A THEOREM OF GLAISHER

LEONARD CARLITZ

1. Introduction. Let

$$
(x-1)(x-2) \ldots(x-p+1)=x^{p-1}-A_{1} x^{p-2}+\ldots+A_{p-1}
$$

Then if p is a prime >3, Glaisher [4] proved

$$
\begin{array}{rlr}
\frac{1}{p} A_{2 r} & \equiv-\frac{1}{2 r} B_{2 r} & (\bmod p) \\
\frac{1}{p^{2}} A_{2 r+1} & \equiv \frac{2 r+1}{4 r} B_{2 r} & (\bmod p) \tag{1.2}
\end{array}
$$

where B_{m} denotes the m th Bernoulli number in the notation of Nörlund; it had been proved earlier by Nielsen [5] that the left members of (1.1) and (1.2) are integral.

In this paper we first show that for $1<r<\frac{1}{2}(p-1)$,

$$
\begin{align*}
2 r A_{2 r+1} \equiv-\frac{1}{2} p^{2}(p- & 2 r-1) B_{2 r} \\
& -(2 r+1) p^{3} \sum_{i=1}^{r-1} \frac{1}{4 i} B_{2 i} B_{2 r-2 i} \quad\left(\bmod p^{4}\right) \tag{1.3}
\end{align*}
$$

indeed, a similar but slightly more complicated congruence $\left(\bmod p^{5}\right)$ is obtained. Clearly (1.3) is a refinement of (1.2) and in fact of (1.1) also; alternatively, it may be looked on as specifying the residue $(\bmod p)$ of a certain sum involving Bernoulli numbers.

Glaisher made numerous applications of (1.1) and (1.2); in §§3, 4 we make a few additional applications.

In the remainder of the paper we shall attempt to extend Glaisher's theorem to more general sequences. The generalization depends on the fact that the A_{m} can be expressed in terms of Bernoulli numbers of higher order, namely [8, p. 148],

$$
\begin{equation*}
A_{r}=(-1)^{r}\binom{p-1}{r} B_{r}^{(p)} \tag{1.4}
\end{equation*}
$$

Hence if

$$
f(x)=\sum_{m=1}^{c \pi} c_{m} x^{m} / m!\quad\left(c_{1}=1\right)
$$

where the c_{m} are integral $(\bmod p)$, and we define $\beta_{m}^{(k)}$ by means of

$$
\begin{equation*}
(x / f(x))^{k}=\sum_{m=0}^{\infty} \beta_{m}^{(k)} x^{m} / m!, \tag{1.5}
\end{equation*}
$$

Received January 25, 1952.
it is natural, in view of (1.4), to seek congruences satisfied by $\beta_{m}^{(p)}$. It will be assumed throughout the paper that p is a fixed prime greater than 3 .

As we shall see, it is indeed not difficult to generalize (1.1) and (1.2) from this point of view. Moreover, by introducing coefficients $\eta_{m}^{(k)}$ defined by

$$
\begin{equation*}
\left(\frac{1}{1+a f(x)}\right)^{k}=\sum_{m=0}^{\infty} \eta_{m}^{(k)} x^{m} / m! \tag{1.6}
\end{equation*}
$$

where a is integral $(\bmod p)$, we also generalize certain results of Nielsen analogous to (1.1) and (1.2). We remark in this connection that in both (1.5) and (1.6) the case $k=-p$ as well as $k=p$ is of interest.
2. Proof of (1.3). Put

$$
\begin{equation*}
S_{m}=S_{m}(p)=1^{m}+2^{m}+\ldots+(p-1)^{m} \tag{2.1}
\end{equation*}
$$

Then by Newton's formula we have, for r odd,

$$
r A_{T}=\sum_{i=0}^{r-1}(-1)^{i} A_{i} S_{r-1},
$$

which we write in the form
(2.2) $r A_{r}-S_{1} A_{r-1}=S_{r}-A_{1} S_{r-1}+\sum_{i=1}^{\frac{1}{i}(r-3)} A_{2 i} S_{r-2 i}-\sum_{i=1}^{\frac{1}{2}(r-3)} A_{2 i+1} S_{r-2 i-1}$.

Now by a familiar formula we have for (2.1)

$$
\begin{equation*}
S_{m}=\frac{1}{m+1} \sum_{i=1}^{m+1}\binom{m+1}{i} B_{m+1-i} p^{i} \tag{2.3}
\end{equation*}
$$

and this implies for r odd, $3<r<p$,

$$
\begin{array}{ll}
S_{r} \equiv \frac{1}{2} r B_{r-1} p^{2} & \left(\bmod p^{4}\right) \tag{2.4}\\
S_{r-1} \equiv B_{r-1} p & \left(\bmod p^{3}\right)
\end{array}
$$

Thus by (1.1) and (1.2),

$$
\begin{aligned}
& \sum_{i=1}^{\frac{1}{2}(r-3)} A_{2 i} S_{r-2 i} \equiv-\sum_{i=1}^{\frac{1}{2}(r-3)} \frac{1}{2 i} B_{2 i} p \cdot \frac{1}{2}(r-2 i) B_{r-1-2 i} p^{2} \quad\left(\bmod p^{6}\right), \\
& \sum_{i=1}^{\frac{1}{2}(r-3)} A_{2 i+1} S_{r-2 i-1} \equiv \sum_{i=1}^{\frac{1}{j}(r-3)} \frac{2 i+1}{4 i} B_{2 i} p^{2} . B_{r-2 i-1} p \quad\left(\bmod p^{5}\right),
\end{aligned}
$$

so that

$$
\begin{align*}
\sum_{i=1}^{\frac{1}{i}(r-3)} A_{2 i} S_{r-2 i} & -\sum_{i=1}^{\frac{i}{i}(r-3)} A_{2 i+1} S_{r-2 i-1} \\
& \equiv-(r+1) p^{3} \sum_{i=1}^{\frac{1}{i}(r-3)} \frac{1}{4 i} B_{2 i} B_{r-2 i-1} \quad\left(\bmod p^{\delta}\right) \tag{2.5}
\end{align*}
$$

Now by (2.3) we find that

$$
\begin{array}{r}
S_{r}-A_{1} S_{r-1} \equiv \frac{1}{2} p^{2}(r-p+1) B_{r-1}+\frac{1}{24} p^{4}(r-1)(r-2)(r+2) B_{r-3} \tag{2.6}\\
\left(\bmod p^{5}\right) .
\end{array}
$$

Hence combining (2.2), (2.5), (2.6) we get

$$
\begin{align*}
r A_{r}-\frac{1}{2} p(p-1) A_{r-1} \equiv & \frac{1}{2} p^{2}(r-p+1) B_{r-1} \\
& +\frac{1}{24} p^{4}(r-1)(r-2)(r+2) B_{r-3} \tag{2.7}\\
& -(r+1) p^{\frac{1}{3}(r-3)} \sum_{i=1} \frac{1}{4 i} B_{2 i} B_{r-2 i-1} \quad\left(\bmod p^{5}\right)
\end{align*}
$$

In the next place it follows from [3, §19] that for $t>1, p=2 m+1$,

$$
\begin{equation*}
(m-t) p A_{2 t}-A_{2 t+1} \equiv \frac{1}{6}(p-2 t)(m-t)(m-t+1) p^{3} \sigma_{t-1} \tag{2.8}
\end{equation*}
$$

where σ_{t} has the same meaning as in [3, §12]. Also

$$
\sigma_{t-1} \equiv A_{2 t-2} \quad\left(\bmod p^{2}\right)
$$

Consequently (2.8) becomes ($r=2 t+1$)

$$
A_{r} \equiv \frac{1}{2} p(p-r) A_{r-1}+\frac{1}{24} r(r-1)(r-2) p^{3} A_{r-3} \quad\left(\bmod p^{5}\right)
$$

which by (1.1) yields

$$
\begin{equation*}
A_{r} \equiv \frac{1}{2} p(p-r) A_{r-1}-\frac{\frac{1}{2} 4}{} \frac{r(r-1)(r-2)}{r-3} p^{4} B_{r-3} \quad\left(\bmod p^{5}\right) \tag{2.9}
\end{equation*}
$$

Comparison of (2.7) and (2.9) now gives

$$
(r-1)(p-r-1) A_{r} \equiv-\frac{1}{2} p^{2}(p-r)(p-r-1) B_{r-1}
$$

$$
\begin{align*}
& -\frac{r(r-1)(r-2)\left(r^{2}-r-5\right)}{24(r-3)} p^{4} B_{r-3} \tag{2.10}\\
& -(p-r)(r+1) p^{3^{\frac{1}{2}(r-3)} \sum_{i=1}^{(1)} \frac{1}{4 i} B_{2 i} B_{r-2 i-1} \quad\left(\bmod p^{5}\right)}
\end{align*}
$$

In particular (2.10) implies
(2.11) $\quad(r-1) A_{r} \equiv-\frac{1}{2} p^{2}(p-r) B_{r-1}-r p^{3^{\frac{1}{2}(r-3)}} \sum_{i=1}^{\frac{1}{4}} B_{2 i} B_{r-2 i-1} \quad\left(\bmod p^{4}\right)$.

In can be verified that

$$
\begin{equation*}
A_{3} \equiv-\frac{1}{24} p^{2}(p-3)-\frac{5}{16} p^{3} \quad\left(\bmod p^{4}\right) \tag{2.12}
\end{equation*}
$$

In view of (2.9) one can specify the residue of $A_{2 t}, 2 \leqslant 2 t \leqslant p-3, \bmod p^{3}$. In this connection the related formula [7, p. 366]

$$
\begin{equation*}
\frac{1}{p}\left(W_{p}-K_{p}\right) \equiv W_{p}+\sum_{r=1}^{m-1} \frac{1}{2 r} B_{2 r} B_{2 m-2 r} \quad(\bmod p), p=2 m+1 \tag{2.13}
\end{equation*}
$$

where $W_{p}=\left(A_{p-1}+1\right) / p, K_{p}=k_{1}+\ldots+k_{p-1}, k(r)=\left(r^{p-1}-1\right) / p$, is of interest.

Another formula of a similar kind is

$$
(p+2) B_{p+1}+\frac{1}{6} p(p+1) B_{p-1} \equiv 2 p \sum_{r=2}^{\frac{1}{(}(p-3)} \frac{1}{2 r} B_{2 r} B_{p+1-2 r} \quad\left(\bmod p^{2}\right)
$$

which is an easy consequence of Euler's formula

$$
(2 m+1) B_{2 m}+\sum_{r=1}^{m-1}\binom{2 m}{2 r} B_{2 r} B_{2 m-2 r}=0 \quad(m>1)
$$

3. An application. It follows from the definition of A_{m} that

$$
(x-2)(x-4) \ldots(x-2(p-1))=x^{p-1}-2 A_{1} x^{p-2}+\ldots+2^{p-1} A_{p-1}
$$

if we put $x=p=2 m+1$ this evidently becomes

$$
\begin{array}{rlr}
(-1)^{m}(1 \cdot 3 \cdot 5 \cdot \ldots \cdot(p-2))^{2} & \equiv 2^{p-1} A_{p-1}-2^{p-2} p A_{p-2}+2^{p-3} p^{2} A_{p-3} \\
& \equiv 2^{2 m}(2 m)!+2^{2 m}\left(-\frac{1}{6}+\frac{1}{12}\right) B_{p-3} & \left(\bmod p^{5}\right) \\
& \equiv 2^{2 m}(2 m)!\left(1+\frac{1}{12} p^{3} B_{p-3}\right) & \left(\bmod p^{4}\right)
\end{array}
$$

where we have used

$$
\begin{array}{ll}
A_{p-2} \equiv \frac{1}{3} p^{3} B_{p-3} & \left(\bmod p^{4}\right) \\
A_{p-3} \equiv \frac{1}{3} p^{2} B_{p-3} & \left(\bmod p^{3}\right)
\end{array}
$$

Thus it follows that

$$
\begin{equation*}
(-1)^{m}\binom{2 m}{m} \equiv 2^{4 m}\left(1+\frac{1}{12} p^{3} B_{p-3}\right) \quad\left(\bmod p^{4}\right) \tag{3.1}
\end{equation*}
$$

The weaker form of this congruence

$$
(-1)^{m}\binom{2 m}{m} \equiv 2^{4 m} \quad\left(\bmod p^{3}\right)
$$

is due to F. Morley (for references see [2, p. 273]); see also Nielsen [6, p. 81] for an equivalent result.
4. Other applications. Let us take next the familiar quotient

$$
\begin{align*}
\frac{(n p)!}{n!(p!)^{n}}= & \frac{(p+1) \ldots(2 p-1)}{(p-1)!} \frac{(2 p+1) \ldots(3 p-1)}{(p-1)!} \\
& \ldots \frac{((n-1) p+1) \ldots(n p-1)}{(p-1)!} \tag{4.1}\\
= & \binom{2 p-1}{p-1}\binom{3 p-1}{p-1} \ldots\binom{n p-1}{p-1} .
\end{align*}
$$

But as Glaisher proved

$$
\begin{equation*}
\binom{k p-1}{p-1} \equiv 1-\frac{1}{3} k(k-1) p^{3} B_{p-3} \quad\left(\bmod p^{4}\right) \tag{4.2}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\frac{(n p)!}{n!(p!)^{n}} \equiv 1-\frac{1}{9}\left(n^{3}-n\right) p^{3} B_{p-3} \quad\left(\bmod p^{4}\right) \tag{4.3}
\end{equation*}
$$

The weaker congruence

$$
\begin{equation*}
\frac{(n p)!}{n!(p!)^{n}} \equiv 1 \tag{3}
\end{equation*}
$$

is due to Mason and Child (for references see [2, p. 278]).
We can generalize (4.3) without much trouble. To begin with we replace (4.1) by

$$
\begin{equation*}
\frac{\left(n p^{r}\right)!}{n!\left(p^{r}!\right)^{n}}=\prod_{k=1}^{n}\binom{k p^{r}-1}{p^{r}-1} \tag{4.4}
\end{equation*}
$$

which is easily verified. Secondly, for $r \geqslant 2$,

$$
\begin{equation*}
Q_{r}=\binom{k p^{r}-1}{p^{r}-1}=Q_{r-1} \quad \prod_{j=1}^{p r-1}\binom{(k-1) p^{r}+j p-1}{p-1} /\binom{j p-1}{p-1} . \tag{4.5}
\end{equation*}
$$

But by (4.2) it is clear that (4.5) implies

$$
\begin{equation*}
Q_{\tau} \equiv Q_{r-1} \tag{4.6}
\end{equation*}
$$

$\left(\bmod p^{4}\right)$.
Thus comparison with (4.4) and (4.3) yields

$$
\begin{equation*}
\frac{\left(n p^{\tau}\right)!}{n!\left(p^{\tau}!\right)^{n}} \equiv 1-\frac{1}{9}\left(n^{3}-n\right) p^{3} B_{p-1} \quad\left(\bmod p^{4}\right) \tag{4.7}
\end{equation*}
$$

which is valid for all $r \geqslant 1$.
We remark that for $n \equiv 0, \pm 1(\bmod p)$, (4.7) becomes

$$
\frac{\left(n p^{r}\right)!}{n!\left(p^{r}!\right)^{n}} \equiv 1 \quad\left(\bmod p^{4}\right)
$$

while for $m \equiv n(\bmod p)$,

$$
\frac{\left(m p^{r}\right)!}{m!\left(p^{r}!\right)^{m}} \equiv \frac{\left(n p^{r}\right)!}{n!\left(p^{r}!\right)^{n}} \quad\left(\bmod p^{4}\right)
$$

5. General sequences. In order to generalize Glaisher's theorem we take

$$
\begin{equation*}
f=f(x)=\sum_{m=1}^{\infty} \frac{c_{m} x^{m}}{m!} \quad\left(c_{1}=1\right) \tag{5.1}
\end{equation*}
$$

where the rational numbers c_{m} are integral (mod p). Now put

$$
\begin{equation*}
\frac{x}{f}=\sum_{m=0}^{\infty} \frac{\beta_{m} x^{m}}{m!} \quad\left(\beta_{0}=1\right) \tag{5.2}
\end{equation*}
$$

or what is the same thing

$$
\sum_{r=1}^{m}\binom{m}{r} c_{r} \beta_{m-r}= \begin{cases}1 & (m=1) \tag{5.3}\\ 0 & (m>1)\end{cases}
$$

thus recursively defining the β_{m}. Moreover, it is evident from (5.3) that β_{m} is integral $(\bmod p)$ for $m<p-1$. On the other hand,

$$
p \beta_{p-1}+c_{p} \equiv 0 \quad(\bmod p)
$$

a somewhat sharper result is

$$
\begin{equation*}
p \beta_{p-1}-p \sum_{r=2}^{p-1} \frac{(-1)^{r}}{r} c_{r} \beta_{p-r}+c_{p} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{5.5}
\end{equation*}
$$

In the next place, for $k \geqslant 1$, define

$$
\begin{equation*}
\left(\frac{x}{f}\right)^{k}=\sum_{m=0}^{\infty} \frac{\beta_{m}^{(k)} x^{m}}{m!} \quad\left(\beta_{0}^{(k)}=1\right) \tag{5.6}
\end{equation*}
$$

so that $\beta_{m}{ }^{(1)}=\beta_{m}$. It will also be convenient to define δ_{m} by means of

$$
\begin{equation*}
\frac{x f^{\prime}}{f}=\sum_{m=0}^{\infty} \frac{\delta_{m} x^{m}}{m!} \quad\left(\delta_{0}=1\right) \tag{5.7}
\end{equation*}
$$

By (5.1) and (5.2), (5.7) implies

$$
\begin{equation*}
\delta_{m}=\sum_{r=0}^{m}\binom{m}{r} c_{r+1} \beta_{m-r} \tag{5.8}
\end{equation*}
$$

Thus δ_{m} is integral $(\bmod p)$ for $m<p-1$, while by (5.4) and (5.8)

$$
\begin{equation*}
p \delta_{p-1}+c_{p} \equiv 0 \quad(\bmod p) \tag{5.9}
\end{equation*}
$$

Indeed (5.8) implies the sharper result

$$
\begin{equation*}
\delta_{p-1}-\beta_{p-1} \equiv \sum_{r=1}^{p-1}(-1)^{r} c_{r+1} \beta_{p-1-r} \quad(\bmod p) \tag{5.10}
\end{equation*}
$$

We remark that for $m=p$, (5.8) implies

$$
\begin{equation*}
\delta_{p}-\beta_{p} \equiv c_{p+1}+p c_{p} \beta_{p-1}-p \sum_{r=2}^{p-1} \frac{(-1)^{r}}{r} c_{r+1} \beta_{p-r} \quad\left(\bmod p^{2}\right) \tag{5.11}
\end{equation*}
$$

that β_{p} is integral $(\bmod p)$ is clear from (5.3). In fact (5.3) implies, for $m=p+1$,

$$
\begin{equation*}
\beta_{p}+\frac{1}{2} c_{2} p \beta_{p-1}+\frac{c_{p+1}}{p+1}+p \sum_{r=3}^{p} \frac{(-1)^{r}}{r(r-1)} c_{r} \beta_{p+1-r} \equiv 0 \quad\left(\bmod p^{2}\right) \tag{5.12}
\end{equation*}
$$

For a generalization of the von Staudt-Clausen theorem for the numbers β_{m} see [1]; the same result applies to δ_{m} also.
6. Generalization of Glaisher's theorem. Differentiation of (5.6) yields

$$
k\left(\frac{x}{f}\right)^{k}-k\left(\frac{x}{f}\right)^{k} \frac{x f^{\prime}}{f}=\sum_{m=0}^{\infty} \frac{m \beta_{m}^{(k)} x^{m}}{m!}
$$

and thus by (5.7) we get

$$
\sum_{0}^{\infty} \frac{(k-m) \beta_{m}^{(k)} x^{m}}{m!}=k \sum_{0}^{\infty} \frac{\beta_{m}^{(k)} x^{m}}{m!} \sum_{0}^{\infty} \frac{\delta_{n} x^{n}}{n!} .
$$

This identity is equivalent to

$$
\begin{equation*}
m \beta_{m}^{(k)}+k \sum_{r=1}^{m}\binom{m}{r} \delta_{r} \beta_{m-r}^{(k)}=0 \tag{6.1}
\end{equation*}
$$

We take $k=p$ in (6.1) and suppose $m<p$. It follows at once that

$$
\begin{equation*}
\beta_{m}^{(p)} \equiv 0 \quad(\bmod p), 1 \leqslant m<p-1 \tag{6.2}
\end{equation*}
$$

while for $m=p-1$,

$$
\begin{equation*}
(p-1) \beta_{p-1}^{(p)} \equiv-p \delta_{p-1} \equiv c_{p} \tag{6.3}
\end{equation*}
$$

$$
(\bmod p)
$$

We shall now sharpen (6.2) and (6.3).
In the first place (6.1) becomes, for $m=p-1$,

$$
\begin{equation*}
(p-1) \beta_{p-1}^{(p)}+p \delta_{p-1}=-p \sum_{r=1}^{p-2}\binom{p-1}{r} \delta_{r} \beta_{p-1-r}^{(p)} \tag{6.4}
\end{equation*}
$$

For $1 \leqslant m<p-1$, (6.1) implies, using (6.2),

$$
\begin{equation*}
m \beta_{m}^{(p)}+p \delta_{m} \equiv 0 \tag{6.5}
\end{equation*}
$$

$$
\left(\bmod p^{2}\right)
$$

If we substitute from (6.5) in the right member of (6.4), we get

$$
\begin{align*}
(p-1) \beta_{p-1}^{(p)}+p \delta_{p-1} & \equiv-p^{2} \sum_{r=1}^{p-2} \frac{(-1)^{r}}{r+1} \delta_{r} \delta_{p-1-\tau} \tag{6.6}\\
& \equiv p^{2} \sum_{\tau=1}^{p-2} \frac{(-1)^{r}}{r} \delta_{r} \delta_{p-1-r} \quad\left(\bmod p^{3}\right)
\end{align*}
$$

Similarly if $m<p-1$, (6.1) yields

$$
\begin{equation*}
m \beta_{m}^{(p)}+p \delta_{m} \equiv p^{2} \sum_{r=1}^{m-1}\binom{m}{r} \frac{\delta_{r} \delta_{m-r}}{r} \quad\left(\bmod p^{3}\right) \tag{6.7}
\end{equation*}
$$

If we substitute from (6.7) in (6.1) we get even stronger (but rather complicated) results. For example (6.4) becomes

$$
\begin{align*}
(p-1) \beta_{p-1}^{(p)}+p \delta_{p-1} & \equiv p^{2} \sum_{r=1}^{p-2}\binom{p-1}{r} \frac{\delta_{r} \delta_{p-1-r}}{r} \\
& -p^{3} \sum_{r=1}^{p-2} \sum_{s=1}^{r-1}\binom{p-1}{r} \frac{\delta_{p-1-r} \delta_{s} \delta_{r-s}}{s}\left(\bmod p^{4}\right) \tag{6.4}
\end{align*}
$$

We remark that

$$
\beta_{p}^{(p)} \equiv-\delta_{p}
$$

$$
\left(\bmod p^{2}\right)
$$

7. Special cases. It is of interest to see what some of the above formulae reduce to when $c_{m}=1$ for all $m \geqslant 1$ in (5.1). Then in the first place $\beta_{m}=B_{m}$,
the m th Bernoulli number in Nörlund's notation. In the second place, by (5.7),

$$
\begin{equation*}
\delta_{1}=\frac{1}{2}, \quad \delta_{m}=B_{m} \tag{7.1}
\end{equation*}
$$

($m>1$).
In particular $\beta_{2 m+1}=\delta_{2 m+1}=0$ for $m \geqslant 1$. It is also clear from (5.6) that

$$
\beta_{m}^{(k)}=B_{m}^{(k)} .
$$

In the next place (6.1) reduces to

$$
m B_{m}^{(k)}+k \sum_{r=1}^{m}(-1)^{r}\binom{m}{r} B_{r} B_{m-r}^{(k)}=0
$$

which is identical with [8, p. 146 (83)]. Now in view of

$$
(-1)^{r}\binom{p-1}{r} B_{r}^{(p)}=A_{r}
$$

we see that (6.2) and (6.3) become

$$
A_{m} \equiv 0(1 \leqslant m<p-1), \quad A_{p-1} \equiv-1 \quad(\bmod p)
$$

Next (6.5) implies for m odd, $1<m<p, A_{m} \equiv 0\left(\bmod p_{2}\right)$, while (6.4) yields

$$
(p-1) A_{p-1}+p B_{p-1} \equiv 0 \quad\left(\bmod p^{2}\right)
$$

another theorem due to Glaisher [4, p. 325]. We have also from (6.5) for m even, $2 \leqslant m<p-1$,

$$
\frac{1}{p} A_{m} \equiv-\frac{1}{m} B_{m} \quad(\bmod p)
$$

which is the same as (1.1). As for (6.6), it evidently implies

$$
\begin{equation*}
(p-1) A_{p-1}+p B_{p-1} \equiv p^{2^{\frac{1}{2}(p-3)}} \sum_{r=1}^{1} \frac{1}{2 r} B_{2 r} B_{p-1-2 r} \quad\left(\bmod p^{3}\right) \tag{7.2}
\end{equation*}
$$

which is equivalent to a result of Nielsen already referred to (see (2.13) above).
Finally (6.7) yields for m odd, $3<m<p$,

$$
\frac{1}{p^{2}} A_{m} \equiv \frac{m}{2(m-1)} B_{m-1}
$$

which is the same as (1.2). For m even, $2<m<p-1$, we get

$$
\begin{equation*}
\frac{1}{p^{2}}\left(m A_{m}+p B_{m}\right) \equiv \sum_{r=1}^{\frac{2}{m-1}} \frac{1}{2 r}\binom{m}{2 r} B_{2 r} B_{m-2 r} \quad(\bmod p) \tag{7.3}
\end{equation*}
$$

which seems to be new. For $m=p-1$, (7.3) coincides with (7.2).
8. The case k negative. In (5.6) we assumed $k \geqslant 1$. However the definition is valid for negative k also and it is of some interest to consider an application for such k. If then we take $k=-p$, (6.1) implies

$$
\begin{equation*}
m \beta_{m}^{(-p)}=p \sum_{r=1}^{m}\binom{m}{r} \delta_{r} \beta_{m-r}^{(-p)} \tag{8.1}
\end{equation*}
$$

Thus corresponding to (6.2) and (6.3) we get

$$
\begin{array}{rlrl}
\beta_{m}^{(-p)} & \equiv 0 \quad(\bmod p), 1 \leqslant m<p-1, \\
(p-1) \beta_{p-1}^{(-p)} & \equiv p \delta_{p-1} \equiv-c_{p} & (\bmod p) . \tag{8.3}
\end{array}
$$

In the next place we have

$$
\begin{equation*}
(p-1) \beta_{p-1}^{(-p)}-p \delta_{p-1}=p \sum_{r=1}^{p-2}\binom{p-1}{r} \delta_{r} \beta_{p-1-r}^{(-p)} \tag{8.4}
\end{equation*}
$$

and

$$
\begin{equation*}
m \beta_{m}^{(-p)}-p \delta_{m} \equiv 0 \quad\left(\bmod p^{2}\right), 1 \leqslant m<p-1 \tag{8.5}
\end{equation*}
$$

Substitution in (8.4) yields

$$
\begin{equation*}
(p-1) \beta_{p-1}^{(-p)}-p \delta_{p-1} \equiv p^{2} \sum_{r=1}^{p-2} \frac{(-1)^{r}}{r} \delta_{r} \delta_{p-1-r} \quad\left(\bmod p^{3}\right) ; \tag{8.6}
\end{equation*}
$$

similarly, for $m<p-1$,

$$
\begin{equation*}
m \beta_{m}^{(-p)}-p \delta_{m}=p^{2} \sum_{r=1}^{m-1} \frac{1}{r}\binom{m}{r} \delta_{r} \delta_{m-r} \quad\left(\bmod p^{3}\right) . \tag{8.7}
\end{equation*}
$$

Comparison with (6.6) and (6.8) gives

$$
\begin{equation*}
\frac{1}{p^{2}}\left(m \beta_{m}^{(p)}+p \delta_{m}\right) \equiv \frac{1}{p^{2}}\left(m \beta_{m}^{(-p)}-p \delta_{m}\right) \quad(\bmod p) \tag{8.8}
\end{equation*}
$$

If we now specialize as in $\S 7$, and recall that

$$
\left(\frac{e^{x}-1}{x}\right)^{k}=\sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} \sum_{m=0}^{\infty} \frac{r^{m+k} x^{m}}{(m+k)!}
$$

we see that

$$
\beta_{m}^{(-k)} \rightarrow B_{m}^{(-k)}=\frac{m!}{(m+k)!} \sum_{r=0}^{k}(-1)^{k-r}\binom{k}{r} r^{m+k}=m!\Im_{k}^{m+k},
$$

so that $B_{m}^{(-k)} / m$! is a Stirling number of the second kind. We now have at once

$$
\begin{array}{rlrl}
B_{2 r+1}^{(-p)} & \equiv 0 & \left(\bmod p^{2}\right), 1<2 r+1<p-1 \\
\frac{1}{p} B_{2 r}^{(-p)} & \equiv \frac{1}{2 r} B_{2 r} & (\bmod p), 1<2 r<p-1, \\
(p-1) B_{p-1}^{(-p)}-p B_{p-1} & \equiv p^{2^{2} \sum_{r=1}^{\frac{1}{(p-3)}} \frac{1}{2 r} B_{2 r} B_{p-1-2 r}} \quad\left(\bmod p^{3}\right), \\
\frac{1}{p^{2}} B_{2 r+1}^{(-p)} & \equiv \frac{2 r+1}{4 r} B_{2 r} & (\bmod p), 1<2 r+1<p-1 .
\end{array}
$$

Formulae (8.5') and (8.7') are due to Nielsen [7, p. 338].
9. Generalized Euler numbers. We now briefly consider sequences related to the Euler numbers of higher order. Let a be a fixed rational number which is integral $(\bmod p)$ and put

$$
\begin{equation*}
(1+a f)^{-k}=\sum_{m=0}^{\infty} \frac{\eta_{m}^{(k)} x^{m}}{m!}, \quad \frac{a f^{\prime}}{1+a f}=\sum_{m=0}^{\infty} \frac{\zeta_{m} x^{m}}{m!}, \tag{9.1}
\end{equation*}
$$

where $f=f(x)$ has the same meaning as in (5.1). The coefficients $\eta_{m}^{(k)}$ and ζ_{m} are evidently integral $(\bmod p)$.

If we differentiate the first of (9.1), we get

$$
\begin{equation*}
\eta_{m+1}^{(k)}=-k \sum_{s=0}^{m}\binom{m}{s} \zeta_{s} \eta_{m-s}^{(k)}, \tag{9.2}
\end{equation*}
$$

which is analogous to (6.1). In particular for $k=p$, (9.2) implies

$$
\begin{equation*}
\frac{1}{p} \eta_{m+1}^{(p)}-\zeta_{m}=-\sum_{s=1}^{m}\binom{m}{s} \zeta_{m-s} \eta_{s}^{(p)} \tag{9.3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{p} \eta_{m+1}^{(p)} \equiv-\zeta_{m} \quad(\bmod p) \tag{9.4}
\end{equation*}
$$

Substitution of (9.4) in (9.3) now yields

$$
\begin{equation*}
\frac{1}{p}\left(\frac{1}{p} \eta_{m+1}^{(p)}-\zeta_{m}\right) \equiv \sum_{s=1}^{m}\binom{m}{s} \zeta_{m-s} \zeta_{s-1} \quad(\bmod p) \tag{9.5}
\end{equation*}
$$

Now for $a=\frac{1}{2}$ we have [8, p. 143]

$$
\left(\frac{2}{e^{x}+1}\right)^{k}=\sum_{m=0}^{\infty} \frac{C_{m}^{(k)} x^{m}}{2^{m} m!},
$$

so that $\eta_{m}^{(k)}=2^{-m} C_{m}{ }^{(k)}$. Also $\zeta_{m}=-2^{-m-1} C_{m}$ for $m>0$, where $C_{m}=C_{m}^{(1)}$; we recall that $C_{2 r}=0$ for $r>0$. We can therefore state the following results as special cases of (9.4) and (9.5):

$$
\begin{array}{rlrl}
\frac{1}{p} C_{2 r}^{(p)} & \equiv C_{2 r-1}, \quad \frac{1}{p} C_{2 r+1}^{(p)} \equiv 0 & (\bmod p) \\
\frac{1}{p}\left(\frac{1}{p} C_{2 r}^{(p)}-C_{2 r-1}\right) & \equiv \sum_{s=1}^{r-1}\binom{2 r-1}{2 s} C_{2 r-2 s-1} C_{2 s-1} & & (\bmod p) \\
\frac{1}{p^{2}} C_{2 r+1}^{(p)} & \equiv-(2 r+1) C_{2 r-1} & & (\bmod p) \tag{9.8}
\end{array}
$$

These congruences are evidently analogous to Glaisher's theorem for $A_{2_{r}}, A_{2_{r+1}}$.
Finally if we take k in (9.1) negative we get results similar to those above. In particular for $k=-p$, we have

$$
\frac{1}{p} \eta_{m+1}^{(-p)}-\zeta_{m}=\sum_{s=1}^{m}\binom{m}{s} \zeta_{m-s} \eta_{s}^{(-p)},
$$

$$
\begin{equation*}
\frac{1}{p} \eta_{m+1}^{(-p)} \equiv \zeta_{m} \tag{9.4'}
\end{equation*}
$$

$(\bmod p)$,

$$
\begin{equation*}
\frac{1}{p}\left(\frac{1}{p} \eta_{m+1}^{(-p)}+\zeta_{m}\right) \equiv \sum_{s=1}^{m}\binom{m}{s} \zeta_{m-s} \zeta_{s-1} \quad(\bmod p) \tag{9.5'}
\end{equation*}
$$

Comparison with (9.5) gives

$$
\begin{equation*}
\frac{1}{p}\left(\frac{1}{p} \eta_{m+1}^{(p)}-\zeta_{m}\right) \equiv \frac{1}{p}\left(\frac{1}{p} \eta_{m+1}^{(-p)}-\zeta_{m}\right) \quad(\bmod p) \tag{9.9}
\end{equation*}
$$

Then if $a=\frac{1}{2}$ we get the special formulae

$$
\begin{array}{rlrl}
\frac{1}{p} C_{2 r}^{(-p)} & \equiv-C_{2 r-1} & (\bmod p) \\
\frac{1}{p}\left(\frac{1}{p} C_{2 r}^{(-p)}-C_{2 r-1}\right) & \equiv \sum_{s=1}^{r-1}\binom{2 r-1}{2 s} C_{2 r-2 s-1} C_{2 s-1} & & (\bmod p) \\
\frac{1}{p^{2}} C_{2 r+1}^{(-p)} & \equiv-(2 r+1) C_{2 r-1} & (\bmod p)
\end{array}
$$

Formulae (9.6') and (9.8') are proved by Nielsen [7, p. 292]; to facilitate comparison we note that

$$
2^{k-m} C_{m}^{(-k)}=\sum_{s=0}^{k}\binom{k}{s} s^{m}
$$

References

1. L. Carlitz, The coefficients of the reciprocal of a series, Duke Math. J., 8 (1941), 689-700).
2. L. E. Dickson, History of the theory of numbers, vol. 1 (Washington, 1919).
3. J. W. L. Glaisher, Congruences relating to the sums of products of the first n numbers and to other sums of products, Quarterly J. Math., 31 (1900), 1-35.
4. - On the residues of the sums of products of the first $p-1$ numbers, and their powers, to modulus pi or p^{3}, Quarterly J. Math., 31 (1900), 321-353.
5. N. Nielsen, Om Potenssummer of hele Tal, Nyt Tidsskrift for Mathematik, $4 B$ (1893), 1-10.
6. Recherches sur les suites régulières et les nombres de Bernoulli et d'Euler, Annali di matematica (3), 22 (1914), 71-115.
7. -_Traité élémentaire des nombres de Bernoulli (Paris, 1923).
8. N. E. Nörlund, Vorlesungen über Differenzenrechnung (Berlin, 1924).

Duke University

