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Weighted Mean Operators on lp

David Borwein

Abstract. The weighted mean matrix Ma is the triangular matrix {ak/An}, where an > 0 and An := a1 + a2 +
· · · + an. It is proved that, subject to ncan being eventually monotonic for each constant c and to the existence
of α := lim An

nan
, Ma ∈ B(lp) for 1 < p <∞ if and only if α < p.

1 Introduction

Let a := {an} be a sequence of positive numbers, and let An := a1 + a2 + · · · + an > 0. The
weighted mean matrix Ma := {ank} is defined by

ank :=

{
ak
An

for 1 ≤ k ≤ n,

0 for k > n.

The Ma-transform y = {yn} of the sequence x = {xn} is given by

yn := (Max)n :=
1

An

n∑
k=1

akxk.

Suppose throughout that

1 < p <∞,
1

p
+

1

q
= 1,

and define

σ1(n) :=
1

An

n∑
k=1

ak

(n

k

)1/p
,

σ2(k) :=
∞∑

n=k

ak

An

(
k

n

)1/q

,

σ1 := sup
n≥1
σ1(n), σ2 := sup

k≥1
σ2(k).

Let
‖Ma‖p := sup

‖x‖p≤1
‖Max‖p,

Received by the editors November 13, 1998; revised March 11, 1999.
This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.
AMS subject classification: Primary 47B37, 47A30; secondary 40G05.
Keywords: weighted means, operators on lp , norm estimates.
c©Canadian Mathematical Society 2000.

406

https://doi.org/10.4153/CMB-2000-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-048-3


Weighted Mean Operators 407

where

‖x‖p :=
( ∞∑

n=1

|xn|
p
)1/p
,

so that Ma ∈ B(lp), the Banach algebra of bounded linear operators on lp, exactly when
‖Ma‖p is finite (in which case it is the norm of Ma).

Concerning criteria for Ma ∈ B(lp), Cass and Kratz [6, Theorem 2] dealt completely
with the case when an is generated by a logarithmico-exponential function, that is when

an := �(n), where �(x) is a positive logarithmico-exponential function(LE)

for all sufficiently large positive values of x. In [7] Hardy defined, and investigated the prop-
erties of, logarithmico-exponential functions. He described a logarithmico-exponential
function on [x0,∞) to be a real valued function defined by a finite combination of the or-
dinary algebraic symbols (viz. +, −, ×, ÷, n

√) and the functional symbols log(·) and e(·),

operating on the variable x and on real constants. In [6] Cass and Kratz showed that An
nan

tends to a finite or infinite limit when (LE) is satisfied, and proved essentially:

Theorem CK Suppose that an is given by (LE), and that An
nan
→ α. Then Ma ∈ B(lp) if and

only if α < p, in which case

p

p − α
≤ ‖Ma‖p ≤ σ

1/q
1 σ

1/p
2

and limn→∞ σ1(n) = limk→∞ σ2(k) = p
p−α .

The following theorem due to Cartlidge [5] (see also Borwein [3, Example 3] and [4,
Theorem 2]) gives a particularly simple sufficent condition for Ma ∈ B(lp):

Theorem C If an is eventually non-decreasing, then Ma ∈ B(lp).

Bennett [1, Theorem 2] has established necessary and sufficient conditions for Ma ∈
B(lp). Though relatively simple in form, Bennett’s conditions are more difficult to apply in
specific cases than those in the above two theorems.

The aim of this paper is to show that the requirement in Theorem CK that an be gener-
ated by a logarithmico-exponential function can be replaced by a far less restrictive mono-
tonicity condition. To this end we shall prove:

Theorem 1 Suppose that An
nan
→ α, and that, for every constant c, ncan is eventually mono-

tonic. Then Ma ∈ B(lp) if and only if α < p. Further, if 0 < α < p, then

p

p − α
≤ ‖Ma‖p ≤ σ

1/q
1 σ

1/p
2

and limn→∞ σ1(n) = limk→∞ σ2(k) = p
p−α .

Remarks The monotonicity condition in Theorem 1 is satisfied by any sequence generated
by a logarithmic-exponential function as in Theorem CK.
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An example of a family of sequences {an} satisfying the conditions of Theorem 1 but
not the logarithmico-exponential condition (LE) is afforded by setting

an := f (n) for n ≥ 3, where f (x) :=

∫ x

2

ta−1

loga t
dt with a > 0.

This can easily be demonstrated. Though ta−1 log−a t is a logarithmico-exponential func-
tion its integral f (x) is not. The monotonicity condition holds since, by partial integration,

f (x) ∼
xa

a loga x
as x→∞, and f (x) >

xa

a loga x
for large positive x,

so that
d

dx
xc f (x) = xc−1

(
xa

a loga x
+ c f (x)

)

is eventually positive if c > −1 and eventually negative if c ≤ −1. Further

An ∼
n∑

k=2

ka

a loga k
∼

∫ n

2

ta

a loga t
dt ∼

na+1

a(a + 1) loga n
, whence

An

nan
→

1

a + 1
.

2 Preliminary Results

Lemma 1 Suppose that nan
An
→ β where 0 ≤ β ≤ ∞. Then

lim
n→∞

ncAn =

{
∞ if c > −β,

0 if c < −β.

Proof Let
βn :=

nan

An
.

Suppose first that 0 ≤ β <∞. Then, as n→∞,

n(log An − log An−1) = −n log

(
1−
βn

n

)
→ β,

and hence

log An − log A1 = −
n∑

k=2

log

(
1−
βk

k

)
= (β + εn) log n, where εn → 0.

Consequently An = A1nβ+εn , and the desired conclusion follows.
Suppose now that β =∞. Then, for n ≥ 2,

log An − log An−1 = − log

(
1−
βn

n

)
≥
βn

n
,
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and hence

log An ≥
n∑

k=2

βk

k
= γn log n, where γn →∞.

It follows that, for any real number c, ncAn ≥ nc+γn →∞.

Lemma 2 Suppose that 0 < β < ∞, and that ncan is eventually positive and increasing
when the constant c > 1− β, and eventually decreasing when c < 1− β. Let

s1(n) :=
1

n

n∑
k=1

ak

an

(
k

n

)−δ
with δ :=

1

p
,

s2(k) := kν
∞∑

n=k

ak

an
·

1

nν+1
with ν :=

1

q
.

(i) If β > δ, then limn→∞ s1(n) = limk→∞ s2(k) = 1
β−δ .

(ii) If β ≤ δ, then limn→∞ s1(n) =∞.

Proof Let 1 > c1 > 1− β > c2. Then in either case there is a positive integer N such that

(
k

n

)−c2

≤
ak

an
≤

(
k

n

)−c1

for n ≥ k ≥ N.

Suppose first that β > δ. Then

lim
n→∞

n1−δan =∞,

and hence

lim
n→∞

1

n

N−1∑
k=1

ak

an

(
k

n

)−δ
= 0.

Therefore

lim sup
n→∞

s1(n) ≤ lim
n→∞

1

n

n∑
k=N

(
k

n

)−c1−δ

=

∫ 1

0
x−c1−δ dx =

1

1− c1 − δ

and

lim inf
n→∞

s1(n) ≥ lim
n→∞

1

n

n∑
k=N

(
k

n

)−c2−δ

=

∫ 1

0
x−c2−δ dx =

1

1− c2 − δ
.

Letting c1 → 1−β from the right and c2 → 1−β from the left, we get that limn→∞ s1(n) =
1
β−δ . Also

lim sup
k→∞

s2(k) ≤ lim
k→∞

kν
∞∑

n=k

(
k

n

)−c1

·
1

nν+1
= lim

k→∞
kν−c1

∞∑
n=k

1

n1+ν−c1
=

1

ν − c1
,

https://doi.org/10.4153/CMB-2000-048-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2000-048-3


410 David Borwein

and similarly

lim inf
k→∞

s2(k) ≥ lim
k→∞

kν−c2

∞∑
n=k

1

n1+ν−c2
=

1

ν − c2
.

Again letting c1 → 1 − β from the right and c2 → 1 − β from the left, we get that
limk→∞ s2(k) = 1

β−δ , and this completes the proof of Part (i).
Suppose next that β = δ. Then as above we get that

lim inf
n→∞

s1(n) ≥
1

1− c2 − δ
,

which tends to infinity as c2 tends to 1− β from the left. Thus s1(n)→∞ in this case.
Suppose finally that β < δ. We can now assume that 1 − β > c2 > 1 − δ and obtain

that, for n > N ,

s1(n) ≥
1

n

n∑
k=N

(
k

n

)−c2−δ

≥ nc2+δ−1N−c2−δ →∞ as n→∞.

The following lemma is a special case of a known result [2, Theorem 2].

Lemma 3 If {bn} is a sequence of positive numbers, and if

µ1 := sup
n≥1

n∑
k=1

ak

An

(
bk

bn

)1/p

<∞ and µ2 := sup
k≥1

∞∑
n=k

ak

An

(
bn

bk

)1/q

<∞,

then Ma ∈ B(lp) and ‖Ma‖p ≤ µ
1/q
1 µ

1/p
2 .

Lemma 4 If {bn} is a bounded sequence of positive numbers such that
∑

bn =∞, and if, as
n→∞,

n∑
k=1

ak

An

(
bk

bn

)1/p

→ σ (finite or infinite),

then ‖Ma‖p ≥ σ.

Proof Observe that if

Dn :=
n∏

k=1

(
1−

bk

b

)−1

where b > sup
k≥1

bk,

and dn := Dn − Dn−1 for n ≥ 2, then bn = b dn
Dn

and Dn → ∞. The desired conclusion is
now a consequence of a known result [2, Theorem 4].
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3 Proof of Theorem 1

Case 1: α = limn→∞
An
nan
= 0 By Lemma 1, we have that An

n → ∞, and hence that an =
nan
An
· An

n → ∞. The theorem’s monotonicity hypothesis thus implies that an is eventually
non-decreasing, and it follows, by Theorem C, that Ma ∈ B(lp).

Case 2: 0 < α < p Since An ∼ αnan, it follows from Lemma 1, with β := 1/α, that

lim
n→∞

ncan =

{
∞ if c > 1− β,

0 if c < 1− β.

Hence, by the theorem’s monotonicity hypothesis, ncan is eventually increasing when c >
1− β and evenually decreasing when c < 1− β. By Lemma 2(i), we get that, as n→∞,

σ1(n) :=
1

An

n∑
k=1

ak

(n

k

)1/p
∼ βs1(n)→

β

β − δ
=

p

p − α
,

and, as k→∞,

σ2(k) :=
∞∑

n=k

ak

An

(
k

n

)1/q

∼ βs2(k)→
β

β − δ
=

p

p − α
.

Hence, by Lemma 3, Ma ∈ B(lp) and ‖Ma‖p ≤ σ
1/q
1 σ

1/p
2 , and, by Lemma 4, ‖Ma‖p ≥

p
p−α .

This completes the proof of the case 0 < α < p of Theorem 1.

Case 3: p ≤ α <∞ As in Case 2 we have that an satisfies the monotonicity conditions of
Lemma 2, and hence, by Part (ii) of that lemma,

σ1(n) :=
1

An

n∑
k=1

ak

(n

k

)1/p
∼ βs1(n)→∞ as n→∞.

It follows, by Lemma 4, that Ma /∈ B(lp).

Case 4: α = limn→∞
An
nan
=∞ Observe that an, which is assumed to be eventually mono-

tonic, cannot be eventually non-decreasing, for if it were then An
nan

would be bounded.
Hence an must be eventually non-increasing. As before let δ := 1/p. Suppose first that
An tends to a finite limit as n→∞. Then

σ1(n) :=
1

An

n∑
k=1

ak

(n

k

)1/p
≥

1

An

[
√

n]∑
k=1

ak

(n

k

)δ
≥ nδ/2

A[
√

n]

An
→∞ as n→∞.

Suppose finally that An → ∞. Note that, by Lemma 1, for every ε > 0, n−εAn → 0 as
n→∞. Let M = supn≥1

nan
An

. Then 0 < M <∞ and

S :=
∞∑

k=1

akk−δ ≤ M
∞∑

k=1

Akk−1−δ <∞,
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since k−δ/2Ak is bounded. Hence

σ1(n) ∼
Snδ

An
→∞ as n→∞.

Again it follows, by Lemma 4, that Ma /∈ B(lp).
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