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Abstract

We study the asymptotic behaviour of the expectation of the maxima and minima of
a random assignment process generated by a large matrix with multinomial entries.
A variety of results is obtained for different sparsity regimes.
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1. Introduction and main results

1.1. Random assignment problem

We consider the following random assignment problem. Let (Xij) be an n × n random matrix
and let [1..n] denote the set {1, 2, . . . , n}. Let Sn denote the group of permutations σ : [1..n] �→
[1..n]. For every σ ∈ Sn, let S(σ ) =

n∑
i=1

Xiσ (i).

The process {S(σ ), σ ∈ Sn} is called a random assignment process. The problem consists
in the study of the asymptotic behaviour of its extrema, in particular,

E max
σ∈Sn

S(σ ) and E min
σ∈Sn

S(σ ) as n → ∞. (1.1)

We refer to [6, 16] for many applications of assignment processes and their extrema in
various fields of mathematics.

There are many remarkable results in the area [6, 10, 13, 17], including a famous result
[1, 2] proving a conjecture in [11] claiming that limn→∞ E minσ∈Sn S(σ ) = π2/6 when
the Xij are independent and identically distributed (i.i.d.) standard exponential. Actually, it
showed that, when the random variables considered are nonnegative, the distribution of Xij

affects the limit in the minimisation problem only through the value of its probability density
function at 0.

In the case mentioned, the support of the common distribution is bounded on the left. The
situation is very different when dealing with variables having unbounded supports. For obvious
reasons, it is more convenient to illustrate this phenomenon for maxima instead of minima.
If the common law of the entries is not bounded from above, then the expectation of maxima
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no longer tends to a finite limit but grows to infinity and the problem consists in evaluation
of the corresponding growth order. In this direction, [12] showed that if Xij are i.i.d. standard
Gaussian, then E maxσ∈Sn S(σ ) = n

√
2 log n(1 + o(1)). Some rather general results of this type

were recently obtained [5, 9].
Not much is known for the assignment problem in the discrete setting. We mention the

case of i.i.d. Poisson random variables studied in [9], and [14], which considered uniform
distributions on [1..n], or on [1..n2], random permutations of [1..n] for each row, and those of
[1..n2] for the whole matrix.

In this article, we study (1.1) for random matrices X = (Xij)1≤i,j≤n with a joint multinomial
distribution of entries. Recall that a multinomial distribution M(m, k) is the distribution of a
random vector (Yj)j≤k where Yj records the number of times side j has been rolled on a fair
k-sided die independently rolled m times.

Therefore, in our case, the joint law of matrix entries is M(m, n2); the entries are integer-
valued, negatively dependent random variables with common binomial distribution B(m, p)
with success probability p = n−2 and number of trials m.

We allow the dependence m = m(n). As we will see, the presence of this extra parameter m
creates space for a variety of asymptotic behaviours for the expectation of the extrema.

1.2. A motivating example

Let us consider an example showing how the problem studied here emerges in infor-
mation transmission. Let A= (a1, . . . , an) be an alphabet of n letters. If u and v are two
independent uniformly distributed words of length m, the n × n matrix X defined by Xij :=∑m

k=1 1{uk=ai,vk=aj}, 1 ≤ i, j ≤ n, is distributed according to the multinomial law M(m, n2).
Recall that the Hamming distance between the words is defined by

dH(u, v) :=
m∑

k=1

1{uk 	=vk} = m −
m∑

k=1

1{uk=vk} = m −
n∑

i=1

Xii.

Assume that we have received a word v through a noisy channel and we have to decide
whether v is just a random word or a word u that passed through an unknown coding
σ : A �→A. The answer should clearly depend on the quantity

min
σ

dH(σ (u), v) = min
σ

(m − S(σ )) = m − max
σ

S(σ ).

1.3. Results

Our setting is an asymptotic one, i.e. we let n → ∞ and allow m = mn to be a function of n.
The results depend heavily on the relation between n and m. Therefore, we consider separately
several zones gradually going down from large m to smaller ones. Everywhere we use the
notation p = pn := n−2 for the probability, which is naturally related to our basic multinomial
law M(m, n2).

1.3.1. Quasi-Gaussian zone This zone is defined by assumption

mp

log n
→ ∞, (1.2)

which essentially means that all entries Xij are sufficiently large to be heuristically approxi-
mated with Gaussian variables.
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200 M. LIFSHITS AND G. MORDANT

Theorem 1.1. Under assumption (1.2), E maxσ S(σ ) = (m/n)(1 + o(1)) and E minσ S(σ ) =
(m/n)(1 + o(1)).

Proposition 1.1. Under assumption (1.2), (n/m) maxσ S(σ )
P−→ 1 and (n/m) minσ S(σ )

P−→ 1.

Remark 1.1. The result of Theorem 1.1 can be compared with the fact that the expectation
of the sum for a random permutation is m/n. The technique used to prove convergence in
probability of the rescaled maximum and minimum does not apply for the cases we consider
below. It is an interesting open question whether such concentration results hold in the cases
hereafter.

1.3.2. Critical zone The critical zone is described by assumption
mp

log n
→ c (1.3)

with some c > 0. Unlike the quasi-Gaussian case, the expectation behaviour of maxima and
minima is not the same.

Theorem 1.2. Under assumption (1.3) for all c > 0, E maxσ S(σ ) = cH∗n log n(1 + o(1)),
where H∗ = H∗(c) is the unique solution of H log H − (H − 1) = 1/c, H > 1, and, for all c > 1,
E minσ S(σ ) = cH̃∗n log n(1 + o(1)), where H̃∗ = H̃∗(c) is the unique solution of H log H −
(H − 1) = 1/c, 0 < H < 1.

For c < 1 the latter equation has no solution and the result for the minimum is completely
different, as stated in the next theorem.

Theorem 1.3. Let c < 1 and

lim sup
mp

log n
≤ c. (1.4)

Then, lim P(minσ S(σ ) = 0) = 1.

Remark 1.2. The intermediate case c = 1 admits a similar treatment, but the result is less
attractive. For example, we can replace assumption (1.4) with

mp

log n
≤ 1 − log(b log n)

log n
, b > 1.

1.3.3. Quasi-Poissonian zone The quasi-Poissonian zone is described by the assumptions
mp

log n
→ 0 (1.5)

while, for every δ > 0,
mp 
 n−δ . (1.6)

In this zone all entries Xij are well approximated by Poissonian variables with intensity
parameter mp. This zone includes moderately growing intensities mp, constant mp, and even a
narrow zone of mp slowly decreasing to zero, e.g. with logarithmic speed.

Theorem 1.4. Under assumptions (1.5) and (1.6),

E max
σ

S(σ ) = n log n

log((log n)/mp)
(1 + o(1)).

Remark 1.3. Note that if log(mp) � log log n we obtain the asymptotics (n log n)/log log n as
in the Poisson i.i.d. case with constant intensity [9].
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1.3.4. Rather sparse matrices In this zone, we go below (1.6) and assume that

mp = cn−a(1 + o(1)), a ∈ (0, 1). (1.7)

Consider first a regular case.

Theorem 1.5. Assume that (1.7) holds and a 	∈ {1/k, k ∈N}. Then there exists a unique
positive integer k such that

1

k + 1
< a <

1

k
(1.8)

and E maxσ S(σ ) = kn(1 + o(1)).

Let us now briefly discuss the irregular case a = 1/k for some integer k ≥ 2. Since the
lower bound a > 1/(k + 1) is still true, we can again obtain E maxσ S(σ ) ≤ kn(1 + o(1)).
However, the opposite bound breaks down and we are only able to prove that E maxσ S(σ ) ≥
(k − 1)n(1 + o(1)). To summarise, for the assignment process, we have in this case that

(k − 1)n(1 + o(1)) ≤E max
σ

S(σ ) ≤ kn(1 + o(1))

and conjecture that E maxσ S(σ ) = (k − κ)n(1 + o(1)) for some κ ∈ [0, 1] depending on a
and c. Proving this and finding κ is beyond the reach of current techniques.

Very sparse matrices This zone is determined by

1 � m � n. (1.9)

Notice that m ≈ n is equivalent to mp ≈ n−1, and thus the current zone is just below the
previous one.

Theorem 1.6. Under assumption (1.9), E maxσ S(σ ) = m(1 + o(1)).

2. Proofs

Proof of Theorem 1.1. Let X be a B(m, p)-distributed random variable. Then

E exp(γ X) = (1 + p(eγ − 1))m, γ ∈R. (2.1)

Now let Xj, 1 ≤ j ≤ n, be B(m, p)-distributed random variables. We do not assume any
independence. Then, for every γ > 0,

E exp
(
γ max

1≤j≤n
Xj

)
≤E

n∑
j=1

exp(γ Xj) = n(1 + p(eγ − 1))m. (2.2)

By Jensen’s inequality,

exp
(
γE max

1≤j≤n
Xj

)
≤E exp(γ max

1≤j≤n
Xj) ≤ n(1 + p(eγ − 1))m.

It follows that

E max
1≤j≤n

Xj ≤ γ −1(log n + m log(1 + p(eγ − 1))) ≤ γ −1(log n + mp(eγ − 1)).
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We choose γ := ((2 log n)/mp)1/2. By (1.2), γ → 0. Using the expansion eγ − 1 = γ +
γ 2(1 + o(1))/2, we obtain

E max
1≤j≤n

Xj ≤ γ −1(log n + mp[γ + γ 2(1 + o(1))/2])

= mp + γ −1 log n + mp γ (1 + o(1))/2

= mp + (2mp log n)1/2(1 + o(1)).

Furthermore, by (1.2) the second term is negligible and we obtain E max1≤j≤n Xj ≤ mp(1 +
o(1)).

The same approach applies to the minima. With the same notation we have, for every
γ > 0,

E exp(−γ min
1≤j≤n

Xj) ≤E

n∑
j=1

exp(−γ Xj) = n(1 + p(e−γ − 1))m.

By Jensen’s inequality,

exp
(
−γE min

1≤j≤n
Xj

)
≤E exp

(
−γ min

1≤j≤n
Xj

)
≤ n(1 + p(e−γ − 1))m.

It follows that E min1≤j≤n Xj ≥ −γ −1(log n + m log(1 + p(e−γ − 1))). We still use γ :=
((2 log n)/mp)1/2 → 0. The expansion e−γ − 1 = −γ + γ 2(1 + o(1))/2 yields

log(1 + p(e−γ − 1)) = p(e−γ − 1)(1 + o(1)) = −pγ (1 + o(1)) + pγ 2(1 + o(1))/2.

From this we get

E min
1≤j≤n

Xj ≥ −γ −1(log n + mp[−γ (1 + o(1)) + γ 2(1 + o(1))/2])

= mp(1 + o(1)) − γ −1 log n − mpγ (1 + o(1))/2

= mp(1 + o(1)) − (2mp log n)1/2(1 + o(1)).

By (1.2), the second term is negligible and we obtain E min1≤j≤n Xj ≥ mp(1 + o(1)).
We now apply these results to the multinomial assignment process. Here, the joint law of

the entries Xij is M(m, n2) and every Xij follows the binomial law B(m, p) with p = n−2. Our
bound for the maxima yields

E max
σ

S(σ ) ≤
n∑

i=1

E max
1≤j≤n

Xij = n ·E max
1≤j≤n

X1j ≤ m

n
(1 + o(1)),

while the bound for the minima yields

E min
σ

S(σ ) ≥
n∑

i=1

E min
1≤j≤n

Xij = n ·E min
1≤j≤n

X1j ≥ m

n
(1 + o(1)).

It follows that E maxσ S(σ ) = (m/n)(1 + o(1)) and E minσ S(σ ) = (m/n)(1 + o(1)), as
required. �
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Proof of Proposition 1.1. The claim will follow by squeezing once we prove that, for all
ε > 0, P

(
maxσ S(σ ) ≥ (1 + ε)m/n

)→ 0 and P
(
minσ S(σ ) ≤ (1 − ε)m/n

)→ 0.
Again, let Xj, 1 ≤ j ≤ n, be B(m, p)-distributed random variables. Note that, by (2.2), for

γ → 0+,

E exp
{
γ max

1≤j≤n
Xj

}
≤ exp{log n + mpγ (1 + o(1))}.

Using Markov’s inequality, we get

P

(
max

1≤j≤n
Xj ≥ (1 + ε)mp

)
≤ exp{log n + mpγ (o(1) − ε)},

in which we set γ = (log n/mp)1/2 to get

P

(
max

1≤j≤n
Xj ≥ (1 + ε)mp

)
≤ exp{log n − (log n mp)1/2(o(1) + ε)}.

By (1.2), there exists some n0 such that, for all n ≥ n0, mp ≥ 10 log n/ε2, and thus

P

(
max

1≤j≤n
Xj ≥ (1 + ε)mp

)
≤ n−2

for sufficiently large n. We can then conclude that

P

(
max

σ
S(σ ) ≥ (1 + ε)

m

n

)
≤ P

(
max

1≤i≤n
max

1≤j≤n
Xij ≥ (1 + ε)

m

n2
= (1 + ε)mp

)

≤
n∑

i=1

P

(
max

1≤j≤n
Xij ≥ (1 + ε)mp

)
→ 0.

The claim for the minimum follows along the same lines. �

Before turning to the proof of Theorem 1.2, we state and prove the following lemma.

Lemma 2.1. Let (Xj)
η
j=1 be negatively associated random variables following the binomial law

B(m, p). Assume that η → ∞ and the parameters m = m(η) and p = p(η) are such that

mp

log η
→ c > 0 as η → ∞, (2.3)

p log η → 0 as η → ∞. (2.4)

Then
E max

1≤j≤η
Xj = cH∗ log η(1 + o(1)) as η → ∞. (2.5)

Further, for every c > 1,

E min
1≤j≤η

Xj = cH̃∗ log η(1 + o(1)) as η → ∞. (2.6)

Proof. The proof is split into two blocks dealing with the lower and upper bounds required
to establish both claims.
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For the upper bound in (2.5) and the lower bound in (2.6), let H > H∗. Then

H log H − (H − 1) >
1

c
. (2.7)

Let r := Hp. Then, by (2.3), mr = Hmp = cH log η(1 + o(1)).
Applying the exponential Chebyshev inequality for every j and every v > 0, we obtain

P(Xj ≥ cH log η + v) = P(Xj ≥ mr(1 + o(1))−1 + v)

≤ E eγ Xj

exp{γ mr/(1 + o(1) + v)} =
[

1 + p(eγ − 1)

exp{γ r/(1 + o(1))}
]m

e−γ v. (2.8)

By choosing the optimal γ := log([(1 − p)r]/[p(1 − r)]) and setting ro := r/(1 + o(1)), we
have

1 + p(eγ − 1)

eγ r
=
(

p

r

)r/(1+o(1))

exp((1 − ro) log(1 − p) − (1 − ro) log(1 − r))

= H−Hp/(1+o(1)) exp(−p + r + O(p2))

= exp(−((1 + o(1))H log H − (H − 1)
)
p + O(p2)).

Hence,[
1 + p(eγ − 1)

eγ r

]m

= exp(−(H log H − (H − 1) + o(1))mp)

= exp(−(H log H − (H − 1))c(log η)(1 + o(1))) := η−β+o(1),

where, by (2.7), β = (H log H − (H − 1))c > 1.
Substituting the above results in (2.8) we obtain P(Xj ≥ cH log η + v) ≤ η−β+o(1)e−γ v. It is

now trivial that

P

(
max

1≤j≤η
Xj ≥ cH log η + v

)
≤ η−(β−1)+o(1)e−γ v.

It follows that

E max
1≤j≤η

Xj − cH log η =E

(
max

1≤j≤η
Xj − cH log η

)
≤E

(
max

1≤j≤η
Xj − cH log η

)
+

=
∫ ∞

0
P

(
max

1≤j≤η
Xj ≥ cH log η + v

)
dv

≤ η−(β−1)+o(1)
∫ ∞

0
e−γ v dv

= η−(β−1)+o(1) 1

γ
= η−(β−1)+o(1) 1

log H
(1 + o(1)) → 0.

Therefore, E max1≤j≤η Xj ≤ cH log η + o(1). By letting H ↘ H∗ we obtain the upper bound
in (2.5).
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The lower bound in (2.6) is obtained in exactly the same way through the Chebyshev
inequality for the lower tails.

We now consider the converse bounds. The lower bound in (2.5) is reached in four steps:
we give a Poissonian approximation of binomial laws, then provide a lower bound for this
Poissonian approximation. This bound provides a lower bound for the maximum’s expecta-
tion of independent binomial i.i.d. random variables. Finally, using the negative association
argument, we reduce the claim to the independence case.

First, let X be a binomial B(m, p)-distributed random variable. Elementary calculations
show that Poissonian approximation

P(X = k) = e−mp (mp)k

k! (1 + o(1))

is valid if p2m → 0, pk → 0, and k2/m → 0. Indeed, we have

P(X = k) = e−mp m!
k!(m − k)!pk(1 − p)m−k

and, with the limiting behaviour as above,

(1 − p)m = exp(m log(1 − p)) = exp(−mp + m O(p2)) = exp(−mp)(1 + o(1)) as p2m → 0;

(1 − p)k = exp(k log(1 − p)) = exp(k O(p)) = 1 + o(1) as kp → 0;

m!
(m − k)! ≤ mk;

m!
(m − k)! ≥ mk

(
1 − k

m

)k

= mk exp

(
k O

(
k

m

))
= mk(1 + o(1)) as k2/m → 0.

Second, let c > 0 and H > 1. Let k = �cH log η + 1� and λ = c(log η)(1 + o(1)).
Then, Stirling’s approximation and basic computations yield e−λλk/k! = η−β+o(1), where

β := c(H log H − (H − 1)). (2.9)

Now we combine the results of the two steps. Note that with (2.3), (2.4), and, for k =
cH(log η)(1 + o(1)), all three assumptions of the first step are verified and, with λ = mp, we
obtain P(X ≥ cH log η) ≥ P(X = k) = η−β+o(1). If 1 < H < H∗, then β < 1.

Third, let (X̃j)1≤j≤η be independent copies of X. Then

P

(
max

1≤j≤η
X̃j ≤ cH log η

)
= P(X ≤ cH log η)η ≤ (1 − η−β+o(1))η

≤ exp(−η1−β+o(1)) → 0. (2.10)

It follows that

E max X̃j ≥E
[
(max X̃j)1{max X̃j≥cH log η}

]
≥ (cH log η)P(max X̃j ≥ cH log η) = cH(log η)(1 − o(1)). (2.11)

Fourth, from the disintegration theorem for negatively associated variables [4] (see also [3,
Chapter 2, Theorem 2.6, and Lemma 2.2]), we have

E max
1≤j≤η

Xj ≥E max
1≤j≤η

X̃j. (2.12)
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Combining this estimate with the result of the third step, for every H < H∗ we obtain

E max
1≤j≤η

Xj ≥ cH log η(1 + o(1)).

Letting H ↗ H∗, we obtain the lower bound in (2.5).
The upper bound in (2.6) follows in a similar way. Now let k := [cH log η]. By using

Poissonian approximation and Poissonian asymptotics we obtain

P(X ≤ cH log η) ≥ P(X = k) = η−β+o(1)

with the same β as in (2.9). If H̃∗ < H < 1, then β < 1.
As before, for independent variables we obtain

P

(
min

1≤j≤η
X̃j ≥ cH log η

)
≤ exp

(−η1−β+o(1)).
It follows that

E min
1≤j≤η

X̃j =E

[
min

1≤j≤η
X̃j1{min1≤j≤η X̃j≤cH log η}

]
+E

[
min

1≤j≤η
X̃j1{min1≤j≤η X̃j>cH log η}

]

≤ cH log η +
η∑

j=1

E
[
X̃j1{min1≤i≤η,i 	=j X̃i>cH log η}

]
= cH log η + ηE X̃1P

(
min

2≤i≤η
X̃i > cH log η

)
≤ cH log η + η · c log η(1 + o(1)) exp

(−η1−β+o(1))
= cH log η + o(1).

The final negative association argument reads as follows. Since (Xj) are negatively
associated, so are (−Xj). From the disintegration theorem cited above, it follows that

E max
1≤j≤η

(−Xj) ≥E max
1≤j≤η

(−X̃j),

which is equivalent to E min1≤j≤η Xj ≤E min1≤j≤η X̃j. By combining the obtained results, we
have E min1≤j≤η Xj ≤ cH log η(1 + o(1)). Finally, letting H ↘ H̃∗ we obtain the upper bound
in (2.6). �

Proof of Theorem 1.2. Recall that a multinomial distribution is negatively associated, see
[8] and [3, Chapter 1, Theorem 1.27]. Furthermore, with p = n−2, the assumption (2.4) is also
valid.

Therefore, the bounds (2.5) and (2.6) apply to the sums of the entries Xij. They yield,
respectively,

E max
σ

S(σ ) ≤
n∑

i=1

E max
1≤j≤n

Xij ≤ cH∗n log n(1 + o(1)),

E min
σ

S(σ ) ≥
n∑

i=1

E min
1≤j≤n

Xij ≥ cH̃∗n log n(1 + o(1)).
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The opposite bounds follow by the ‘greedy method’ dating back to [15], for instance,
and introduced for Gaussian random variables in [12] (and used in [9]) that we recall now.
This method allows the construction of a quasi-optimal permutation σ ∗ that provides a
sufficiently large value or sufficiently small value of the assignment process. Recall that
[1..i] := {1, 2, . . . , i}. Define σ ∗(1) := arg maxj∈[1..n] X1j, and let, for all i = 2, . . . , n, σ ∗(i) :=
arg maxj 	∈σ ∗([1..i−1]) Xij. It is natural to call this strategy ‘greedy’, because at every step we con-
sider row i, take the maximum of its available elements (without considering the influence of
this choice on subsequent steps), and then forget row i and the corresponding column σ ∗(i).
The number of variables used at consequent steps is decreasing from n to 1.

By using the greedy method, we have

E max
σ

S(σ ) ≥E

n∑
i=1

Xi σ ∗(i) =
n∑

i=1

E max
j 	∈σ ∗([1..i−1])

Xij =
n∑

i=1

E max
1≤j≤n−i+1

Xij. (2.13)

The latter equality may seem surprising because the index sets [n]\σ ∗([1..i − 1]) are random
and depend on the matrix X. However, it is justified by the following lemma.

Lemma 2.2. Let N1, N2 > 0 be positive integers, and let a random vector X := (Xj)1≤j≤N1+N2

be distributed according to a multinomial law Mm,N1+N2 . Let X(1) := (Xj)1≤j≤N1 and X(2) :=
(Xj)N1<j≤N1+N2 . Let 1 ≤ q ≤ N2, and let J ⊂ (N1, N1 + N2] be a random set of size q
determined by X(1). Then the variables maxj∈J Xj and maxN1<j≤N1+q Xj are equidistributed.

By applying the asymptotic expression (2.5) to each term of the sum (2.13), and by Stirling’s
formula,

∑
log i = log n! ∼ n log n, we obtain the desired lower bound: E maxσ S(σ ) ≥

cH∗n log n(1 + o(1)). Replacing maxima by minima in the greedy method and using (2.6)
yields the remaining upper bound: E minσ S(σ ) ≤ cH̃∗n log n(1 + o(1)).

This completes the proof of Theorem 1.2 except for the postponed proof of Lemma 2.2. �

Proof of Lemma 2.2. Let S = S(X(1)) := ∑N1
j=1 Xj. Recall that the conditional distribution of

X(2) with respect to X(1) is Mm−S,N2 . This means that, for all x1 ∈N
N1 and x2 ∈N

N2 ,

P(X(2) = x2, X(1) = x1) = P(X(1) = x1)Mm−S(x1),N2 (x2).

For every fixed set J ⊂ (N1, N1 + N2] of size q,

P(X(2) = x2,J = J) =
m∑

s=0

P(J = J, S = s)Mm−s,N2 (x2)

by summing over x1 ∈J −1(J), where J −1(J) is the preimage of the set J under J . Now, for
every nonnegative integer μ, by summing over x2 such that maxj∈J x2j = μ, we obtain

P

(
max
j∈J

Xj = μ,J = J
)

=
m∑

s=0

P(J = J, S = s)Mm−s,N2

(
x2 : max

j∈J
x2j = μ

)
.

The latter factor does not depend on a particular set J due to the exchangeability property of
the multinomial law. We may thus write Mm−s,N2 (x2 : maxj∈J x2j = μ) =: F(m − s, N2, q, μ)
and obtain

P

(
max
j∈J

Xj = μ,J = J
)

=
m∑

s=0

P(J = J, S = s)F(m − s, N2, q, μ).
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By summing over all sets J of size q, we see that

P

(
max
j∈J

Xj = μ

)
=

m∑
s=0

P(S = s)F(m − s, N2, q, μ)

does not depend on the specific choice of J , and the claim of the lemma follows. �

Proof of Theorem 1.3. We are going to use an old result from [7] about the existence of
perfect matching in a random bipartite graph. Let G be a uniformly distributed n + n bipartite
graph with m = m(n) edges. If

lim
n→∞

(
m

n
− log n

)
= ∞, (2.14)

then with probability tending to 1, as n → ∞, G has a perfect matching.
In matrix form, this result asserts the following. Let Y = Y(n, m) = {Yij}1≤i,j≤n be a uni-

formly distributed random n × n matrix with entries taking values in {0, 1} and satisfying∑n
i,j=1 Yij = m. If (2.14) holds, then

lim
n→∞ P

(
max

σ

n∑
i=1

Yiσ (i) = n

)
= 1. (2.15)

Now let X = (Xij) be our matrix following the multinomial law M(m, n2). Introduce the
matrix Ỹ as

Ỹij :=
⎧⎨⎩0, Xij > 0,

1, Xij = 0.

Note that P(̃Yij = 1) = P(Xij = 0) = (1 − p)m = exp(−mp(1 + o(1))). Let T := ∑n
i,j=1 Ỹij be

the number of empty cells in our matrix X. Observe that, conditioned on T , the matrix Ỹ has the
same distribution as Y(n, T). Taking into account that the probability in (2.15) is nondecreasing
as a function of m, we have, for every positive integer M,

P

(
min

σ
S(σ ) = 0

)
= P

(
max

σ

n∑
i=1

Ỹiσ (i) = n

)

=
∑
k≥0

P

(
max

σ

∑
i

Ỹiσ (i) = n | T = k

)
P(T = k)

≥ P

(
max

σ

n∑
i=1

Y(n, M)iσ (i) = n

)∑
k≥M

P

(
max

σ

∑
i

Ỹiσ (i) = n | T = k

)
P(T = k)

≥ P(T ≥ M)P

(
max

σ

n∑
i=1

Y(n, M)iσ (i) = n

)
. (2.16)

We choose M = nβ with β ∈ (1, 2 − c) and show that both probabilities in the latter product
tend to 1 as n → ∞.
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For the first one, using (1.4), we have E T = n2
E Ỹ11 = n2 exp(−mp(1 + o(1))) ≥

n2−c(1+o(1)). Furthermore, since the variables Ỹij are negatively correlated, we have Var T ≤
n2Var Ỹ11 ≤ n2

E Ỹ11 =E T . Finally, using β < 2 − c, by Chebyshev’s inequality,

P(T ≤ nβ ) ≤ P(|T −E T| ≥E T − nβ ) = P(|T −E T| ≥E T(1 + o(1)))

≤ Var T

(E T)2(1 + o(1))
≤ E T

(E T)2(1 + o(1))
→ 0.

On the other hand, since β > 1, the assumption (2.14) with m := M = nβ is true. Therefore,
the second probability in the product (2.16) tends to 1 by the result in [7]. We obtain from
(2.16) that limn→∞ P(minσ S(σ ) = 0) = 1, which is the desired claim. �

Proof of Theorem 1.4. The proof goes along the same lines as for Theorem 1.2. Instead of
the key relation (2.5), we prove the following claim. Let (Xj) be negatively associated random
variables following the binomial law B(m, p). Then, under assumptions (1.5) and (1.6),

E max
1≤j≤n

Xj = log n

log((log n)/mp)
(1 + o(1)) as n → ∞. (2.17)

For the upper bound in (2.17) that we shall prove now, no lower bound on mp is needed; we
only use (1.5).

Let β > 1, y := (β log n)/mp, r := y/(log y). Notice that under (1.5) we have y, r → ∞.
Next, for a binomial B(m, p) random variable X and for every v > 0,

P

(
X ≥ β log n

log((log n)/mp)
+ v

)
≤ P

(
X ≥ β log n

log((β log n)/mp)
+ v

)

= P

(
X ≥ (β log n)/mp

log((β log n)/mp)
mp + v

)

= P

(
X ≥ y

log y
mp + v

)
= P(X ≥ rmp + v).

In the next calculation we use the Poisson version of the bound for exponential moment,
E exp(γ X) ≤ exp(mp(eγ − 1)), that immediately follows from the exact formula (2.1). By
applying Chebyshev’s inequality with Poisson-optimal parameter γ = log r we obtain

P(X ≥ rmp + v) ≤E exp(γ X) exp(−γ (rmp + v))

≤ exp(−mp(γ r − eγ + 1) − γ v)

= exp(−mp(r log r − r + 1) − γ v).

Since r → ∞, r log r − r + 1 ∼ r log r ∼ y = (β log n)/mp. It follows that

P(X ≥ rmp + v) ≤ exp(−β log n(1 + o(1)) − γ v) = n−β(1+o(1)) exp(−γ v),

P

(
max

1≤j≤n
Xj ≥ rmp + v

)
≤ nP(X ≥ rmp + v) ≤ n−(β−1)(1+o(1)) exp(−γ v).

Hence,

E max
1≤j≤n

Xj ≤ rmp + n−(β−1)(1+o(1))
∫ ∞

0
exp(−γ v) dv = rmp + n−(β−1)(1+o(1))γ −1.
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Note that rmpγ = r log r mp ∼ ymp = β log n → ∞, and hence we conclude that
n−(1−β)(1+o(1))γ −1 is negligible compared to rmp; thus,

E max
1≤j≤n

Xj ≤ rmp(1 + o(1)) ∼ β log n

log((log n)/mp)

and the required upper bound follows by letting β ↘ 1.
For the lower bound, let β ∈ (0, 1), y := (β log n)/mp, r := y/(log y), and

k := rmp = y

log y
mp = β log n

log y
.

Assumption (1.5) yields y → ∞, k = o(log n), ek = no(1), and emp = no(1).
On the other hand, under assumption (1.6) we have | log(mp)| � log n, which yields log y �

log n, hence k → ∞.
Rewriting the binomial probability mass function as

P(X = k) = e−mp (mp)k

k!
[

m(m − 1) · · · (m − k + 1)

mk
×
(

1 − pm

m

)m−k

epm
]
,

and observing that the product between square brackets converges to 1 for m, p, k as above, we
can make a Poissonian approximation. Using the latter, we obtain

P(X ≥ k) ≥ P(X = k) ∼ e−mp (mp)k

k! ∼ e−mpek(2πk)−1/2
(

mp

k

)k

= no(1)r−k = no(1)r−rmp = no(1) exp(−r log r mp)

= no(1) exp(−y(1 + o(1))mp) = n−β+o(1).

By repeating the arguments from (2.10), (2.11), and (2.12), we obtain

E max
1≤j≤n

Xj ≥ k(1 + o(1)) = y

log y
mp(1 + o(1)) = β log n

log y
(1 + o(1));

letting β ↗ 1 provides the required lower bound in (2.17).
Once (2.17) is proved, the proof of Theorem 1.4 is completed by the same simple argu-

ments (including the greedy method) as for Theorem 1.2. Indeed, combining (2.17) with (2.13)
implies that

E max
σ

S(σ ) ≥
n∑

i=1

E max
1≤j≤n−i+1

Xij ≥
n∑

i=1

log(n − i + 1)

log [log(n − i + 1)/mp]
(1 + o(1)),

from which the claim easily follows. �

Proof of Theorem 1.5. We first establish the upper bound. Let Xj, 1 ≤ j ≤ n, be B(m, p)-
binomial random variables. We have

E max
1≤j≤n

Xj =E

[
max

1≤j≤n
Xj1{max1≤j≤n Xj≤k}

]
+E

[
max

1≤j≤n
Xj1{max1≤j≤n Xj>k}

]

≤ k +
n∑

j=1

E
[
Xj1{Xj>k}

]= k + nE
[
X11{X1>k}

]
.
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Furthermore, since the law of X1 is B(m, p),

P(X1 = �) = m!
(m − �)!

p�

�! (1 − p)m−� ≤ m�p�

�! , 0 ≤ � ≤ m.

Hence,

E
[
X11{X1>k}

]≤ ∞∑
�=k+1

(mp)�

(� − 1)! =
∞∑

q=0

(mp)k+1+q

(k + q)! ≤ (mp)k+1emp = (mp)k+1(1 + o(1)).

Therefore, E max1≤j≤n Xj ≤ k + ck+1n1−a(k+1)(1 + o(1)) = k + o(1), where we used the
lower bound in (1.8) at the last step.

It follows immediately that

E max
σ

S(σ ) ≤ nk(1 + O(1)). (2.18)

Turning to the lower bound, for every positive integer v in the independent case, we have

P

(
max
1≤j≤v

Xj < k
)

= P(X1 < k)v = (1 − P(X1 ≥ k))v

≤ (1 − P(X1 = k))v

≤ exp{−vP(X1 = k)}

= exp

{
−v

ckn−ak

k! (1 + o(1))

}
,

where the second last inequality follows from the inequality 1 + x ≤ exp x, and the last one
follows from

P(X1 = k) = (mp)k

k!
[

m(m − 1) · · · (m − k + 1)

mk
(1 − p)m−k

]
= (mp)k

k! (1 + o(1))

applied to this case; recall (1.7). Let us choose some arbitrary δ ∈ (0, 1). By letting v = [δn]
and using the upper bound in (1.8) we obtain P

(
max1≤j≤[δn] Xj < k

)→ 0. It follows that

E max
1≤j≤[δn]

Xj ≥ kP
(

max
1≤j≤[δn]

Xj ≥ k
)

= k(1 + o(1)).

By using the negative association argument (2.12), we also obtain E max1≤j≤[δn] Xj ≥ k(1 +
o(1)) in the multinomial setting. Combining this with the greedy method (2.13) yields

E max
σ

S(σ ) ≥
n∑

i=1

E max
1≤j≤n−i+1

Xij ≥
n−[δn]+1∑

i=1

k(1 + o(1)) = (1 − δ)nk(1 + o(1)).

By letting δ ↘ 0 we obtain E maxσ S(σ ) ≥ nk(1 + o(1)). We then conclude from this and
(2.18) that E maxσ S(σ ) = kn(1 + o(1)). �

Proof of Theorem 1.6. The upper bound maxσ S(σ ) ≤ m is trivial; it remains to prove the
lower bound.
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Let us denote by (ui, vi)1≤i≤m the coordinates of the particles thrown on the square table.
All ui and all vi are i.i.d. random variables uniformly distributed on the integers [1..n]. Let
U0 = V0 = ∅, Uk := {ui, 1 ≤ i ≤ k}, Vk := {vi, 1 ≤ i ≤ k}, 1 ≤ k ≤ m, and introduce the events
Ak := {uk 	∈ Uk−1, vk 	∈ Vk−1}, 1 ≤ k ≤ m. Note that the sequence of events Ak describes the
possibility of constructing a matching of size k iteratively by keeping track of the rows and
columns already used in the construction of a permutation matrix and ‘locking’ them. This
understanding underlies the validity of (2.19) below. It is obvious that, for each k, P(Ak) ≥
1 − 2m/n; hence, by m � n,

E

(
m∑

k=1

1{Ak}

)
≥ m

(
1 − 2m

n

)
= m(1 + o(1)).

On the other hand, we have

max
σ

S(σ ) ≥
m∑

k=1

1{Ak}, (2.19)

which entails the desired E maxσ S(σ ) ≥ m(1 + o(1)). �
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