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Abstract. Let R ⊂ P1
C be a finite subset of markings. Let G be an almost

simple, simply–connected algebraic group over C. Let KG denote the compact
real form of G. Suppose for each lasso l around the marked point a conjugacy

class Cl in KG is prescribed. The aim of this paper is to give verifiable criteria

for the existence of an irreducible homomorphism of π1(P1
C \R) into KG such

that the image of l lies in Cl.

1. Introduction

Let G be an almost simple simply–connected algebraic group over C. Let KG

denote a maximal compact subgroup. Let R ⊂ P1
C be a finite subset of distinct

closed points or markings. Recall that the fundamental group π1(P1
C \ R) is a free

group on s = ‖R‖-number of generators γ1, . . . , γs such that γ1 . . . γs = 1. Recall
that a subset H ⊂ KG is called irreducible if the {Y ∈ Lie(G) | adh(Y ) = Y,∀h ∈
H} = centre of Lie(G) = 0 and a homomorphism ρ : π1(P1

C \ R) → KG is called
irreducible if the image ρ(π1(P1

C \ R)) ⊂ KG is irreducible (see Ramanathan [16]).
For i ≥ 3, let {Ci|1 ≤ i ≤ s} denote a prescribed set of conjugacy classes in KG.
The aim of this paper is to give verifiable criteria for the existence of an irreducible
homomorphism ρ : π1(P1

C \R)→ KG, such that the conjugacy class of ρ(γj) lies in
Cj .

The multiplicative Horn problem asks whether there exists a set of lifts {ci ∈
Ci} satisfying

∏
ci = 1. S.Bauer [4] was the first to relate the representation

question to standard algebro-geometric objects. For G = SUn such a criteria was
obtained independently by Agnihotri-Woodward [1] and P.Belkale [5]. Teleman and
Woodward [19] gave numerical criteria for this problem for arbitrary G. We note
that the additive Horn problem was solved in the late nineties independently by
A.A. Klyachko [9] and Knutson and Tao [10].

By Balaji-Seshadri [2, Thm 8.1.7, Cor 8.1.8] for finite-order conjugacy classes
and by [3, Cor 10.6] for arbitrary ones, the existence of an irreducible set of lifts
is equivalent to the existence of a stable torsor under a suitable parahoric Bruhat-
Tits group scheme on P1

C. When KG = Un, by Mehta-Seshadri [12] this problem is
equivalent to the existence of a stable parabolic vector bundle on P1

C.
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From the perspective of the root system of G, we recall that conjugacy classes
in KG are parametrized precisely by the points of the Weyl alcove a0 (see [14,
Page 151]). In this setting, our aim is to give a numerical verifiable criteria for the
existence of such an irreducible set of lifts in terms of the points of the Weyl alcoves
determined by the {Ci}. More precisely, let a0 denote the points of the closed Weyl
alcove. Let ∆s denote the set of points θ = {θx}x∈R ∈ Maps(R,a0) such that
there exists a stable parahoric torsor on P1 with weight θ. In this note we want
to describe the stable polytope ∆s ⊂ Maps(R,a0). One defines the semistability
polytope ∆ss similarly.

Such criteria were obtained by I.Biswas [6] for U2 and later [7] for Un, by P.Belkale
[5] for SUn and by Y.Pandey [15] for the maximal compact subgroups of SOn(C)
and Sp2n(C).

Returning to the setting of [2], letMP1(G) denote the moduli stack of G-torsors
on P1

C where G is a Bruhat-Tits group scheme on P1
C at a fixed set of marked points

on P1
C given by a choice of weights θ. Let MP1(GI

) be the moduli stack of torsors

with Iwahori structures at these marked points. Recall that the points ofMP1(GI

)
can be viewed as principal G-bundles with parabolic structures given by the Borel
B at points x ∈ R, analogous to vector bundles with full-flag parabolic structures.
Under this identification, the set consisting of the trivial G-bundle with varying

B-structures, gives a subset of the points of MP1(GI

).
Denoting the moduli stack of principal G-bundles by MX(G) for an arbitrary

curve X, it can be seen that these fit in together in the following Hecke-modification
diagram

MX(GI

)

p
yy

q
%%

MX(G) MX(G)

(1.0.1)

where the morphism q is simply the one which forgets the flag structures (see the
discussion after (2.1.3) for details).

In §5, we explain the main construction of this paper generalizing the completing
flag construction of [5, Appendix]. For each representation ρ of G, this construc-
tion extends weights θ on G-torsors to GI-torsors. Recall that if V∗ and W∗ are two
parabolic vector bundles, then the quasi-parabolic structure underlying their tensor
product depends on the weights and is not determined by the quasi-parabolic struc-
tures underlying V∗ and W∗. Keeping this feature in mind, as it happens in [3, §4.2],
in order to carry the construction out for each point x ∈ R we need to make the
choice of a smaller facet a◦,xρ (see Def 5.2.1). Then in §6, given a choice of weights θ

for G, we show how one can derive an extended set of weights (θ, {a◦,xρ }x∈R) for GI-
torsors EI such that the stability condition for a G torsor E with weights θ becomes
equivalent to an intrinsic stability condition for all the GI torsors EI with weights
(θ, {a◦,xρ }x∈R) sitting above E under the map p (see Prop 6.5.1). Thus for varying

choices of {a◦,xρ }x∈R, the (EI,θ, {a◦,xρ }x∈R) are (semi)stable or not simultaneously.
We turn this observation into a definition (see 6.5.2). The equivalence of stability
of parahoric torsors to that of usual parabolic G-bundles but for extended weights
is the main point of §5 and §6 and is the technical heart of this work.
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As we noted above in (1.0.1), through q the stability condition can alternatively
be seen as an extended weight θ stability condition on the underlying parabolic
G-bundle. Denoting by Ad the adjoint representation, we prove

Theorem 1.0.1. Let X = P1. The open sub-stack MP1(G)
s

of MP1(G) consisting
of stable torsors is non-empty if and only if the trivial G-bundle with generic B-

structures and extended weight θ (see 6.5.2) is stable as a point of MP1(GI

).

The setting is as in [19], and by Proposition 6.5.4 the sought-after criterion now
gets translated into one in terms of Gromov-Witten numbers. We describe the
stable polytope ∆s in Corollary 3.1.1 and Corollary 3.1.2 shows that the difference
between ∆ss and ∆s is at the boundary of Maps(R,a0).

Let EI be the trivial G-bundle with parabolic structures of the full-flag type, i.e..
B-structures at the marked points R. For a parabolic subgroup P ⊂ G, let EI

P

be a reduction of structure group to P . We then have an inclusion of Lie algebra
bundles EI

P
(p) ⊂ EI(g). Observe that the associated Lie algebra bundle EI(g) gets

canonical parabolic structures at the marked points (these will not be full-flag types
though). We denote this Lie algebra bundle with parabolic structures by EI(g)∗.
The sub-bundle EI

P
(p) gets the canonical induced parabolic structures and we have

similarly EI
P

(p)∗ ⊂ EI(g)∗.
Say a P -reduction EI

P
⊂ EI is of the minus 1 type if the parabolic degree of the

quotient EI(g)∗/EIP (p)∗ is 0 and further, the degree of the vector bundle underlying
the quotient EI(g)∗/EIP (p)∗ is −1. We prove

Theorem 1.0.2. A point θ ∈ ∆ss lies in ∆s if and only if the trivial G-bundle
EI with generic B-structures and extended weight (θ, {a◦,xAd}x∈R) does not have any
P -reduction EI

P
of the minus 1 type.

Proposition 7.0.1 reduces the condition in the above theorem to Gromov-Witten
numbers. This gives new verifiable criteria for points in ∆ss to lie in ∆s.

1.1. Comparison with [19]. The inequalities in Corollary 3.1.1 determining ∆s

are strict versions of those in [19, Prop 4.4] determining ∆ss. A point to be noted is
that, whereas [19] had an underlying principal G-bundle to work with, in general we
do not have such a bundle. In fact, the extending weight construction and Theorem
1.0.1 fill the void left by the non-existence of an underlying principal G-bundle. The
bundle-theoretic description of difference between points in ∆ss and ∆s sheds some
light on the role played by them.

1.2. Some remarks on the far wall and stability. We conclude by giving a few
words of justification on why the far wall cannot be avoided for the stability question
(although it can be avoided for semistability in the very special case of G = GL(n)
because of the presence of an underlying GL(n)-bundle). Let us mention some
difficulties. Firstly, in [15, §7] some examples of stable parahoric symplectic and
(special orthogonal) torsors are shown to lie on the product of far walls. Secondly,
Belkale has shown that (∆ss)◦ ⊂ ∆s (see [15, Prop 7.0.5]). So they have the same
closures in Maps(R,a0). Also the origin in Maps(R,a0) lies in ∆ss \∆s because
it corresponds to the case of principal G-bundles with trivial parabolic structures.
Lastly, Meinrenken and Woodward (see [13, Cor 4.13]) have shown that ∆ss is a
closed convex polytope of maximal dimension inside Maps(R,a0) and to the best
of our knowledge, for stability no such argument is known. Thus, it does not seem
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possible to reduce the problem of determining ∆s to the case of generic weights
i.e. the interior of Maps(R,a0). We are forced to consider Maps(R,a0) fully and
directly. Now weight tuples, one of whose factor lies on the far wall of a0, correspond
to strictly parahoric (non-parabolic) torsors under parahoric group schemes. These
need to be reckoned with in the sense there is no underlying principal G-bundle.
Consequently, one cannot deform to the trivial bundle without going through Hecke-
modifications. In Corollary 3.1.2 we find that the difference between ∆ss and ∆s

is at the boundary of Maps(R,a0).

1.3. Some remarks on non-existence of underlying bundle and Hecke-
modification. We carry out the technique of Hecke-modification in this paper
for the following reason. In [5] or [15] one finds that for ∆s the corresponding
hyperplanes are not merely the strict versions of the hyperplanes for ∆ss. Indeed,
this is in fact expected, because for stability, unlike for semistability, one cannot
restrict oneself only to the case when the Gromov-Witten invariant is one. But,
even if one allows for higher Gromov-Witten numbers, as we do in this paper, the
formulation of the slope inequalities for stability in [5] could be done because in
the case G = SLn, by implicitly extending structure group to GLn, there was an
underlying parabolic vector bundle to work with and the stability of the parahoric
torsor, whenG = SLn, is equivalent to that of the parabolic vector bundle. However
in general, for an arbitrary G taking an associated vector bundle under a faithful
representation does not preserve stability.

The hyperplanes defining the semistablity polytope (see [19] and [5] (from which
even the stability polytope may be deduced)) arise by a translation of semistabil-
ity conditions on the trivial principal G-bundle with generic parabolic structures.
Further, the reduction to this special case relies on the existence of an underlying
G-bundle to work with. For these reasons, for stability, strict versions of slope in-
equalities, seem inadequate to address the situation for weight tuples with at least
one coordinate in the far wall.

Lastly, the reduction to Gromov-Witten inequalities works when one has a trivial
principal G-bundle but in the parahoric situation, with weights constrained to lie
on the far wall, there is no reduction to anything analogous to the trivial bundle.

It might seem that parahoric weights from the far wall can still be handled by
going to an equivariant bundle as in [2]. But again, in the equivariant setup there is
no analogue of Ramanathan’s theorem [17] on deformations of principal G-bundles
on P1. In this context, we wish to clarify that in [15, §4.2, Page 109], for the
case of classical groups G of Bn,Cn and Dn type, the second-named author found a
Hecke-modification allowing to pass from parahoric torsors to usual parabolic G-
bundles preserving (semi)stability. Such a route seems more elusive for the case of
exceptional G. In this note, we give a unifying argument in the general case. We
also wish to point out that whereas in [5] and [15], the weights do change under
Hecke-modifications, they do not in this note. In terms of line bundles, we are
merely pulling them back under p of (1.0.1) and then viewing them through q.

1.4. Layout. We develop notions over a general smooth projective curve X over
an algebraically closed field k of arbitrary characteristic throughout the paper and
specialize to the case X = P1 and k = C only to prove the main theorems in §3 and
§7. In §2, we explain our basic set-up. Then after recalling the main consequences
of our construction, we prove our first main theorem in §3 and derive the stable
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polytope in Corollary 3.1.1. In §4 after recalling [5, Appendix], we recast it in our
setup of alcoves, weights, facets and Hecke-modification diagram. The introduction
of §5 explains the main constructions of the paper. It also has a few examples
serving to highlight the key issues. In §6 we show the equivalence of (semi)stability
of usual parahoric torsors (E ,θ) with that of extended weight parahoric torsors
(EI,θ, {a◦,xρ }x∈R). In §7, we prove the second main theorem.

1.5. Acknowledgement. We wish to sincerely thank the anonymous referee for
a careful reading of the manuscript and for suggesting improvements. In fact,
Corollary 3.1.2 was formulated in response to a question raised by the referee.

2. The moduli stack MX(G)

2.1. Local group theoretical data of parahoric group schemes. We will
write k instead of C whenever the results we use holds for an algebraically closed
field of arbitrary characteristic. Let A := k[[t]] and K := k((t)) = k[[t]][t−1], where
t denotes a uniformizing parameter. Let G be an almost simple simply connected
affine algebraic group defined over k. We now want to consider the group G(K).

We shall fix a maximal torus T ⊂ G. Let R = R(T,G) denote the root system
of G (see. [18, p. 125]). Let Y (T ) = Hom(Gm, T ) denote the group of all one–
parameter subgroups of T . The standard affine apartment AT is an affine space
under Y (T )⊗Z R. We may identify AT with Y (T )⊗Z R (see [2, § 2]) by choosing
a point v0 ∈ AT . This v0 is also called an origin. For a root r of G and an integer
n ∈ Z, we get an affine functional

α = r + n : AT → R, x 7→ r(x− v0) + n. (2.1.1)

These are called the affine roots of G. For any point x ∈ AT , let Yx denote the set
of affine roots vanishing on x. For an integer n ≥ 0, define

Hn = {x ∈ AT ||Yx| = n}. (2.1.2)

A facet σ of AT is defined to be a connected component of Hn for some n. The
dimension of a facet is its dimension as a real manifold. We refer the reader to [3,
§3.2] for the definition of the parahoric subgroup of G(K) corresponding to a facet.

The subgroup G(A) ⊂ G(K) is an example of a maximal parahoric subgroup.
We have a natural evaluation map ev : G(A) → G(k) and the inverse image
I := ev−1(B) of the standard Borel subgroup B ⊂ G is called the standard Iwahori
subgroup. Any parahoric subgroup contains a G(K)-conjugate of the standard Iwa-
hori subgroup I. In this paper Θ will always be either a facet or a point of AT . By
[8, Section 1.7] we have an affine flat smooth group scheme GΘ −→ Spec(A) called
the parahoric group scheme associated to Θ. It is uniquely determined by its A–
valued points which equals the parahoric group corresponding to Θ. In particular,
the group scheme whose A–valued points is I is called the standard Iwahori group
scheme. For a facet σ ⊂ AT , let Gσ → Spec(A) be the parahoric group scheme
defined by σ.

2.1.1. Alcove. We choose a Borel B in G/k containing T . This determines a choice
of positive roots. Let a0 denote the unique closed alcove in AT whose closure
contains v0 and is contained in the finite Weyl chamber determined by positive
simple roots. We will denote its interior by a◦0. It is the facet corresponding to
the standard Iwahori subgroup. The affine walls defining a0 determine a set S of
simple affine roots. We will denote these simple roots by the symbols {αi}.
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2.1.2. The parahoric Bruhat-Tits group scheme. For an arbitrary closed point y ∈
R let Dy := Spec(Ôy), let Ky be the quotient field of Ôy. Let R ⊂ X be a non-
empty finite set of closed points. For each x ∈ R, we choose a facet σx ⊂ AT . Let
Gσx
→ Dx be the parahoric group scheme corresponding to σx. Let X◦ = X \R. In

this paper, by a Bruhat-Tits group scheme G → X we shall mean that G restricted
to X◦ is isomorphic to the trivial constant group scheme X◦ × G on X◦, and for
any closed point x ∈ X, G restricted to Dx is a parahoric group scheme Gσx such
that the gluing functions take values in Mor(D◦x, G) = G(Kx). This is also the

set-up of [2, Defn 5.2.1]. Thus the Ôy-points of the restriction of G to this disc give
parahoric subgroups of G(K).

We also suppose that the facets {σx}x∈R lie in a0 because it can easily be seen
that for results and constructions in this note the general case of arbitrary facets
reduces to this one.

Remark 2.1.1. The group scheme G depends on the gluing data. But if G and G′
are two parahoric group schemes on X which differ only in their gluing data, then
it is straightforward to check that the stacksMX(G) andMX(G′) are isomorphic.
For this reason, we fix one gluing data to get G and work with this.

We use the notation X×G to denote the trivial group scheme on X. Let GI → X

(resp. GI

tr → X) be the group scheme obtained by gluing X◦×G with the standard
Iwahori group scheme Ga◦0 at each parabolic point x ∈ R using the same gluing
functions as G (resp. the identity in G(Kx) as a gluing function). For each x ∈ R,

the inclusions I ⊂ GDx
(Ôx) (resp. I ⊂ G(Ôx)) induce morphisms of group schemes

GI → G (resp. GI

tr → X ×G) over the whole of X.

2.1.3. Parahoric torsors. Let G → X be a group scheme as in §2.1.2. A quasi-
parahoric torsor E is a G–torsor on X. This means that E ×X E ' E ×X G and there
is an action map a : E ×X G → E which satisfies the usual axioms for principal
G-bundles. A parahoric torsor is a pair (E ,θ) consisting of the pair of a quasi-
parahoric torsor and weights θ = {θx|x ∈ R} ∈ (Y (T ) ⊗ R)m such that θx lies
in the facet σx (see §2.1.2) and m = |R|. Let MX(G) denote the moduli stack of
G-torsors on X. The natural morphisms of group schemes seen above induces the
following morphisms of stacks:

MX(G)←MX(G
I

)
2.1.1' MX(G

I

tr)→MX(G). (2.1.3)

In particular, the morphism MX(GI

)
q→ MX(G) induced by the morphism

GI → X × G can be viewed as follows. The points of the stack MX(GI) are
G-bundles on X with B-structures at the marked points R. The morphism
MX(GI)→MX(G) forgets the B-structures. Thus,MX(GI) seen from the stand-
point ofMX(G) is the analogue of the moduli stack of vector bundles with full-flag
structures at the marked points. We will call morphisms in the diagram (1.0.1) as
Hecke-modification.

Although in the literature a sequence of flip-flop is called a Hecke-modification,
we wish to emphasize that often only a single morphism as above will be required for
the proofs in this paper. For the usual case of parabolic vector bundles these one-
step modification morphisms correspond to usual Hecke-modifications. For torsors,
we will call them both by the same name following Balaji-Seshadri [2].
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3. Main Theorem

In this section we suppose that X = P1. We wish to show that after general
results proved in later sections, our main result follows by standard arguments
well-known to experts. Let us begin by the steps of this reduction:

Step 1: Let (E ,θ) be a parahoric torsor. Under p : MP1(GI) → MP1(G), let
EI be an arbitrary GI-torsor that maps to E and consider the Hecke-modification
diagram (1.0.1). Given a parabolic vector bundle with possibly partial flags, a
construction called completing flags is described in [5, Appendix]. In an analogous
fashion (with a somewhat involved “parahoric” adaptation), in §5 we explain how
after choosing any finer facet a◦,xAd ⊂ a◦, in whose closure θx lies, θ may be extended
as a weight (θ, {a◦,xAd}x∈R) (see (5.2.1)) on EI.

Step 2: We extend the definition of (semi)stablity for such objects and call this
construction extending weights (see (5.2.1)). Then in Proposition 6.5.1 we show
that (E ,θ) is stable if and only if (EI,θ, {a◦,xAd}x∈R) is stable as a extended weight

parahoric torsor. This result justifies Definition 6.5.2 where we say that (E I

,θ) is
stable if for some (and therefore all) choice of {a◦,x0 }x∈R, (EI,θ, {a◦,xAd}x∈R) is stable.
Now we view EI as a parabolic G-bundle with additional parabolic structures at R.

Proof of Theorem 1.0.1. Since G is simply-connected and X = P1, so by [17, Thm
7.4] the principal G-bundle E underlying EI may be put in a family E → P1 × T
where the generic bundle is the trivial G-bundle and T is affine . Consider T1 :=
T ×MP1 (G)MP1(GI) corresponding to the classifying map T →MP1(G) of E. The

family E → P1 × T can be used to make a T1-family of parabolic principal G-
bundles (EI,θ)→ P1× T1 with extended weights. Thus we have a degeneration to
EI where the underlying bundle of the generic object is trivial. Under the morphism
MP1(GI)→MP1(G) let EI → P1 × T1 give the family E1 → P1 × T1 of G-torsors.
It degenerates to E and we view it as a family with weight θ. Further, by [15, Prop
6.1.2] stability is an open property of parahoric torsors. Therefore by Proposition
6.5.1 for generic t ∈ T1, (EI,θ)t → P1 is stable. So by q (see (1.0.1)) the trivial G-
bundle with extended weight θ and generic quasi-parabolic structure is stable. �

3.1. Gromov-Witten numbers and the stability polytope. By Proposition
6.5.4, the above result on parahoric torsors can be interpreted back in in the setting
of parabolic G-bundles. With notations as in [19, Page 716], let us denote the
Gromov-Witten number as

nd(wx|x ∈ R). (3.1.1)

It counts the number of regular maps φ : X → G/P of degree d such that for x ∈ R,
φ(x) lies in a generic translate of the Schubert variety Ywx ⊂ G/P corresponding to
wx ∈W . By Remark 6.5.3, for computing the slope inequality of extended weights
parahoric torsors we may switch from our definition to that in [19] including the
far wall. Then by repeating the arguments exactly as in [19, Page 741, (13)], we
get the following checkable corollary which agrees with [5] and [15].

Corollary 3.1.1. The polytope ∆s is the set of points θ satisfying the inequality∑
x∈R

(wxωP , θx) < d (3.1.2)

for all maximal parabolic subgroups P ⊂ G and non-negative integers d such that
the Gromov-Witten invariant (see (3.1.1)) nd(wx|x ∈ R) 6= 0.
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Corollary 3.1.2. The interior of ∆ss is contained in ∆s. Its complement is the
intersection of ∆s with the boundary of Maps(R,a0).

Proof. Let θ ∈ (∆ss)◦. Consider a Euclidean ball B in (∆ss)◦ about θ. Thus B
is also a ball in the interior of Maps(R,a0) which equals Maps(R,a◦0). Observe
if one of the inequalities in (3.1.2) is non-strict for θ, then points in one of the
open hemisphere of B cannot satisfy (3.1.2). Thus all inequalities must be strict
for θ i.e. θ lies in ∆s. We now prove the second statement. The intersection of the
boundary ofMaps(R,a0) with (∆ss)◦ is ofcourse empty. We now show the inclusion
of ∆s\(∆ss)◦ in the boundary of Maps(R,a0). Since ∆s is an open polytope in the
polytope Maps(R,a0), we have ∆s ∩Maps(R,a0)◦ = (∆s)◦ ⊂ (∆ss)◦. Therefore
∆s \ (∆ss)◦ is contained in the boundary of Maps(R,a0). �

4. Filtrations associated to Parabolic vector bundles

In section §4-§6, the results are of a general nature and so X will be an arbitrary
smooth projective curve of genus g ≥ 0.

4.1. Completing flags [5, Appendix]. For simplicity, we will first assume that we
are working with one parabolic point x. Recall a quasi-parabolic structure is giving
a possibly partial filtration

· · · ⊃ E = F0(E) ⊃ F1(E) ⊃ · · · ⊃ Fl−1(E) ⊃ Fl(E) = E(−R) ⊃ · · · (4.1.1)

by subsheaves, which can be continued infinitely in both directions. Here l is called
the length of the filtration. It can at most be the rank of E. It is called a parabolic
sheaf if it has a system of weights α0, · · · , αl−1 such that

0 ≤ α0 < α1 · · · < αl−1 < 1. (4.1.2)

The weight αi is called the weight of the subsheaf Fi(E). A given filtration (4.1.1)
need not be full. By choosing any complete flag for a given parabolic bundle, in
[5] the notion of R-filtration of [11] is extended to complete flag parabolic vector
bundles with extended weights in [5, Appendix]. This process is carried out as
follows. One considers a filtration

· · · ⊃ En ⊃ En+1 ⊃ · · · (4.1.3)

of sheaves with strict inclusions as in (4.1.1) parametrized by Z together with
weights {αn} in R, which are allowed to coincide now. Thus, (4.1.2) has become
non-strict and is extended by the law:

αk+ml = αk +m. (4.1.4)

The constructions in [5] extend in an obvious way to mutliple parabolic points
as well as to non-complete flag parabolic vector bundles, just that the indices are
harder to write because there may be jumps because of partial flags. Note that, as
subsheaves become smaller, their weights become larger.

4.2. Construction inverse to §4.1, sliding weights. In 4.1.3 if we forget sheaves
Ej for which there exists a bigger sheaf with the same weight, then the reduced
subset of {En}, together with the corresponding weights, which are now distinct,
correspond to (4.1.1). On any term Em of the filtration (4.1.3) we can induce
the structure of a parabolic vector bundle by using the l successive subsheaves in
(4.1.1) to get the flags; their corresponding weights may lie outside of [0, 1), but,
after subtracting αm from each of them the weight of Em becomes zero and the
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remaining will lie in [0, 1). This will be denoted Em∗. Conversely, Em∗ gives (4.1.1)
upto shifting indices, and the same weights upto a constant. Let us call the process
of adding an arbitrary constant a ∈ R to all the weights at a point x ∈ R as sliding
weights. Sliding weights adds a to the parabolic slope of the bundle or any of its
parabolic sub-bundle. Thus, it leaves (semi)stability invariant. Therefore, upto
sliding weights, the formation of Em∗ is the inverse construction to making the
filtration 4.1.3 with weights.

4.3. Key takeaway on degree computation of sub-bundles from [5]. For
simplicity, we first work in the setting of [5] which involves one parabolic point.
Now weights may now lie outside [0, 1). We will denote this as Em∗. The weights
are defined by (4.1.3) and (4.1.4) in such a way that the parabolic degree of Em∗
becomes independent of m ∈ Z (see [5, page 83 last para]). Further, on [5, page
84] for any m1,m2 ∈ Z a natural procedure is explained to go from sub-bundles
of Em1∗ to Em2∗. By [5, Lemma 8] this procedure preserves parabolic degree of
sub-bundles too. Thus Em1∗ is (semi)stable if and only if Em2∗ is (semi)stable.
These results generalize to multiple parabolic points also.

4.4. Interpretation of passage from Em1∗ to Em2∗ in our set-up of alcoves,
weights, facets and Diagram 1.0.1. To enable us to adapt aspects of this pro-
cess in the setting of parahoric torsors, we need to interpret it in the language of
alcoves.

Let us consider the case of SL(n). Let us label the vertices of a0 by integers
{0, · · · , n−1}. Any facet σ in AT of dimension d determines a set of d+ 1 vertices.
Let us call the far wall of σ as the codimension one facet determined by forgetting
the smallest vertex. Define alcove ak+1 inductively by reflecting the alcove ak along
the far wall and label the new vertex by n + k. Let us view the weights of Ek∗
(4.1.3) as a point in ak by taking barycentric coordinates {αEk+1

−αEk
, · · · , αEk+n

−
αEk+n−1

} . When we pass from Em∗ to Em+1∗, it follows from (4.1.4) that the
weights of Em+1∗ are obtained by reflecting the weights of Em∗ along the far wall
of am. Thus, in terms of barycentric coordinates, as a set they remain the same,
just that their indexing is shifted by −1 (modn) respectively.

Let σ be a facet in the closure of a0 of codimension one where only the affine root
αd vanishes. Then the morphism MX(GI) → MX(Gσ) corresponds to forgeting
subsheaves in the Z-filtration whose index is d (mod n). In terms of complete
flag parabolic vector bundles, this corresponds to forgetting exactly one term for
d (mod n) 6= 0 and a Hecke-modification by E0/E1 for d = 0 which gives a shift by
one. These facets are of course much more general than those of a0 and its facets.
They hold for any pair of facet σ1 and its codimension one subfacet σ. Going to
far wall of σ1 corresponds to a Hecke-modification by a sky-scraper sheaf while
forgetting other vertices corresponds merely to forgetting flags in MX(Gσ1). The
above process also suitably generalizes to the graph of the hyperplane structure.
More precisely, for any two facets (σ1, σ) where σ lies in the closure of σ1, the path
we take to come from σ1 to σ is not important, i.e. the processes of forgetting terms
in flags and Hecke-modifications by sky-scraper sheaves commute.

5. Extending Weights on GI torsors

The curve X is arbitrary. For simplicity of notation, we further assume that
only one parabolic point x ∈ X is fixed. It will become clear to the reader that, for
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all that is done, the processes can be carried out independently at several points.
However, for the main application the final conclusions will be made in terms of
multiple points on X. In this section completing flags with induced weights con-
struction of [5] is generalized to extending weights for GI. Recall that similar to
the definition of Mehta-Seshadri, in [2] weights have been defined for parahoric
torsors to be points lying in the facets (see §2.1.3). Consider the morphism of
stacks p : MX(GI) → MX(G). As in §2.1.3, suppose that we are given weights
θ = {θx|x ∈ R} ∈ (Y (T ) ⊗ R)m such that θx lies in the facet σx and σx ⊂ a0 for
all x ∈ R.

In [3, §5], given a representation ρ : G → SL(V ) and a parahoric Bruhat-Tits
torsors E , the parabolic vector bundle (E(V )∗ ,θV

) has been constructed. A priori,
a naive approach would be to take the parabolic bundle (E(V )∗ ,θV

) and carry out
a process as in [5], of deforming the underlying bundle after possibly some Hecke-
modifications, to get one with a full-flag and suitable schema of weights. But
the serious obstruction is that, the new parabolic vector bundle obtained by the
deformation need not come as an extension of structure group from any parahoric
torsor via the representation ρ.

5.1. Two problems that arise when we try to extend the weight θ for
MX(GI). Firstly, the weights θx only belong to a0 and not to its interior a◦0. So the
set-up of [3] does not apply. Secondly, in order to apply the associated construction
of [3], even if we take a weight θ

V
in a0 arbitrarily close to θ, already the quasi-

parabolic structure of (EI(V )∗,θV
) is sensitive to the choice of θ

V
(see Example

5.2.6 which shows that even the underlying vector bundle depends on the choice
of weight). On weights θ

V
, we are forced to consider the equivalence relation that

arises from the quasi-parabolic structure.
We address these problems by choosing for each x ∈ R a finer ρ-facet a◦,xρ (see

§5.2) in whose closure θx lies. These are defined by the requirement that all points
in a◦,xρ under ρ : AT → ATSL(V )

go to a fixed open facet of SL(V ), of dimension

at most the dimension of T , in whose closure ρ(θx) lies. Now the flag structure on
(E(V )∗ ,θV

) of [3, §5.1] or (EI,θ, {a◦,xρ }) (see 5.2.1) may not be full since it will have
at most dim(T ) many distinct flags (or weights). More importantly, unlike [5] the
vector bundle underlying it may only be related to the one underlying (E(V )∗,θV )
by a Hecke-modification. So instead of completing flags we call this construction
extending weights for parahoric torsors. In the set-up of [5] we have ρ = Id. This
reflects the facts that a parabolic vector bundle determines a choice of an alcove
whict itself is a finer ρ-facet. The adjoint representation being in general the most
canonical choice, in the applications of the constructions carried out here, we will
mostly have to take ρ = Ad and so V = g.

5.2. Extending weights construction for GI-torsors with respect to a rep-
resentation ρ. Let E be a G-torsor and let EI be a GI-torsor lying in the fiber of
MX(GI) → MX(G). To lighten the notation, it suffices to treat the case of one
parabolic point i.e.. R = {x}. For a representation ρ : G→ SL(V ) we choose tori
TG ⊂ G and TSL ⊂ SL(V ) such that ρ maps TG to TSL. Thus we get a linear map

ρ : AT → ATSL
(5.2.1)

between the apartments. In [3, BBP], the usual definition of facet is generalized to
facets associated to a homomorphism ρ as follows. By a generalized affine functional
on AT we mean affine functionals for G together with those of ATSL

viewed as
10
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functionals on AT . For any point x ∈ AT , let Y gx denote the set of generalized
affine functionals vanishing on x. For an integer n ≥ 0, define

Hgn = {x ∈ AT ||Y gx | = n}. (5.2.2)

A ρ-facet σ of AT corresponding to a representation ρ is defined to be a connected
component of Hgn for some n. The dimension of a ρ-facet is its dimension as a real
manifold. The finer facets satisfy the property that, for any two weights belonging
to it, the parabolic vector bundles associated to ρ have the same quasi-parabolic
structure.

For each x ∈ R we choose a ρ-facet a◦,xρ ⊂ a0 whose closure contains θx.
Then, given a weight θx, we choose a sequence of rational weights θx,n lying in
our chosen alcove a◦,xρ and converging to θx. Thus, the quasi-parabolic structure

of (EI(V )∗, ρ(θx,n)) is independent of n and is also independent of the choice of the
limiting sequence {θx,n}. Keeping this quasi-parabolic structure fixed, the weight
ρ(θx,n) ∈ ATSL

equips the vector space Gjx of the flag at x with a real number αjx,n.
We set

αjx = lim αjx,n. (5.2.3)

By linearity of (5.2.1), this process is independent of the choice of weights {θx,n}
and depends only on a◦,xρ and θx.

Definition 5.2.1. Let (E ,θ) be a parahoric torsor. With notations as above, ex-
tending weights for a GI-torsor EI with respect to a given representation ρ : G →
SL(V ) is giving the triple (EI,θ, {a◦,xρ }x∈R). The quasi-parabolic vector bundle

(EI(V )∗, ρ(θn)) associated to θn = {θx,n}x∈R endowed with weights {αjx} is a PVB
which we will also, by an abuse of notation, denote as the triple (EI,θ, {a◦,xρ }x∈R).

Remark 5.2.2. Say R is a single point. A generic point θ in the interior of the
Weyl alcove ax, lies in a single ρ-facet a◦,xρ . In this case, θ determines {a◦,xρ }x∈R.

Thus (EI,θ, {a◦,xρ }) is equivalent to the associated construction (EI(V )∗,θ) of [3].
Belkale’s completion of flag in [5] is precisely extending weights for the case θ lies
in a0 \ {far wall}. This is enough to determine the semistability polytope ∆ss.

Example 5.2.3. In [5], we have G = SLn, ρ = Id and so a◦,xρ is the alcove a◦0
of SLn. For simplicity let R = {x}. Let θd be the vertex of the alcove where
only the affine root αd does not vanish for 0 ≤ d < n. For G = SL2, ρ = Id and
only one parabolic point x consider a weight θ ∈ [0, 1) and the parabolic vector
bundle V∗ given by O⊕2

X with one flag at x of weight θ. Doing the extending weight
construction for the pair (θ1,a

◦,x
ρ := a◦0), taking limit as θ tends to θ1, the flag

acquires weight one. For G = SLn, ρ = Id weights (b0, b1 · · · , bn) in barycentric
coordinates correspond to weights (0, b1, b1 + b2, · · · , b1 + · · · + bn). In particular,
for a◦,xρ = a◦0, θd corresponds to vector bundle of degree −d. Further, for d ≥ 1,
ρ(θd) does lie on the far wall.

Let us contrast with the case when ρ(θd) does not lie on the far wall of the
chosen a◦,xρ . For instance suppose ρ = Id, G = SL2 and θd = 1 but we choose
a◦,xρ = (1, 2) instead of the standard (0, 1). In this case, the extended weight torsor

(EI,θ, {a◦,xρ }) corresponds to a vector bundle V → X of determinant −d, and full-

flag 0 ⊂ F 1
x ⊂ F 2

x ⊂ · · ·Fnx = Vx at Vx with extended weights d/n and ρ(θd) is
not on the far wall of a◦,xρ . This happens because the flags are of V which is not a
principal SLn-bundle.

11
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Remark 5.2.4. We illustrate sliding of weights (see §4.2) for the situation when
R = {x}, G = SL3, ρ = Id. Let θ ∈ a◦0 tend to a point θ1 on the far wall with
barycentric coordinates (0, b1, b2). Hence b2 = 1− b1. Doing the extending weight
construction for the pair (θ1,a

◦,x
ρ := a◦0), we see that rank three vector bundle with

full flags acquire weights (0, b1, b1 + b2). On the other hand, θ1 corresponds to rank
three vector bundles with a single flag of dimension two with weight 1 − b1. This
corresponds to the fact that θ1 = (b1, b2) in the barycentric coordinates of the far
wall. The general case of sliding of weights is only notationally harder to write.

Remark 5.2.5. We acquire weight 1 exactly when ρ(θx) lies on the far wall of the
facet corresponding to a◦,xρ .

Example 5.2.6. Let V∗ be as in Example 5.2.3. Now Ad : SL2 → SL3 corresponds
to V∗ 7→ Sym2(V∗). Now Sym2(V∗) is the PVB with underlying bundle O⊕3

X with

weights {θ, 2θ} if θ ∈ [0, 1/2) or O⊕2
X ⊕OX(x) with weights {2θ−1, θ} if θ ∈ [1/2, 1).

When θ ∈ [0, 1/2), then Sym2(V∗) corresponds to a0 \ {far wall} and thus does not
have a map forgetting the flags to torsors on the far wall. When θ ∈ [1/2, 1),
then the underlying degree of Sym2(V∗) is not congruent to zero modulo three, and
it corresponds to a parahoric SL3 torsor which maps to torsors on the far wall.
Let W = OX ⊕ OX(x). It corresponds to the far wall of SL2 but Sym2(W ) =
OX ⊕OX(x)⊕OX(2x) corresponds to an affine Weyl group translate of the origin
of SL3 i.e. Sym2(W )⊗OX(−x) is a principal SL3-bundle. We see that Sym2(W )
and the bundle underlying Sym2(V∗) are related by a Hecke-modification when
θ ∈ [1/2, 1). In this sense as θ tends to 1, V∗ tends to W . This observation is
formalized in the proposition below.

Proposition 5.2.7. The vector bundles underlying (EI,θ, {a◦,xρ }) and (E(V ), ρ(θ))
are related by a Hecke-modification and are comparable under inclusion.

Proof. By construction, the quasi-parabolic structure of (EI,θ, {a◦,xρ }) is the same

as that of (EI(V ), ρ(θn)). Notice that for each x ∈ R the weights {ρ(θx,n)} lie in
a fixed facet σxSL of SL(V ) in whose closure ρ(θx) lies. So considering the quasi-
parabolic structures associated to these weights, we are in the situation of a single
Hecke-modification morphism between the stacks associated to {σxSL}x∈R and θ as
in Diagram 1.0.1. Equivalently we have a morphism of stacks of quasi-parabolic
vector bundles

QPV B(ρ(θx,n), x ∈ R)→ QPV B(ρ(θx), x ∈ R). (5.2.4)

Under this morphism, the underlying vector bundles are related by a Hecke modi-
fication (or are the same if the morphism (5.2.4) corresponds merely to forgetting
flags) and are comparable under inclusion. �

Remark 5.2.8. In the following proposition we show that the filtration (4.1.3)
of (E(V )∗, ρ(θ)) is refined by that of (EI,θ, {a◦,xρ }x∈R) upto (possibly) shifting of
indices, the weights are also preserved upto sliding by a real number (see §4.2) and
it forgets only those sheaves which do not matter for parabolic degree computations
of these bundles as well as their sub-bundles as it happens in (4.3). We assume
that R = {x} because the following argument can be applied point by point in the
general case.

Proposition 5.2.9. Assume R = {x}. Let U (resp UI) be the vector bundles
underlying (E(V )∗, ρ(θ)) (resp. (EI,θ, {a◦,xρ })). Consider the filtration (4.1.3) of
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(EI,θ, {a◦,xρ }) at x. Then U is the m-term for 0 ≤ m ≤ the dimension of the facet
of SL(V ) containing ρ(a◦,xρ ).

Proof. The underlying bundle is the 0-th term of (4.1.1). Further by Proposition
5.2.7, U is a term in the infinite filtration (4.1.3) of (EI,θ, {a◦,xρ }x∈R) because it is

related to UI by a Hecke-modification while being comparable to it under inclusion.
It is the 0-term if and only if U is obtained from UI only by forgetting flags, but
if U is obtained by a non-trivial Hecke-modification of vector bundles, then U will
be the m-th term for m ≥ 1 as described above because U may correspond to any
flag at x and the flag length lx is given by the dimension of the facet of SL(V )
containing ρ(a◦,xρ ). �

Proposition 5.2.10. The notations are as in in §4.2. We carry out the following
three steps. (i) We slide weights so that the bundle U of (5.2.9) has weight zero. (ii)
Then, we discard sheaves for which there is a bigger sheaf with the same weight, and
(iii) we shift indices so that U index zero. Then, we recover the filtration (4.1.1)
for (E(V )∗, ρ(θ)) at x.

Proof. We slide the weights (see (4.2)) to make U have weight zero. Under the
morphism MX(GI) → MX(G) for each x ∈ R depending on the facet in ATSL(V )

containing ρ(θx) we forget the corresponding terms in the filtration. These are
exactly the sheaves in the infinite filtration (4.1.3) for which there is a bigger sheaf
with the same weight. In particular, we forget all subsheaves of U containing
U(−x) which are different from these and which have weight zero or one. Now U∗
has weights lying in [0, 1) because the formation of U∗ ignores U(−x). Thus U∗
is the parabolic vector bundle corresponding to (E(V )∗, ρ(θ)). Further, we get the
filtration corresponding to (E(V )∗, ρ(θ)) if we shift indices so that the index of U
becomes zero. �

6. (Semi)-stability of extended weight torsors

The curve X is arbitrary. The aim of this section is to formulate a notion
of extended weight θ (semi)stability for EI i.e the case when θ does not lie in
Maps(R,a◦0) but only in its closure. We do this by showing the equivalence of
(semi)stability of (E ,θ) with that of (EI,θ, {a◦,xρ }x∈R) as defined in (5.2.1). In this
section, we work with ρ = Ad : G→ SL(g), the “adjoint” representation of G.

6.1. Invariant direct image functor. We briefly summarise [3, §3.1]. Let p :
W → U be a finite flat surjective morphism of normal integral Noetherian schemes
that is Galois with Galois group Γ. Let H be an affine group scheme on W . Assume
further that H is equipped with an action of Γ lifting the one on W , so that ”mult”
and ”inverse” maps are Γ-equivariant.

Definition 6.1.1. The invariant direct image pΓ
∗ (H) of H is the group scheme on

U whose valued points for any U -scheme S are given by pΓ
∗ (H)(S) = H(S×U W )Γ.

Further, the invariant direct image functor commutes with the Lie-algebra func-
tor in the following sense

Lie(pΓ
∗ (H)) = pΓ

∗ (Lie(H)). (6.1.1)

More generally, the invariant direct image may be defined for any affine scheme
over W together with a lift of Γ-action.
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6.2. Rational weight parahoric torsors as Γ − G bundles. We briefly recall
some results from [2, §5]. Let G → X be a parahoric group scheme as in §2.1.2.
Say θ is a weight such that each θx is a rational point of the facet σx corresponding
to the restriction of G at the formal disc Dx. By [2, Thm 5.3.1], there exists a
finite Galois cover p : Y → X branched over R with Galois group Γ and a principal
G-bundle F (see [2, Notn. 5.1.0.1]) equipped with a left action of Γ such that
if IsomY (F, F ) denotes the adjoint group scheme of F then taking the invariant
direct image sets up a canonical isomorphism of group schemes:

pΓ
∗ (IsomY (F, F )) = G. (6.2.1)

Let RY = p−1(R) ⊂ Y be the ramification points of the covering p. For each y ∈
RY , let Γy ⊂ Γ denote the isotropy subgroup that fixes y. Let τy : Γy → Aut(Fy)
be the action on the fiber of y. We denote its conjugacy class as [τy]. By the type
τ of F one means the set τ = {[τy]|y ∈ Ry} of conjugacy classes. Let Mτ

Y (Γ, G)
denote the moduli stack of (Γ−G) bundles on Y of type τ . We have an isomorphism
of algebraic stacks

αF :Mτ
Y (Γ, G)→MX(G), (6.2.2)

given by F as follows: denote by IsomY (E,F ) the sheaf of local isomorphisms

E 7→ pΓ
∗ (IsomY (E,F )). (6.2.3)

The inverse map is given by E 7→ p∗(E)×p∗(G) F .

6.3. Definition of (semi)stability for a parahoric torsor (E ,θ) with rational
weight θ. Keeping all the notations and the setup as in §6.2, we make [3, §6]
more precise using the notion of parabolically associated constructions. Let E(g)∗ =
(E(g),θ) denote the associated parabolic vector bundle ([3, §5]). Let Eparθ (G) denote
the parabolicaly associated adjoint group scheme of E defined as follows: let F and
E be be a principal Γ−G bundles on Y such that

pΓ
∗ (IsomY (F, F )) = G and αF (E) = E .

Let E(G) = IsomY (E,E) denote the adjoint group scheme of E. We define

Eparθ (G) := pΓ
∗ (E(G)). (6.3.1)

Let E(g) denote the Lie-algebra bundle of E defined by associated constructions
as follows: E ×G,Ad g. By (6.1.1), we define the parabolically associated Lie-algebra
bundle Lie(Eparθ (G)) of (E ,θ) as:

Lie(Eparθ (G)) = Eparθ (g) := pΓ
∗ (Lie(E(G))) = pΓ

∗ (E(g)). (6.3.2)

The Lie algebra bundle Eparθ (g) is given the structure of a parabolic Lie algebra
bundle by identifying it with the vector bundle underlying E(g)∗ (see also [3, §5,§6]).

Let η be the generic point of the curve X. Let Eparθ (G)η denote the restriction
of Eparθ (G) to η. Let Pη ⊂ Eparθ (G)η be a parabolic subgroup scheme. Taking the
flat closure of Pη in Eparθ (G) we get the subgroup scheme Pθ ⊂ Eparθ (G). The Lie
algebra bundle Lie(Pθ) is a sub-bundle of Lie(Eparθ (G)), and we give it the canonical
induced parabolic structure to get a parabolic Lie subbundle Lie(Pθ)∗ of E(g)∗.

Definition 6.3.1. ([3, Defn 6.1]) One calls a parahoric torsor (E ,θ) (semi)stable
if for every generic parabolic subgroup scheme Pη ⊂ Eparθ (G)η as above, we have

pardeg(Lie(P)∗) < 0 (respectively pardeg(Lie(P)∗) ≤ 0).

In Remark 6.4.3 we show how to extend this definition to real weights.
14

https://doi.org/10.4153/S0008439524000389 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000389


6.4. Definition of (semi)stability for extended real weights. Let (E ,θ) be
a parahoric torsor where θ = {θx|x ∈ R} and θx are real weights. Under p :
MX(GI)→MX(G), let EI map to E . For each x ∈ R, we will fix an Ad-facet a◦,xAd
in whose closure θx lies. In each a◦,xAd , we pick a sequence of rational points θx,n
converging to θx. We denote by θn the rational weight {θx,n|x ∈ R}. Let EI,parθn

(GI)
be the parabolically associated adjoint group scheme (see 6.3.1) of (EI,θn).

Proposition 6.4.1. The vector bundle underlying (EI,θ, {a◦,xAd}) identifies natu-

rally with the Lie algebra bundle Lie(EI,parθn
(GI)) of EI,parθn

(GI).

Proof. For simplicity, we may suppose that R = {x}. By the construction in Defi-
nition 5.2.1 , the quasi-parabolic structure of (EI,θ, {a◦,xAd}) and (EI(g)∗, Ad(θx,n))
are the same. Since for varying n the θx,n all lie in the same Ad-facet a◦,xAd , the
vector bundle underlying (EI(g)∗, Ad(θx,n)) is independent of n. Further, just as

Eparθ (g) identifies with the vector bundle underlying E(g)∗ by (6.1.1), Lie(EI,parθn
(GI))

identifies with the vector bundle underlying (EI(g)∗, Ad(θx,n)). �

We induce the parabolic structure on (EI,θ, {a◦,xAd}) to Lie(EI,parθn
(GI)) and, by

an abuse of notation forgetting the smaller facets, denote it by Lie(EIθ(GI))∗. We
observe the independence with respect to n of the following:

Lie(EI,parθn
(GI)) and EI,parθn

(GI)η (6.4.1)

The latter equals Eparθ (G)η. Let Pη ⊂ Eparθ (G)η be a parabolic subgroup scheme.

We denote by Lie(PI) the sheaf that is the closure of Lie(Pη) in Lie(EI,parθn
(GI)) with

torsion-free quotient. Thus Lie(PI) is a sub-bundle of Lie(EI,parθn
(GI)). We endow

Lie(PI) with the canonical induced parabolic structure from (EI,θ, {a◦,xAd}x∈R) and
forgetting the smaller facets denote the associated PVB by

Lie(PI
θ)∗. (6.4.2)

Definition 6.4.2. Let (E ,θ) be a parahoric torsor with real weights. Under
p : MX(GI) → MX(G), let EI map to E. We say that the parahoric torsor with
extended weights (EI,θ, {a◦,xAd}) (see 5.2.1) is (semi)stable if for every generic par-

abolic subgroup scheme Pη ⊂ EI,parθn
(GI)η we have

pardeg(Lie(PI
θ)∗) < 0 (respectively pardeg(Lie(PI

θ)∗) ≤ 0). (6.4.3)

Remark 6.4.3. If for each x ∈ R instead of the Ad-facets a◦,xAd , we had chosen
simply the unique Ad-facet in which θx lies, and instead of EI we worked with
the quasi-parahoric torsor E , then the construction in this subsection recovers the
extension [3, Defn 6.1] of Definition 6.3.1 to real weights.

6.5. Equivalence of (semi)stability.

Proposition 6.5.1. The parahoric torsor (E ,θ) is (semi)stable (see 6.4.3) if and
only if the extended weight parahoric torsor (EI,θ, {a◦,xAd}x∈R) is (semi)stable . The
(semi)stability of (EI,θ, {a◦,xAd}x∈R) is independent of the choices of {a◦,xAd}x∈R.

Proof. By Proposition 5.2.7, the Lie algebra bundles Lie(EI,parθn
(GI)) and

Lie(Eparθ (G)), being the vector bundles underlying (EI(g),θ) and (E(g),θ) respec-
tively, are related by a Hecke-modification and they are comparable under inclusion.
In Proposition 5.2.9 we denoted them by U I and U respectively. Let a denote the
difference between the weights attached to U and U I in (4.1.3). Sliding of weights
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(see §4.2) by a real number a only changes the parabolic slope by a. So by Remark
5.2.8 if we slide weights a then we have

parµ(Lie(EI,parθn
(GI))∗)− parµ(Lie(Eparθ (G))∗) = a.

Let us consider a generic parabolic subgroup scheme Pη ⊂ EI,parθn
(GI)η = Eparθ (G).

We have the natural identification Lie(PI
θ)η = Lie(PI

η) = Lie(Pη) = Lie(Pθ)η.

The parabolic structure on Lie(PI
θ)∗ is induced from (EI,θ, {a◦,xAd}x∈R). So from

the infinite filtration (4.1.3) of Lie(PI
θ)∗ we can extract, like in Remark 5.2.8, the

infinite filtration of Lie(Pθ)∗ by forgetting some sheaves which turn out to be only
those that do not matter critically for parabolic degree computations. Thus

parµ(Lie(PI
θ)∗)− parµ(Lie(Pθ)∗) = a.

This shows the first assertion. Now the second statement follows. �

We turn the independence observed above into a definition.

Definition 6.5.2. We say that a GI-torsor EI is (semi)stable with extended weight
θ if for some choice of facets {a◦,xAd}x∈R (and therefore any by (6.5.1)) the torsor
(EI,θ, {a◦,xAd}x∈R) is (semi)stable in the sense of (6.4.2).

Remark 6.5.3. The (semi)stability Definition [19, Defn 2.2] for parabolic principal
G-bundle is for the product of alcoves without their far walls (see [19, Defn 2.1]).
By continuity, it may be naturally extended to the product of closed Weyl alcoves.

Via the map q :M(GI

)→M(G) of (1.0.1), a GI-torsor EI with extended weight
θ may be viewed as a parabolic G-bundle but with extended weights, especially in
the sense that some weights may become equal and may lie on the boundary of
Maps(R,a0). The following proposition shows that [19, Defn 2.2] agrees with 6.5.2
even for extended weights.

Proposition 6.5.4. A GI-torsor EI with extended weights θ is (semi)stable (see
6.5.2) if and only if it is (semi)stable as a parabolic G-bundle (see 6.5.3).

Proof. In the case of parahoric GI

torsors, the Definition 6.5.2 reduces to Definition

6.3.1. Viewing parahoric GI

torsors as parabolic G-bundles, (6.3.1) in terms of
slopes of the adjoint PVB with respect to reductions of structure group of G to
parabolic subgroups is equivalent to the standard definition (see [19, Defn 2.2]).

When we take limits of weights (5.2.3), this equivalence extends between GI

torsors
equipped with extended weights and their associated PVBs in the sense of (6.5.2)
and parabolic G-bundles with weights lying in the boundary of the space of weights,
which is a product of alcoves. �

7. Some deformation theory and the Proof of Theorem 1.0.2

We are now back in the case X = P1. Let (E ,θ) be a parahoric G-torsor on P1

with parahoric structure on the marked points R. Recall that if E(g) denotes the
Lie-algebra bundle underlying the parabolic bundle E(g)∗, the first order deforma-
tions of (E ,θ) are controlled by the cohomology space H1(P1, E(g)).

Let EI be a trivial bundle with generic B-structures (B being a fixed Borel sub-
group of G) and extended weight θ as in Theorem 1.0.1. In §5.2, after choosing
smaller Ad-facets, we have explained the construction of the parabolic vector bun-
dle V∗ associated to it by the Ad representation. We further observe that if E is a
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torsor for the Iwahori group scheme, then there is an underlying principal G-bundle
with standard parabolic structures with fibres B at the marked points. Under these
conditions, the (semi)stability conditions in §6.3 can be rephrased in terms of the
usual (semi)stability of principal G-bundles but carrying along the Iwahori struc-
tures. In other words, E is (semi)stable if and only if for every parabolic subgroup
P ⊂ G and reduction of structure group EP to P , we have pardeg(EP (p)∗) ≤ 0(< 0),
where EP (p)∗ ⊂ E(g)∗ gets the canonical induced parabolic structure. This defini-
tion coincides with the one in [19].

With these notions in place, we now complete the proof of Theorem 1.0.2.

Proof of Theorem 1.0.2. =⇒ If θ ∈ ∆s, by Theorem 1.0.1, EI, the trivial bundle
with generic B-structure with extended weights θ, is stable. So, owing to stability,
it has no sub-bundles whose associated parabolic vector bundle has degree zero.
⇐= Since θ ∈ ∆ss, so by Theorem 1.0.1 the trivial bundle with generic B-

structure EI is semistable. Now the stack of B-structures on the trivial bundle is
algebraic, smooth and irreducible. Therefore, we have a smooth and irreducible
versal space T . Let η denote its generic point and let EI be a versal torsor on T . If
EI is only semistable and not stable at η, then in the setting of §6.3, by restricting
T if necessary, we may assume that for all t ∈ T the family EIt (g)∗ of torsors admits
parabolic reductions EIP (p)t,∗ with pardeg(EIP (p)t,∗) = 0.

At a point t ∈ T corresponding to EIt with generic B-structures, let EIt,P be a

parabolic reduction. Let us consider the map φ
EI
t,P

from {deformations of EIt,P } to

{deformations of EIt }. We have the following exact sequence of parabolic bundles:

0→ EIt,P (p)∗ → EIt (g)∗ → EIt (g)∗/EIt,P (p)∗ → 0. (7.0.1)

By assumption on EIt , no P -reduction EIt,P is of the minus 1 type. So the quotient

EIt (g)∗/EIt,P (p)∗ has pardeg = 0 but the degree of the underlying vector bundle is

not −1. Hence it has a non-trivial H1. Thus φ
EI
t,P

is not surjective. Therefore

EIt,P does not deform to the generic point of the versal space. And this holds

for all parabolic reductions of EIt . So EIη has no destabilizing EIP,η arising as a

deformation from a closed point of T . However, any EIP,η of Eη spreads to a Zariski
neighbourhood of η in T . So E must be stable. Hence θ ∈ ∆s.

�

Proposition 7.0.1. The condition “no P -reduction EI
P

is of the minus 1 type” of
Theorem 1.0.2 can be formulated in terms of vanishing of Gromov-Witten numbers.

Proof. For parabolic vector bundles, one considers the trivial bundle with generic
quasi-parabolic structures of a fixed type. Then Gromov-Witten input data exactly
corresponds to the triples of rank, degree and type of induced parabolic structure
on sub-bundles. Recall that this generalizes suitably also for principal G-bundles
(see [19]). Consider any P -reduction of structure group EI

P
of EI. By associated

constructions, it leads to a sub-PVB Lie(PI
θ)∗ in (6.4.2). We have also denoted it

as EIP (p)∗ above. Notice that for x ∈ R, the local parabolic degree of Lie(PI
θ)∗

gets determined by EI
P

locally around x of which there are only finitely many
possibilities analogus to the induced flag types in the case of PVBs. Further, if
Lie(PI

θ)∗ happens to have the same slope as EI(g)∗, then its underlying degree, say
d, gets determined as well. Thus, the set of input data {d} and {wx|x ∈ R} for
Gromov-Witten numbers of sub-bundles that could potentially violate stabilty gets
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determined and is finite. We now further observe that these input data also deter-
mine the underlying degree of the quotient bundle EI(g)∗/Lie(PI

θ)∗. Therefore, the
condition “no P -reduction EI

P
is of the minus 1 type” can be formulated in terms

of vanishing of Gromov-Witten numbers. �

Thus Theorem 1.0.2 gives verifiable criteria for points in ∆ss to lie in ∆s.
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