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Fifth Meeting, March 12th, 1886.

W. J. MacponaLp, Esq., M.A., F.R.S.E,, in the Chair,

Bifilar Suspension treated by the method of Contour Lines.
By Harry Rainy, M.A.

The object of the following paper is to illustrate how readily some
problems, which frequently occur in physical work, may be solved by
the application of certain methods which are not very generally
employed in mathematical investigations. The method on which the
following proof is based is that of contour lines. These are a device
enabling us to represent the third dimension on a plane, and are such
that all the points on one contour line are at one and the same height
above the level of the base plane. Probably the best known appli-
cation of the principle of contours is to be found in the Survey Maps,
where successive (closed) curves pass through all points at heights of
100, 200, 300, &c., feet above the sea-level ; but they are of equal
value in many physical diagrams, where they appear as equipotential
lines, isothermals, lines of equal illumination, lineg of equal force in a
magnetic field, as well as in many other forms. In this paper they
are employed as representing the third direension merely. When
contour lines are placed so as to indicate an equal rise in the intervals
between each successive pair [or, in fact, according to any definite
system], we can, with their aid, tell two things about a surface; the
one—what is the steepness, or gradient, in any direction from a given
point ; the other—which is the direction of steepest slope at any
point. The absolute steepness is measured by the amount of vertical
motion per unit of horizontal motion of a point; t.e., by the tangent
of the angle between the horizontal plane and the line in which the
point moves. This is a fact with which everyone is acquainted ;
every person knows what is meant by saying that the gradient along
a line of railway is 1 in 50 or 1 in 500, as the case may be. To find
the steepness at any point we merely need to know, in terms of the
length of the line taken to represent unit steepness, the length of the
line passing through the point in the given direction, and terminated
by the two contours on either side of that point. The length of the
line will then be inversely as the steepness.
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The direction of steepest slope-—the * Stream-line ”—is that which
cuts the contours at right angles. This is obvious when we consider
that such a line is the shortest which can be drawn between two
contours, one very close on each side of the given point and passing
through the given point.

‘We may now proceed to apply the principles indicated above. and
first we shall consider the case of the intersection of a vertical
cylinder with an inclined plane (fig. 37). To save employing a rather
lengthy phrase, I shall call the actual line of intersection of the cylinder
with the plane, or other figure under discussion, the * path,” and
its representation on the contour diagram the * projected path.” A
point on the path and its projection are said to correspond.

In a plane the contours marking equal increments of height are
equidistant, parallel, straight lines, and therefore the direction of
maximum steepness is the same at any point in the plane, and the
actual maximum steepness is the same for every point,.

Hence, in the intersection of a plane and cylinder, wherever the
projected path, which is obviously circular, is situated, the steepest
part will always be in the same direction, and will be that which cuts
the contours at right angles. It will, therefore, be situated at a point
distant from that of no steepness by one quarter of the circumference
of the projected path. The direction of motion at that point of the
path is that of the diameter joining the highest and lowest points
of the path, i.e., of the shortest, and therefore the steepest line
joining them.

Further, the measure of the steepness of the path at any inter-
mediate point, in terms of the steepness at the point of maximum
gradient, will be inversely as the length of the tangent to the
corresponding point intercepted between two contours is to the length
of the tangent at the steepest point similarly intercepted ; or, if these
;—,; t.e., as j_ But é
is the sine of the angle subtended at the centre by that part which
lies between the point of no steepness and the point under considera-
tion Hence, if we call the maximum steepness unity, the steepness
of the path varies from point to point, starting from that of no
steepness, as the sine of the angle through which the corresponding

distances be represented by ! and ', inversely as

point has turned.
The next case which may be taken as leading up to the final one is
that of the intersection of a cylinder with a cone (fig. 38). Ina cone the
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shape of the contours will, of course, be changed. They now are a
series of concentric circles whose radit increase in A.P.—the common
centre being the point of projection of ths axis of the cone. Under
these cjrcumstances the perpendicular distance between any one pair of
contours is the same as that between any other, and therefore every
point has the same value for maximum gradient. Hence, when we have
a cylinder intersecting a cone (both axes being supposed vertical), the
projected path is steepest at its point of orthogonal intersection with
the contours. The position of this point depends on the distance
between the two axes, in terms of the cylinder radius. When the
distance is great, the point of maximum steepness approaches that of
the path traced by the intersecting plane and cylinder; when the
distance is diminished, the point approaches that position of minimum
(zero) steepness which is nearest the axis of the cone, and eventually,
when the circumference of the cylinder cuts the axis of the cone, this
point lies on the axis itself.

* Lastly,if we take the intersection of a cylinderand a sphere (fig. 39),
and consider it by the same method, we note that the contours of
a sphere are coucentric circles, having the projection of the axis
(vertical) of the sphere for their common centre; but they are no
longer spaced equally—they become more and more close to each
other as they recede. In fact, since the steepness from point to point
along the sphere varies as the tangent of the angle at the centre of
the sphere between the axis and the line joining that point with the
centre, the spacing of the contours varies from the centre as the
cotangent of the same angle [6].

Now, it is obvious that, until the point of orthogonal intersection
is reached, both the slope of the sphere and the curvature of the
cylinder conspire to increase the steepness of the path, and, thereafter,
the increasing slope of the sphere tends still to increase the steepness,
while the motion of the point moving round its path draws it away
from the line of maximum steepness,—that perpendicular to the con-
tours,—which it had at the instant of orthogonal intersection.

But we have already seen that the increase of steepness, due to
the changing slope of the sphere, varies as tan 6, and also it is easy
to see that the steepness of the path depends on a function of the
angle through which the point turns round the cylinder. This func-
tion has a value equal to unity at the point of orthogonal intersec-
tion, and to zero at the lowest point of the path. If, then, we call
this function f(¢), the steepest point on the path is that at which
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0 x f(¢) is a maximuwm. This can be found when we know the
relations between 6 and ¢, which is the case when we know the radius
of the sphere, the radius of the cylinder, and the distance between
their axes.

If the radius of the sphere be very large compared with the radius
of the cylinder, we may consider—for all practical cases—that the
path is formed by the intersection of the cylinder with a plane which
is the tangent plane to the sphere at the point where the axis of the
cylinder cuts it.

Now, to apply these facts to bifilar suspension, we need only add
to what we have already observed, the fact that the steeper a track is,
the greater is the force required to drive a hody of given mass up it
against gravity. If we suppose a force tends to drive a body along
the track of intersection of a sphere and a cylinder, or, since in all
practical instruments the radius of the sphere is very large compared
with that of the cylinder, the intersection of a plane and a cylinder,
then by the length of the track over which the force was able to drive
the body, we could measure the force. Forces of every amount from
zero up to that which moves the body one quarter of the way round
the track, can thus be measured by such an instrument; [all the
forces less than that being, at some definite point or other, balanced
by the component of gravity acting in the opposite direction down
the path.] Such an instrument might be constructed by making a
bar capable of rotating round, and sliding up and down a vertical
rod ; while to the further end of the bar is attached a cord whose
other end is fixed to some point above the bar, and not in line of the
vertical rod. In this case, evidently the lower end of the cord can
move only on the surface of a sphere, having for centre the point of
attachment : while, at the same time, because it is there fastened to
the bar, it must move along the surface of a cylinder, and, therefore,
it traces out the line common to both.

The inevitable friction invelved in such a form of apparatus
would, however, render it practically useless, and, therefore, the
following substitute is employed, A bar has a cord attached to each
end, these cords are of the same length and are fixed at equal heights
above the bar, i.e., in the same horizontal line. If, then, a vertical
line be drawn through the centre of the bar, it will be the axis of
symmetry of the system, and the bar will rotate round it and move
up and down it as if it were a vertical rod passing through the bar.
Hence the two ends of the bar move respectively along the lines of
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intersection of a cylinder with two equal and similarly situated
spheres, the diameter of the cylinder being the length of the bar, and
the radius of each sphere the length of either cord.

The proof, then, may be given concisely as follows :—The point of
attachment of the moving bar traces out the intersection of a cylinder
with a sphere, this—in practical cases—is very approximately that
of a cylinder with an inclined plane; the steepness in this case is as
the sine of the angle through which the bar is turned. This is
directly as the magnitude of the force tending to turn it.

The ordinary trigonometrical treatment may be found in Wiede-
mann’s Galvanismus, B. IL, Th. 1., s. 289.

Abstract of one of Euler’s papers.
By J. 8. Mackay, M.A.

The paper is entitled Solutio facilis problematum quorumdam
geometricorum difficillimorum, and is printed in Novi Commentarii
Academiae Scientiarum Imperialis Petropolitanae, Tom. xi., PP
103-123. The volume is for the year 1765 ; the title-page is dated
1767.

The investigation is concerned with a plane triangle and its four
points the orthocentre, the centroid, the inscribed centre, and the
circumscribed centre.

Not to complicate a single figure with too many lines, four figures
are exhibited. In fig. 40, AM, BN, CP are the perpendiculars from
A, B, C on the opposite sides, and E is the orthocentre. In fig. 41
Aa, Bb, Cc are the medians from A, B, C, and ¥ is the cen:roid;
FQ and CP are perpendicular to AB. In fig. 42, Ae, B, Cy are the
bisectors of angles A, B, C, and G is the inscribed centre ; GR is
perpendicular to AB. In fig. 43, S, T, V are the middle points of
AB, BC, CA, and SH, TH, VH respectively perpendicular to those
sides meet in H the circumscribed centre ; AM, CP are perpendicular
to BC, AB, and AH is joined.

The sides of the triangle BC, CA, AB are denoted respectively

by a, b, ¢, [see the notation for triangle FGH on p. 54] and the area
by A.
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