THE DIAMETER OF AN IMMERSED RIEMANNIAN MANIFOLD WITH BOUNDED MEAN CURVATURE

TH. KOUFOGIORGOS and CH. BAIKOUSSIS

(Received 30 June 1980)

Communicated by G. Virsik

Abstract

Let M be an *n*-dimensional complete Riemannian manifold with Ricci curvature bounded from below. Let \overline{M} be an *N*-dimensional (N > n) complete, simply connected Riemannian manifold with nonpositive sectional curvature. We shall prove in this note that if there exists an isometric immersion φ of M into \overline{M} with the property that the immersed manifold is contained in a ball of radius R and that the mean curvature vector H of the immersion has bounded norm $||H|| < H_0$. $(H_0 > 0)$ then $R > H_0^{-1}$.

1980 Mathematics subject classification (Amer. Math. Soc.): 53 C 40.

Generalizing a result by Aminov (1973), Hasanis and Koutroufiotis proved that if there exists an isometric immersion $\varphi: M \to E^N$ such that $||H|| \leq H_0$ and $\varphi(M) \subset B_R$, then $R \geq H_0^{-1}$, where H is the mean curvature vector of the immersion and B_R a ball of radius R. In this paper we shall generalize the above result considering isometric immersions of M into \overline{M} . To prove the main theorem we need the following

LEMMA 1. Let M be a complete Riemannian manifold with Ricci curvature bounded from below. If a smooth function f on M has an upper bound, then for any $\varepsilon > 0$ there is a point where the Laplacian $\Delta f < \varepsilon$.

This is obtained easily from Theorem A of Omori (1967). For a proof see Hasanis and Koutroufiotis (1979).

[©]Copyright Australian Mathematical Society 1981

LEMMA 2. Let M be a complete, simply connected Riemannian manifold with nonpositive sectional curvature. Let $\gamma: [0, 1] \rightarrow M$ be a geodesic parametrized proportional to arc length. If X is a Jacobi vector field along γ such that X(0) = 0, then

$$\langle \nabla_T X, X \rangle \geq \langle X, X \rangle,$$

where ∇ is the Riemannian connection and T the tangent vector of γ .

PROOF. We consider the function

(1)
$$\psi = \langle t \nabla_T X - X, X \rangle$$

We have

(2)

$$\frac{d\psi}{dt} = t \langle \nabla_T \nabla_T X, X \rangle + \langle t \nabla_T X - X, \nabla_T X \rangle$$

$$= t \langle -R(X, T)T, X \rangle + t \langle \nabla_T X, \nabla_T X \rangle - \langle X, \nabla_T X \rangle$$

$$> t \langle \nabla_T X, \nabla_T X \rangle - \langle X, \nabla_T X \rangle.$$

Since $\langle X, \nabla_T X \rangle^2 \leq \langle X, X \rangle \langle \nabla_T X, \nabla_T X \rangle$ we have

(3)
$$\langle \nabla_T X, \nabla_T X \rangle \geq \langle X, \nabla_T X \rangle^2 \langle X, X \rangle$$
 for $t > 0$.

From (1), (2), (3) we get

(4)
$$\frac{d\psi}{dt} \ge \frac{\langle X, \nabla_T X \rangle}{\langle X, X \rangle} \psi$$

We put $h = \langle X, X \rangle^{1/2}$. It follows that

$$\frac{1}{h}\frac{dh}{dt} = \frac{\langle X, \nabla_T X \rangle}{\langle X, X \rangle}.$$

Hence (4) gives

$$\frac{h\frac{d\psi}{dt}-\psi\frac{dh}{dt}}{h} > 0.$$

Thus

(5)
$$\frac{d}{dt}\left(\frac{\psi}{h}\right) \ge 0 \quad \text{for } t > 0.$$

But $\lim_{t\to 0} \psi/h = 0$ and so from (5) we have $\psi/h > 0$ and hence $\psi > 0$ which implies the desired inequality.

THEOREM. Let M be a complete Riemannian manifold with Ricci curvature bounded from below. Let \overline{M} be a complete, simply connected Riemannian manifold with nonpositive sectional curvature. If there exist an isometric immersion φ : $M \to \overline{M}$ such that $||H|| \leq H_0 = \text{const} > 0$ and $\varphi(M) \subset B_R$, then $R > H_0^{-1}$. An immersed Riemannian manifold

PROOF. Let Q be the centre of the metric ball B_R in \overline{M} . Consider a vector X tangent to M at P and a geodesic $\beta(u)$ in M such that $\beta(0) = P$, $\beta'(0) = X$. Let $\sigma(t, u), 0 \le t \le 1$ be a parametrization of the unique geodesic in \overline{M} from Q to $\beta(u)$ (proportional to arc length). Let T, X be the vector fields along σ defined by

$$T = \sigma_* \frac{\partial}{\partial t}, \qquad X = \sigma_* \frac{\partial}{\partial u}$$

It follows easily from this construction that, for fixed u, X is a Jacobi field along the geodesic $t \rightarrow \sigma(t, u)$ with X(0) = 0.

Now, we consider a function F on M defined by

$$F(P) = \frac{1}{2} \{ d(Q, P) \}^2,$$

where d(Q, P) is the distance from Q to P in \overline{M} . We will estimate the Hessian form $\nabla^2 F$.

We put $f(u) = d(Q, \beta(u)) = \int_0^1 ||T|| dt$. We obtain easily that

$$f'(u) = \frac{1}{\|T\|} \langle T, X \rangle_{t=1}.$$

Since ||T|| = f(u) we get $f(u) \cdot f'(u) = \langle T, X \rangle_{t-1}$, that is $F'(u) = \langle T, X \rangle_{t-1}$.

If $\overline{\nabla}$ is the Riemannian connection of \overline{M} then

 $F''(u) = \langle \overline{\nabla}_X T, X \rangle_{t-1} + \langle T, \overline{\nabla}_X X \rangle_{t-1} = \langle \overline{\nabla}_T X, X \rangle_{t-1} + \langle T, \overline{\nabla}_X X \rangle_{t-1}$ since [X, T] = 0.

Using the Gauss equation, the fact $F''(u) = \nabla^2 F(X, X)$, and Lemma 2 we obtain

$$\nabla^2 F(X,X) \geq \langle X,X \rangle + \langle T,a(X,X) \rangle,$$

where a is the second fundamental form of immersion. Taking the trace of this, we have

$$\Delta F \geq n + n \langle T, H \rangle.$$

But by assumption $|\langle T, H \rangle| < RH_0$. Hence $\Delta F \ge n(1 - H_0R)$. If we had $R < H_0^{-1}$ then $1 - H_0R = c > 0$ and so $\Delta F \ge nc = \text{const} > 0$ but this contradicts Lemma 1, hence $R \ge H_0^{-1}$.

COROLLARY. If M is a complete, simply connected Riemannian manifold with nonpositive sectional curvature, then a complete minimal submanifold of M, whose Ricci curvature is bound from below, is extrinsically unbounded.

References

- J. Aminov (1973), 'The exterior diameter of an immersed Riemannian manifold', Math. USSR-Sb. 21, 449-454 (AMS translation).
- Th. Hasanis and D. Koutroufiotis (1979), 'Immersions of bounded mean curvature', Arc. Math. (Basel) 33, 170-171.
- H. Omori (1967), 'Isometric immersions of Riemannian manifold', J. Math. Soc. Japan 19, 205-214.

Department of Mathematics University of Ioannina Ioannina, Greece