bound turns out to be a consequence of the embeddings

𝐿∞𝑡 𝐿
2 ∩ 𝐿2

𝑡
�𝐻1 ∩ 𝐿4

𝑡
�𝐵

5
2
2,1 ↩→ 𝐿4

𝑡
�𝐵

1
2
2,1 ∩ 𝐿4

𝑡
�𝐵

5
2
2,1 ↩→ 𝐿4

𝑡
�𝐵

3
2
2,1,

whereby 𝐵 ∈ �̃�4
𝑡
�𝐵

5
2
2,1,< . In conclusion, we have shown that (5.34) holds uniformly with respect to the

speed of light 𝑐 ∈ (𝑐0,∞).
Propagation of initial regularity. We are now in a position to show the propagation of the �𝐵

5
2
2,1

regularity of the electromagnetic field, uniformly with respect to the speed of light.
As before, we deal first with high frequencies by recasting the second estimate from Lemma 3.4,

with the values

𝑞 = ∞, 𝑝 = 4,

to find that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,>

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1,>

+ ‖𝑢‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖𝐵‖

𝐿4
𝑡
�𝐵

5
2

2,1

.

Thus, it follows that

(𝐸, 𝐵) ∈ �̃�∞𝑡 �𝐵
5
2
2,1,>,

uniformly in 𝑐 ∈ (𝑐0,∞), by virtue of the bounds (5.31) and (5.34).
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As for low frequencies, we proceed by applying the corresponding estimate from Lemma 3.2 with
the values

𝑟 = 𝑟 = 2, 𝑞 = ∞, 𝑞 =
4
3
,

to find that

‖𝐸 ‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ 𝑐−
1
2 ‖𝑃(𝑢 × 𝐵)‖

𝐿4
𝑡
�𝐵

5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ ‖𝑃(𝑢 × 𝐵)‖𝐿4
𝑡
�𝐵2

2,1,<
,

and

‖𝐵‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ ‖𝑃(𝑢 × 𝐵)‖𝐿4
𝑡
�𝐵2

2,1
.

Therefore, by employing (2.3) to estimate the products above, we obtain, for any 𝜀 ∈ (0, 1
2 ), that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2 −𝜀

2,∞

‖𝐵‖𝐿∞
𝑡

�𝐵2+𝜀
2,1
.

Hence, utilizing the interpolation inequalities

‖𝑢‖
𝐿4
𝑡
�𝐵

3
2 −𝜀

2,∞

� ‖𝑢‖
𝐿4
𝑡
�𝐵

3
2 −𝜀

2,∞

� ‖𝑢‖𝜀
𝐿4
𝑡
�𝐻

1
2
‖𝑢‖1−𝜀

𝐿4
𝑡
�𝐻

3
2

� ‖𝑢‖𝜀
𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 ‖𝑢‖

1−𝜀
𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

and

‖𝐵‖𝐿∞
𝑡

�𝐵2+𝜀
2,1
� ‖𝐵‖

1
2+𝜀

𝐿∞
𝑡

�𝐵
5
2

2,1

‖𝐵‖
1
2−𝜀

𝐿∞
𝑡

�𝐵
3
2

2,∞

� ‖𝐵‖
1
2+𝜀

𝐿∞
𝑡

�𝐵
5
2

2,1

‖𝐵‖
1
2−𝜀

𝐿∞
𝑡

�𝐻
3
2
,

we deduce, for any 𝜆 ∈ (0, 1), that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+ 𝜆‖𝐵‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

+ 𝐶𝜆

(
‖𝑢‖𝜀

𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 ‖𝑢‖

1−𝜀
𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

) 1
1
2 −𝜀 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
.

Finally, choosing 𝜆 small enough, we arrive at the conclusion that

‖(𝐸, 𝐵)‖
𝐿∞
𝑡

�𝐵
5
2

2,1,<

� ‖(𝐸0, 𝐵0)‖
�𝐵

5
2

2,1

+
(
‖𝑢‖𝜀

𝐿∞
𝑡 𝐿

2∩𝐿2
𝑡
�𝐻 1 ‖𝑢‖

1−𝜀
𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2

) 1
1
2 −𝜀 ‖𝐵‖

𝐿∞
𝑡

�𝐻
3
2
.

Again, due to the bounds (5.31), the right-hand side above is finite, uniformly with respect to 𝑐 ∈ (𝑐0,∞),
thereby yielding the desired control for the low frequencies of E and B. This completes the proof of
Theorem 1.1.
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6. Convergence and proof of Theorem 1.3

Let (𝑢𝑐 , 𝐸𝑐 , 𝐵𝑐)𝑐>𝑐0 and (𝑢, 𝐵) be the solutions of (1.1) and (MHD), given by Theorem 1.1 and
Corollary 1.2, respectively. We further introduce the fluctuations

�̃�
def
= 𝑢𝑐 − 𝑢, 𝐵

def
= 𝐵𝑐 − 𝐵,

with a corresponding similar notation �̃�0, 𝐵0 for their initial data, and the time-dependent function

𝑓 (𝑡)
def
=
���∇(𝑢(𝑡), 𝑢𝑐 (𝑡), 𝐵(𝑡), 𝐵𝑐 (𝑡))���𝐿3 ,

for all 𝑡 > 0. In view of Theorem 1.1 and Corollary 1.2, observe that 𝑓 ∈ 𝐿2 (R+) with∫ ∞

0
𝑓 2(𝜏)𝑑𝜏 ≤ 𝐶0, (6.1)

uniformly in 𝑐 ∈ (𝑐0,∞), for some constant 𝐶0 > 0 depending only on the initial data.
We proceed now in four steps:

1. The 𝐿2 energy estimate.
2. An interpolation argument.
3. Convergence of the velocity in the endpoint space �𝐻1.
4. Convergence of the magnetic field in the endpoint space �𝐻

3
2 .

6.1. The 𝐿2 energy estimate

First, it is readily seen that the fluctuations �̃�, 𝐵 are solutions of the perturbed MHD equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑡 �̃� + 𝑢 · ∇�̃� − 𝜈Δ �̃� + ∇𝑝 = −�̃� · ∇𝑢𝑐 + 𝐵 · ∇𝐵 + 𝐵𝑐 · ∇𝐵 +

1
𝑐
𝜕𝑡𝐸

𝑐 × 𝐵𝑐 ,

𝜕𝑡𝐵 + 𝑢 · ∇𝐵 −
1
𝜎
Δ𝐵 = −�̃� · ∇𝐵𝑐 + 𝐵 · ∇𝑢 + 𝐵𝑐 · ∇�̃� + ∇ ×

(
1
𝑐
𝜕𝑡𝐸

𝑐

)
.

(6.2)

Therefore, by virtue of the identities∫
R3
(𝑢 · ∇�̃�) · �̃� 𝑑𝑥 =

∫
R3
(𝑢 · ∇𝐵) · 𝐵 𝑑𝑥 = 0

and ∫
R3
(𝐵𝑐 · ∇𝐵) · �̃� 𝑑𝑥 +

∫
R3
(𝐵𝑐 · ∇�̃�) · 𝐵 𝑑𝑥 = 0,

performing an 𝐿2 energy estimate yields, for all 𝑡 > 0, that

‖(�̃�, 𝐵) (𝑡)‖2
𝐿2 +

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 1𝑑𝜏 � ‖(�̃�0, 𝐵0)‖
2
𝐿2 +

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

𝐿3 𝑓 (𝜏)𝑑𝜏

+

����1
𝑐
𝜕𝑡𝐸

𝑐 × 𝐵𝑐
����2
𝐿2
𝑡
�𝐻−1 +

����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡 𝐿

2

� ‖(�̃�0, 𝐵0)‖
2
𝐿2 +

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖𝐿2 ‖(�̃�, 𝐵) (𝜏)‖ �𝐻 1 𝑓 (𝜏)𝑑𝜏

+

����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡
�𝐻

1
2
‖𝐵𝑐 ‖2

𝐿∞
𝑡 𝐿

2 +

����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡 𝐿

2 .
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Thus, we find, for any 𝜆 > 0, that

‖(�̃�, 𝐵) (𝑡)‖2
𝐿2 +

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 1𝑑𝜏

� ‖(�̃�0, 𝐵0)‖
2
𝐿2 + 𝜆

−1
∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

𝐿2 𝑓
2(𝜏)𝑑𝜏 + 𝜆

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 1𝑑𝜏

+

����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡
�𝐻

1
2
‖𝐵𝑐 ‖2

𝐿∞
𝑡 𝐿

2 +

����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡 𝐿

2 .

Hence, choosing 𝜆 small enough, utilizing the energy inequality (1.2) and applying Grönwall’s lemma,
we deduce, for some universal constant 𝐶 > 0, that

‖(�̃�, 𝐵) (𝑡)‖2
𝐿2 +

∫ 𝑡

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 1𝑑𝜏

�
(
‖(�̃�0, 𝐵0)‖

2
𝐿2 + (E2

0 + 1)
����1
𝑐
𝜕𝑡𝐸

𝑐

����2
𝐿2
𝑡 𝐻

1
2

)
exp

(
𝐶

∫ 𝑡

0
𝑓 2(𝜏)𝑑𝜏

)
.

Consequently, by virtue of (5.10), (5.11) and (6.1), we end up with

sup
𝜏∈[0,∞)

‖(�̃�, 𝐵) (𝜏)‖2
𝐿2 +

∫ ∞

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 1𝑑𝜏 ≤ 𝐶0

(
‖(�̃�0, 𝐵0)‖

2
𝐿2 + 𝑐

−2
)

︸���������������������︷︷���������������������︸
def
= Θ𝑐

,
(6.3)

where 𝐶0 > 0 is another constant that depends only on the size of the initial data. In the sequel, this
constant will be allowed to change value as long as it remains independent of c. This establishes the
convergence of �̃� and 𝐵 to zero in the energy space 𝐿∞𝑡 𝐿2 ∩ 𝐿2

𝑡
�𝐻1.

6.2. An interpolation argument

The results in this step are standard. Indeed, since both solutions (𝑢𝑐 , 𝐵𝑐) and (𝑢, 𝐵) belong to the space

𝐿∞(R+; �𝐻1 × �𝐻
3
2 ) ∩ 𝐿2 (R+; �𝐻2 × �𝐻

5
2 ),

uniformly in c, it follows, by interpolation with (6.3), for any 𝑠 ∈ [0, 1], that

sup
𝜏∈[0,∞)

‖(�̃�, 𝐵) (𝜏)‖2
�𝐻 𝑠× �𝐻

3𝑠
2
+

∫ ∞

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 𝑠+1× �𝐻
3𝑠
2 +1

𝑑𝜏 ≤ 𝐶0Θ
1−𝑠
𝑐 ,

whereby we deduce, for all 𝑠 ∈ [0, 1), that

lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖(�̃�, 𝐵) (𝜏)‖2
�𝐻 𝑠× �𝐻

3𝑠
2
+

∫ ∞

0
‖(�̃�, 𝐵) (𝜏)‖2

�𝐻 𝑠+1× �𝐻
3𝑠
2 +1

𝑑𝜏

)
= 0.

We are now left with proving the convergence of solutions in the spaces corresponding to the endpoint
case 𝑠 = 1, above.

6.3. Convergence of the velocity in the endpoint space �𝐻1

With the bounds established in the previous step, we are now going to show that the convergence of
the velocity in the endpoint case 𝑠 = 1 is a straightforward consequence of the fact that the source term
1
𝑐 𝜕𝑡𝐸

𝑐 × 𝐵𝑐 in the momentum equation vanishes in 𝐿2
𝑡 𝐿

2, as 𝑐 → ∞.
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To that end, performing an �𝐻1 energy estimate for the first equation in (6.2), one sees that

sup
𝜏∈[0,∞)

‖�̃�(𝜏)‖2
�𝐻 1 +

∫ ∞

0
‖�̃�(𝜏)‖2

�𝐻 2𝑑𝜏 � ‖�̃�0‖
2
�𝐻 1 + ‖𝐹‖2

𝐿2
𝑡 𝐿

2 +

����1
𝑐
𝜕𝑡𝐸

𝑐 × 𝐵𝑐
����2

𝐿2
𝑡 𝐿

2
,

where we denote

𝐹
def
= −𝑢 · ∇�̃� − �̃� · ∇𝑢𝑐 + 𝐵 · ∇𝐵 + 𝐵𝑐 · ∇𝐵.

Moreover, by a direct application of standard paraproduct laws and interpolation inequalities, we infer
that

‖𝐹‖𝐿2
𝑡 𝐿

2 � ‖(𝑢, 𝑢𝑐)‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖�̃�‖𝐿4
𝑡
�𝐻 1 + ‖(𝐵, 𝐵𝑐)‖𝐿4

𝑡
�𝐻 1 ‖𝐵‖

𝐿4
𝑡
�𝐵

3
2

2,1

� ‖(𝑢, 𝑢𝑐)‖𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 ‖�̃�‖

𝐿∞
𝑡

�𝐻
1
2 ∩𝐿2

𝑡
�𝐻

3
2
+ ‖(𝐵, 𝐵𝑐)‖

𝐿∞
𝑡

�𝐻
1
2 ∩𝐿2

𝑡
�𝐻

3
2
‖𝐵‖𝐿∞

𝑡
�𝐻 1∩𝐿2

𝑡
�𝐻 2 ,

and ����1
𝑐
𝜕𝑡𝐸

𝑐 × 𝐵𝑐
����
𝐿2
𝑡 𝐿

2
�

����1
𝑐
𝜕𝑡𝐸

𝑐

����
𝐿2
𝑡
�𝐻

1
2
‖𝐵𝑐 ‖𝐿∞

𝑡
�𝐻 1

�

����1
𝑐
𝜕𝑡𝐸

𝑐

����
𝐿2
𝑡
�𝐻

1
2
‖𝐵𝑐 ‖

𝐿∞
𝑡 𝐻

3
2

≤ 𝐶0

����1
𝑐
𝜕𝑡𝐸

𝑐

����
𝐿2
𝑡
�𝐻

1
2
.

Therefore, by virtue of (5.11) and the bounds in Theorem 1.1 and Corollary 1.2, we end up with

sup
𝜏∈[0,∞)

‖�̃�(𝜏)‖2
�𝐻 1 +

∫ ∞

0
‖�̃�(𝜏)‖2

�𝐻 2𝑑𝜏 � ‖�̃�0‖
2
�𝐻 1 + 𝐶0

(
‖�̃�‖2

𝐿∞
𝑡

�𝐻
1
2 ∩𝐿2

𝑡
�𝐻

3
2
+ ‖𝐵‖2

𝐿∞
𝑡

�𝐻 1∩𝐿2
𝑡
�𝐻 2 + 𝑐

−2
)
.

Consequently, owing to the convergence results from the previous steps, we arrive at the conclusion that

lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖�̃�(𝜏)‖2
�𝐻 1 +

∫ ∞

0
‖�̃�(𝜏)‖2

�𝐻 2𝑑𝜏

)
= 0,

for we are assuming that �̃�0 vanishes in �𝐻1.

6.4. Convergence of the magnetic field in the endpoint space �𝐻
3
2

One could try to mimic the proof from the previous step and perform a �𝐻
3
2 energy estimate for 𝐵. This

method would require a decay of 1
𝑐 𝜕𝑡𝐸

𝑐 in 𝐿2
𝑡
�𝐻

3
2 , which is not an available information here.

Instead, our proof below is inspired from a Compactness Extrapolation Lemma (see [4, Lemma
1.4]), which reduces the justification of the convergence in an endpoint setting to the analysis of the
evanescence of some high frequencies. To see that, we first fix 𝜀 ∈ (0, 1) and pick any real number
𝑠 ∈ [0, 1 − 𝜀). Then, by utilizing the results from Section 6.2, we obtain that
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sup
𝜏∈[0,∞)

∫
|𝜉 |< (Θ𝑐)

𝜀+𝑠−1
3(1−𝑠)

|𝜉 |3
���F (𝐵) (𝜏, 𝜉)

���2𝑑𝜉 + ∫ ∞

0

∫
|𝜉 |< (Θ𝑐)

𝜀+𝑠−1
3(1−𝑠)

|𝜉 |5
���F (𝐵) (𝜏, 𝜉)

���2𝑑𝜉𝑑𝜏
≤ Θ𝜀+𝑠−1

𝑐

(
‖𝐵‖2

𝐿∞
𝑡

�𝐻
3𝑠
2
+ ‖𝐵‖2

𝐿2
𝑡
�𝐻

3𝑠
2 +1

)
≤ 𝐶0Θ

𝜀
𝑐 .

For simplicity, we are now going to take 𝑠 = 0 and 𝜀 = 1
4 , thereby establishing that

lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖1
{ |𝐷 |<Θ

− 1
4

𝑐 }
𝐵(𝜏)‖2

�𝐻
3
2
+

∫ ∞

0
‖1

{ |𝐷 |<Θ
− 1

4
𝑐 }

𝐵(𝜏)‖2
�𝐻

5
2
𝑑𝜏

)
= 0,

which takes care of frequencies in {|𝜉 | < Θ
− 1

4
𝑐 }.

We now deal with the high frequencies in {|𝜉 | ≥ Θ
− 1

4
𝑐 }. To that end, we first recall, by Corollary 1.2

and (1.11), that the bound

𝐵 ∈ �̃�∞(R+; �𝐵
3
2
2,2) ∩ 𝐿2 (R+; �𝐻

5
2 )

holds uniformly with respect to 𝑐 ∈ (𝑐0,∞). Therefore, we find that

lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝐵(𝜏)‖2

�𝐻
3
2
+

∫ ∞

0
‖1

{ |𝐷 | ≥Θ
− 1

4
𝑐 }

𝐵(𝜏)‖2
�𝐻

5
2
𝑑𝜏
)

≤ lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝐵𝑐 (𝜏)‖2

�𝐻
3
2
+

∫ ∞

0
‖1

{ |𝐷 | ≥Θ
− 1

4
𝑐 }

𝐵𝑐 (𝜏)‖2
�𝐻

5
2
𝑑𝜏
)

+ lim
𝑐→∞

(
sup

𝜏∈[0,∞)

‖1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝐵(𝜏)‖2

�𝐻
3
2
+

∫ ∞

0
‖1

{ |𝐷 | ≥Θ
− 1

4
𝑐 }

𝐵(𝜏)‖2
�𝐻

5
2
𝑑𝜏
)

︸����������������������������������������������������������������������������������������︷︷����������������������������������������������������������������������������������������︸
= 0

,

where we exploited the principle described in (1.12).
The treatment of the terms involving 𝐵𝑐 in the right-hand side above requires yet another application

of Lemma 3.2. To that end, first observing that

‖𝐵𝑐 ‖
𝐿∞
𝑡

�𝐵
3
2

2,2,>

≤ 𝑐−1‖𝐵𝑐 ‖
𝐿∞
𝑡

�𝐵
5
2

2,1,>

,

‖𝐵𝑐 ‖
𝐿2
𝑡
�𝐵

5
2

2,2,>

≤ ‖𝐵𝑐 ‖
𝐿2
𝑡
�𝐵

5
2

2,1,>

,

it is readily seen that the decay in the hyperbolic region (i.e., when frequencies are localized in {|𝜉 | �
𝜎𝑐}) follows from (5.4) as soon as it is assumed initially that

lim
𝑐→∞

(
𝑐−1‖(𝐸𝑐0 , 𝐵

𝑐
0 )‖ �𝐵

5
2

2,1,>

)
= 0.

Now, in order to study the vanishing of the remaining frequencies of 𝐵𝑐 (i.e., frequencies localized
in {Θ

− 1
4

𝑐 ≤ |𝜉 | � 𝜎𝑐}), we employ the low-frequency estimate from Lemma 3.2 with the values

𝑟 = 𝑟 = 𝑞 = 2 and 𝑞 ∈ {2,∞},
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which leads to

‖1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝐵𝑐 ‖

𝐿∞
𝑡

�𝐵
3
2

2,2,<

+ ‖1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝐵𝑐 ‖

𝐿2
𝑡
�𝐵

5
2

2,2,<

�

����1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
(𝐸𝑐0 , 𝐵

𝑐
0 )

���� �𝐻
3
2
+

����1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝑃(𝑢𝑐 × 𝐵𝑐)

����𝐿2
𝑡
�𝐻

3
2
.

Accordingly, due to the strong convergence of (𝐸𝑐0 , 𝐵
𝑐
0 )𝑐>0 in �𝐻

3
2 , it is then readily seen that the first

term in the right-hand side above vanishes as 𝑐 → ∞.
As for the second term in the right-hand side, it is controlled first by exploiting the localization in

high frequencies to write that����1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝑃(𝑢𝑐 × 𝐵𝑐)

����𝐿2
𝑡
�𝐻

3
2
≤ Θ

1
8
𝑐 ‖𝑃(𝑢

𝑐 × 𝐵𝑐)‖𝐿2
𝑡
�𝐻 2 .

Therefore, by utilizing the product law (2.3), we arrive at the conclusion that����1
{ |𝐷 | ≥Θ

− 1
4

𝑐 }
𝑃(𝑢𝑐 × 𝐵𝑐)

����𝐿2
𝑡
�𝐻

3
2
� Θ

1
8
𝑐 ‖𝑢

𝑐 ‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵𝑐 ‖𝐿4
𝑡
�𝐻 2

� Θ
1
8
𝑐 ‖𝑢

𝑐 ‖
𝐿4
𝑡
�𝐵

3
2

2,1

‖𝐵𝑐 ‖
𝐿∞
𝑡

�𝐻
3
2 ∩𝐿2

𝑡
�𝐻

5
2
.

Hence, due to the bounds from Theorem 1.1 and the fact that

lim
𝑐→∞

Θ𝑐 = 0,

we deduce that the right-hand side above vanishes in the limit 𝑐 → ∞, thereby concluding the proof of
Theorem 1.3.
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