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A note on Omori-Lie groups

Sadayuki Yamamuro

The theory of differentiation in locally convex spaces

constructed by the author in Memoirs Amer. Math. Soc. 17 (1979)

is used to give a new form of the definition of Omori-Lie groups.

An Omori-Lie group (a "strong ILB-Lie group" in Omori's terminology)

is defined in [6] as follows. Let

{E, Ek : k > 0}

be a Sobolev chain, that is,

(1) all £ are Banach spaces;

(2) E**1 is linearly and densely imbedded in fr ;

(3) E is the intersection of all a and has the inverse limit

topology defined by {&} •

Then, a topological group G is called an Omori-Lie group if the

following seven conditions are satisfied.

(OL.l) There is an open neighborhood U of zero in Br and a

homeomorphism

£ : U n E ->• U

such that C(0) = e (the unit of G ), where I) n E is given the relative

topology from E and U is an open neighborhood of e in G .

(0L.2) There is an open neighborhood V of zero in E such that
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C(K n E) = £,(V n E)'1 and £(V n E)2 c E,(V n E) .

(0L.3) Put n(w, v) = £~ [£(«)£(«)] ; then, for all k > 0 and

r 2 0 , n can be extended to a C^-map of [V n £r ) x [v n lr) into

U n Z* .

(OL.lt) Put n (u) = n(w, y) ; then, for each v Z V ri Zr and

00 b

k - 0 , r) can be extended to a C -map of F n A into itself.

(0L.5) Put 6(i>, M , u) = (dn ,) (w) ; then, for all k > 0 and

r 2 0 , 9 can be extended to a C^-map of Er+r x [v n

into £^ .

(0L.6) Put i(w) = C~1[?(M)"1] ; then, for all k > 0 and r > 0 ,

i can be extended to a C—map of V n a into V n a .

(0L.7) For any g £ G there is an open neighborhood W of zero in

E° such that ^"^(V n E)g <z E,(V n i?) and the map

y

can be extended to a C -map of (*' n o into itself for every ?c > 0 .

Examples of the Omori-Lie group include the group D(M) of all
00

C -diffeomorphisms of a compact manifold M and its various subgroups. In

fact, the notion of Omori-Lie groups has been introduced in order to

develop a general theory which covers these groups of diffeomorphisms. It

is the only general theory in existence today which has gained some success

in such an attempt.

In [7], I have introduced a notion of differentiability for maps in

locally convex spaces, which was called the r-differentiability, and it

was used to define the T-manifolds. An outline of this study was also

published in [5]. In this note, we shall use this method to define the

Y-Lie groups and then show a way to obtain another form of the definition

of Omori-Lie groups. This new method opens a way to the study of the group

D(M) with noncompact M .
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The basic concepts in [7], such as "calibrations", 'T-families",

"F-continuous maps", and "F-differentiable maps", will be used without

explanation.

A notion of differentiability similar to ours has been proposed by

Fischer [I], which contains various topics on the manifolds modelled on

locally convex spaces and the groups of smooth diffeomorphisms on compact

manifolds.

1. Gradings of calibrations

Let F be a F-family. Hence, F is a family of locally convex

spaces and F is a family of maps on F such that the value p_ of

p € F at E £ F is a continuous semi-norm on E, and the set

?E = {PE •• P « r} ,

which is called the E-oomponent of F , induces the topology of E .

A grading of F is a sequence

of maps

°k :

such that

tf£+1(p) > ak(p) and aQ(p) = p .

Obviously, each °r.(F) is a calibration for F . We shall put

Tk = ok(T) , k > 0 .

Since F. also is a calibration for F , it has its ^-component for each

E 5 F . The space E equipped with this calibration is denoted by E,, > .

Furthermore, we put

and
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For each p € F , we define a semi-norm map a(p) on F by

E k E

(*)

and put

ra = {o(P) : p € r} .

In other words, the ^-component of F is defined to tie the S-component

of Ffc ; that i s ,

(1.1). r is a calibration for F which is an extension of the

calibration V for F .

Proof. For E d F ,

(1.2). For each J ( F, S.,,=E as topological linear spaces.

Proof. Since (l\) „ c F-, , the topology of E^,, is weaker that that

of E . The converse follows from

°fe(p) " °0(p ) = P •

(1.3). For E, F £ V , if n £ k and j s.m , then

and the inclusion is BY -continuous.

Proof. For w € i_ [E, .>, Pi,\) , we have

p i(") = sup{o (p)[u(x)] : a (p){x) < l}
Km) (n)J

5 s\xp{oAp)[u(x)] : a.(p)(x) S 1}
« 3

https://doi.org/10.1017/S0004972700008893 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008893


Omori-Lie groups 337

In par t icular , if j - m ,

and the inclusion map is ET -continuous.

For each p Z T , let us denote by E[p] the space E that is

regarded as a semi-nonned space with respect to the semi-norm p . Then,

(1.4). Lr (2?U), F(l)) = n L[E[ak(p)], F[Oj(p)]) .

Proof, u € Lp 0?(i,\> ̂ (7)) i f a n d o n l v if> fo r each p € T , there

exists Y = Y(p, k, I) > 0 such that

ot(p)[u(x)] £ YOfe(p)(x) for a l l x € £ ,

which is equivalent to u € L(ff[o.(p)], ̂ [^(p)]) for all p € T .

2. Gelfand families and their gradings

A Gelfand space is a locally convex space which has a calibration

consisting of an increasing sequence of norms:

||.|ln , n = 0, 1, 2, ... ,

which are pairwise coordinated: if a sequence of element is a Cauchy

sequence with respect to the wth norm and converges to zero with respect

to the (n-l)th norm, then it converges to zero with respect to the nth

norm. For detailed description of properties of Gelfand spaces, we refer

to [2], [3], and [4]. We owe the name "Gelfand space" to [2].

The most basic property of the Gelfand space is the following fact:

a complete locally convex space £' is a Gelfand space if and only if there

is a sequence {E } of Banach spaces such that E is linearly and

densely imbedded in E for each n and E is the intersection of all

E with the inverse limit topology.

When & is a Gelfand space, the Banach spaces E can be chosen as

the completions of E with respect to the nth norms.

Now let F be a family of Gelfand spaces. Then each space E in F
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has a cal ibrat ion consist ing of

\\'\\E , w = 0, 1, 2, . . . .

Therefore, we can equip F with a calibration V which consists of

countable (semi-)norm maps:

pn , n = 0, 1, 2,

such that

A family of Gelfand spaces equipped with this calibration will be

called a Gelfand family. The calibration will be called the natural

calibration for this family.

Assume that F is a Gelfand family, and let T be the natural

calibration. Then we can define a grading of T by

o% (p ) = p + j , , k, n = 0, 1, 2

This grading will be called the natural grading of T . In this case, we

have

and

fe) U «" for each

In the sequel, we shall denote the ^-component of p by ||»|| ,

without specifying the space E when there is no possibility of confusion

Further, the normed space E[p ] will sometimes be denoted by E[n] .

3. a-smoothness

Let F be a F-family. We recall two facts from [7].

First , let E € F ; then a subset U of E is said to be T-open i

i t is p-open for every p € V , that i s , for each p E f and x € U ,

there exists a positive number 6 such that

x + y (. U if pE(y) < 6 .
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Some properties of F-open subsets have been given in [7, Chapter I , §!»].
When U is a F-open subset of E , i t is obvious that U is an open
subset of the semi-normed space E[p] . The set V regarded as an open
subset of E[p] will be denoted by U[p] .

Secondly, let V be a F-open subset of E . Then we have proved in
[7, Chapter I I , §2] the following fact:

Let F € F be sequentially complete. Then a map f : U •* F is of

class cZ if and only if f is of class u as a map of U[p] into

F[p] for every p Z T .

Now we assume that this calibration F has a grading a = (a.) .

When U is a F-open subset of E in F , i t is a F,-open subset of

E., . . The set U regarded as a F.-open subset of E/j,\ i s denoted by

U(k) •

Let F € F ; then a map f : U •*• F is said to be o-smooth if, for

every k > 0 , it is a CZ -map of U,, > into F . Then the following

fact follows immediately from the second remark given above.

(3.1). Let F be a graded calibration for F , Et F € F, and F be
sequentially complete. Let U be a V-open subset of E . Then a map
f : U -*• F is o-smooth if and only if, for every p € F and k > 0 , f

is a CT-map of u[o,(p)] into F[p] .

When F is a Gelfand family with the natural calibration F , the map

f is a-smooth if and only if, for every k > 0 and n t 0 , it is of

class IT as a map of U[n+k] into F[n] .

Further, let E, F , and G be members of a F-family with a grading

0 . Let U and V be F-open subsets of E and F respectively. Then

a map

f : U x V -• G

is said to be (a, T)-snvoth if E x F is a F-product and, for every

k 2: 0 , f is a (T-map of £/,, , x V into G .
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The following fact can be proved in the same way as in the case of

(3.1).

(3 .2) . Let E, F, G, U, V , and f be as above. Then f is

(a, V)-smooth if and only if, for every p € T and k 2 0 3 f is a

C^-map of U\pk{p)] x V[p] into G[p] .

When F is a Gelfand family with the natural calibration F and i ts

natural grading O , the map is (a, r)-smooth if and only if i t is a

^ of U[n+k] x V[n] into G[n] for every n > 0 and k 2 0 .

4. r - L i e groups

A r-Lie group is a topological group G such that there is a

F-family with a grading o , and the following conditions are satisfied:

(TL.l) G is a T-manifold of class C° ;

(FL.2) the product operation

(9, h) >—+ gh : G x G •* G

is (a, r)-smooth;

(FL.3) the inverse operation

g t—>• g ' 1
 : G •+J}

is a-smooth.

In particular, when T is the natural calibration for a Gelfand

family and 0 is the natural grading of T , the F-Lie group will be

called a Gelfand-Lie group. The Omori-Lie groups are Gelfand-Lie groups;

the conditions (0L.3) and (0L.6) imply (FL.2) and (FL.3), respectively. In

order to have the inverse implications, we need a new notion of

"completional continuity", which will be discussed in the next section.

5. Completional continuity

Let F be a F-family and E, F € F .

Let V be a p-open subset of S for p € F . Then a map / : U -*• F

is said to be completionally p-aontinuous if, for arbitrary p-Cauchy

sequences {x-} and {y.} contained in U such that

https://doi.org/10.1017/S0004972700008893 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008893


O m o r i - L i e groups 34 I

l im p £ , (x i -y i ) = 0 ,

we have

lim PpifixJ-fbJ) = 0 .
i-**>

This definition includes the case when all y. are equal to an
Is

element. Hence, the following statement is ot>vious.

(5.1) . Completionally p-aontinuous maps are p-continuous.

A p-continuous map does not always transform a p-Cauchy sequence

into a p-Cauchy sequence. However:

(5 .2) . If f -is a completionally p-continuous map on U and {x.\

is a p-Cauchy sequence contained in U , then {/(x.)} is also a

p-Cauchy sequence.

Proof. If the sequence {/(x.)} i s not p-Cauchy, there are 6 > 0

and subsequences {x. } and {x. } such that i -*• °° , j •*• °° , and
%n 3n n n

n "n

However, since {x.} is a p-Cauchy sequence, its subsequences {x. } and

{x. } are also p-Cauchy sequences and
3

lim p (x. -x. ) = 0

x.
3n

which is a contradiction.

The following statement is also obvious.

(5.3). All p-Lipschitz maps are completionally p-continuous.

In particular, every p-continuous linear map is eompletionally

p-continuous. Furthermore, since every C -map is locally lipschitzian, we

have the following.

(5.4) . Let f : U •* F be a C1-map. Then, for each a £ U , there
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is an open p-ball B{a, y) around a with radius y > 0 such that

B(a, y) C V and f is completionally p-aontinuous on B{a, y) .

We denote the completion of E with respect to pE by E[p] , and the

extension of p« over E[p] by p-, . Therefore, each element x of

E[p] i s an equivalence class of p-Cauchy sequences {x.} , and

pE(x) = lim pE[x.) .

I t i s easy to see that p\, defines a norm on E[p] and E[p] i s a Banach

space with th i s norm. This space wil l be called the p-completion of E .

A subset U of E i s called a completionally p-open subset i f there

i s an open subset U in E[p] such that U = E n U . Obviously,

completionally p-open subsets are p-open.

(5 .5) . Let U be a completionally p-open subset of E . Then, for

each a i U > there is a p-Cauehy sequence {a.} in U such that

lim pE[a.-a) = 0 .
•t-x»

Conversely, if {a.} is a p-Cauchy sequence in U and a is the class

containing {a.} , then a belongs to the p-closure of U in E[p] .

Proof. Let {a.} be a p-Cauchy sequence contained in a . Then,

since

lim PE[a -a) = 0 ,
i-x*>

we have

a. € U n E for large i .
If

Conversely, if {a.} is a p-Cauchy sequence contained in U and a

is the class containing {a.} , we have

a. i U and lim pr(a.-a) = 0 ,

/N. A .

which imply that a belongs to the closure of U .
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Now we can give a characterization of the completional p-continuity.

(5.6). Let V be a completionally p-open subset of E . Then a rrtq

f : U •*• F is aompletionally p-continuous on U if and only if f has a

p-continuous extension f -. U -*• F[p] .

Proof. Assume that / i s completionally p-continuous on U . We

define f as follows: for a € U we put

}(a) = lim f[a.) in F[p] ,

or f(a) is the class containing {/(a-)} for a p-Cauchy sequence {a.}

in a . This is possible because {/(a.)} is also a p-Cauchy sequence by

(5.2).

Therefore, in' order to show that f can be extended to U , we only

need to show that such [a.\ can be chosen for every a € V .

• If a € U , such {a^} exists by (5.5).

If a € U\U , there is a sequence a € U such that

lim a = a in 2[p] .
n

Then there are p-Cauchy sequences {a .} in U such that

lim a . = a in Mp] »

and also there is a p-Cauchy sequence {a.} in E which is contained in

a . Then

lim lim pp[a .-a.) = 0 .
. '-tea ^ *^* ^

Hence there are {n, } and {•£, } such that

Since {a. } is p-Cauchy and {a . -a. } is p-null, {a . } i

p-Cauchy,and it is contained in U . Furthermore,
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lim a . = lim a. + lim (a . -a. ) = a in E[p]
k n ^ k k %k k n ' v k lk

Thus, for any a (. U , we can find a p-Cauchy sequence in V which

converges to a in E[p] .

Next, to prove the p-continuity of f thus defined, we assume that

lim pE[an-a) = 0 , a^, a € U ,

and

PFlf{an)-f{a)'] < 6 for all n ,

for some positive number 6 . We take p-Cauchy sequences {a .} and

{a.} in £/ such that

lim a . = a and lim a. = a in

Then these assumptions are equivalent to the following:

lim lim pE[a *.-&•) - °

and

lim PF[f(anJ-f(ai)] > 6 .

From the first equality, ve can find {w?.} and \%1 \ such that

I J

Since

from the second inequality, we have \i . \ such that

if < £ 4

\i . \

Therefore, for £ > max i" , £ , we have
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a n d

This is a contradiction, because {a . } is also a p-Cauchy sequence
nk'lk

contained in U .

Conversely, suppose that f has a p-continuous extension,and suppose

that {x.} and {y.} are p-Cauchy sequences in U such that

lim p£(xi-!/i) = 0 .

Then there exists a € l) such that

lim x. = lim y . = a .

Hence

lim f[x^ = lim /(t/^) = f(a) in F[p] ,

which implies

limp [f(x )-f[y )] = 0 .

A subset U of E is said to be completionally T-open if it is

completionally p-open for every p € F . Obviously, completionally

F-open subsets are F-open.

Let U be a completionally F-open subset of E . Then a map

f : U -*• F is said to be completionally T-continuous on U if it is

completionally p-continuous for every p € F . Hence f is

completionally F-continuous if and only if, for each p £ F , it has a

p-continuous extension from U into F[p] .

Again, let U be a completionally F-open subset of E . A map

/ : V •*• F is said to be k-times completionally continuously

T-differentiable or of class CCZ on U if it is of class CZ and the

derivatives

f M : U *Lp(£, F) (0 < i 5 fe)

are completionally F-continuous.
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(5 .7) . Let E, F € F and F be sequentially complete. Let U be a

completionally T-open subset of S . Let f : U •*• F be k-times Gateaux

differentiable on U . Then f is of class Cut on U if and only if,

for each p 6 V , f has a Cr-extension

f : U -+F[p] .

Proof. Since f i s fc-times Gateaux differentiable on U , we have

: U •* Ll(E, F) (0 2 i < k) .

Assume that / is of class CCZ ; then each f is completionally

F-continuous. Hence, for each p € T , we have a continuous extension

fo : ~V*LiCE[p], Hpl) •
In particular, we have a continuous extension

f : V * F[p] ,

and we shall show that f is the ith derivative map of f ; that is,

jii) _ M)

Now assume that f(a) is not the derivative of f at a . Then

there is a null sequence {x } in E[p] guch that a + x € & and

Pff(%i)~̂ f C^P+*n)~^^)~^'^K^ )] > 6 for all n ,

for some positive number 6 . If {x .} are p-Cauchy sequences

contained in x , this assumption is equivalent to

lim lim pF(x .) = 0

and

where {<2-/ i s a p-Cauchy sequence contained in a .

In exac t ly t h e same way as in ( 5 . 6 ) , we choose {«, } and {•£,} such
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that

lim pE(x . ) = 0

and

l\. A. A. ft A. A. / v / \ . A i

From the second inequality, together with the mean value theorem, we have

which contradicts the completional continuity of / ' .

We can prove the cases of higher derivatives in exactly the same way.

Conversely, assume that there is a C^-extension

A A

f : U -* F[p]

for every p € T . Since f is assumed to be fe-times Gateaux

differentiable on U , we have a map

f :£/-»• L{E, F) ,

and, for a € U and x € E ,

= lim E"1[f(a+ex)-/(a)] = f'(a)(x)

In other words,

is a continuous extension of / ' . Therefore, f is completionally

p-continuous on U , and this holds for every p € T .

We can prove the cases of higher derivatives similarly.

We shall call a T-manifold of class Cr a completional Y-manifold

of class Cr or Y-manifold of class CCr if there is an atlas whose

transition maps are all of class Cct .
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6. Completional r -L ie groups

A F-Lie group is said to be completional if a l l the smoothnesses
CO

involved in its definition are of class CC_ . In other words, a

completional V-Lie group is a topological group G which satisfies the

following conditions:

(CFL.l) G is a completional F-manifold of class C ;

(CFL.2) the product operation is completionally (a, F)-smooth;

(CFL.3) the inverse operation is completionally a-smooth.

Obviously, Omori-Lie groups are completional Gelfand-Lie groups.

Conversely, a completional Gelfand-Lie group is a Omori-Lie group if it

satisfies additional smoothness conditions corresponding to (O.U), (0.5),

and (0.7).

00

Thus, when M is a compact C -manifold without boundary, the group

D(U) of all C -diffeomorphisms on M and various subgroups of D(M) are

completional Gelfand-Lie groups. We leave it as a conjecture that D(M)

for noncompact M will also be a completional F-Lie group for a suitably

chosen F .
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