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On the root of unity ambiguity in a formula
for the Brumer–Stark units
Matthew H. Honnor

Abstract. We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have
shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in
their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.

1 Introduction

Let F be a number field with ring of integers O = OF . Let p be a prime ideal of F,
lying above a rational prime p, and let H be a finite abelian extension of F such that p
splits completely in H. Write G = Gal(H/F), and let σ ∈ G. In 1981, Tate proposed the
Brumer–Stark conjecture, [15, Conjecture 5.4], stating, for each σ ∈ G, the existence of
a p-unit up(σ) in H, the Brumer–Stark unit. This unit has P-order equal to the value
of a partial zeta function at 0, for a prime ideal P of H, lying above p. This partial zeta
function depends on σ . The unit up(σ) is only nontrivial when F is totally real and H
is totally complex containing a complex multiplication (CM) subfield, we assume this
for the remainder of the paper. The ground-breaking work of Dasgupta and Kakde in
[7] and Dasgupta, Kakde, Silliman, and Wang in [9] has shown that the Brumer–Stark
conjecture holds.

In [4, Definition 3.18], Dasgupta constructed explicitly, in terms of the values
of Shintani zeta functions at s = 0, an element u1(σ) ∈ F∗p . In [4, Conjecture 3.21],
Dasgupta conjectured that this unit is equal to the Brumer–Stark unit. This formula
has recently been shown to be correct up to a bounded root of unity by Dasgupta and
Kakde in [6, Theorem 1.6]. The key ingredient in the proof of the above theorem is
Dasgupta–Kakde’s proof of the p-part of the integral Gross–Stark conjecture, which
Dasgupta proved in [4, Theorem 5.18] implies the result. The work in [4, Theorem 5.18]
requires the assumption that S, a finite set of places of F required for the Brumer–Stark
conjecture, contains a prime with associated Frobenius element equal to complex
conjugation in H. The first result of this paper is the removal of this assumption from
[6, Theorem 1.6]. For this, we need to work with a different formula for the Brumer–
Stark units.

There have been two other formulas conjectured for the Brumer–Stark units. These
two formulas are cohomological in nature and were conjectured by Dasgupta and
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2 M. H. Honnor

Spieß in [10, 11]. We denote these formulas by u2(σ) and u3(σ), respectively. In [10,
Conjecture 6.1] and [11, Remark 4.5], respectively, u2(σ) and u3(σ) are conjectured
to be equal to the Brumer–Stark unit. Recent joint work of the author with Dasgupta
in [5] has proved that these three conjectural formulas for the Brumer–Stark units are
equal. Following from the equality of the formulas, shown in [5], Dasgupta–Kakde’s
work in [6] implies that u2(σ) and u3(σ) are also equal to up(σ) up to bounded a
root of unity.

To remove the assumption on S from [6, Theorem 1.6], we work with u2(σ). The
advantage of working with this formula is that it is defined for any finite abelian
extension H/F in which p splits completely. In particular, it does not require that H is
totally complex. Furthermore, [10, Proposition 6.3] shows that the formula is trivial if
H is not totally complex. This along with the other functorial properties of the formula
allows us, in Section 3, to remove this assumption.

The main work of this paper is considering the root of unity ambiguity in [6,
Theorem 1.6]. We show that the formula is in fact correct without any ambiguity. We
work with u2(σ) and use the equality of the formulas to obtain these results for u1(σ)
and u3(σ) as well.

The strategy for showing our main result takes inspiration from Dasgupta’s proof
of [4, Theorem 5.18]. In this theorem, Dasgupta proves that the integral Gross–Stark
conjecture implies that u1(σ) is equal to up(σ) up to a root of unity. We are able
to modify the proof of this theorem to show that, for each odd rational prime l, the
integral Gross–Stark conjecture implies that u2(σ) is equal to up(σ) in Fp/D l . Where
D l ⊂ Fp is such that D l does not contain any roots of unity with order divisible by l.
We then show, using the fact that u2(σ) equals up(σ) up to a root of unity, that u2(σ)
equals up(σ) up to a 2-power root of unity.

Removing the 2-power root of unity ambiguity requires further work since the
strategy used for the odd primes adds in an additional 2-power root of unity in the
process of controlling the other roots of unity. Instead, we show that, the 2-part of the
integral Gross–Stark conjecture implies that, for any σ , τ ∈ G, we have u2(σ)u2(τ)−1 =
up(σ)up(τ)−1 in Fp/D2. Where D2 ⊂ Fp is such that D2 does not contain any roots of
unity with order divisible by 2. This, combined with the result away from 2, shows that
the ambiguity between u2(σ) and up(σ) is independent of σ ∈ G. We then utilize the
norm compatibility property, for the Brumer–Stark units and the formulas, to allow
us to remove this ambiguity.

We remark here that the our proofs are only able to work with u2(σ) due to the
nature of the cohomological formula and we are currently unable to obtain the result
for u1(σ) and u3(σ) without first knowing u1(σ) = u2(σ) = u3(σ). The reasons for
this are made more precise in Section 2.

In [2, Corollary 4.3], Burns shows that the integral Gross–Stark conjecture follows
from the minus part of the eTNC for finite CM extensions of totally real fields. From
now on, we refer to this conjecture as eTNC−.

The recent work of Bullach, Burns, Daoud, and Seo in [1, Theorem B] proves
eTNC− away from 2 for finite CM extensions of totally real fields, a key input for their
work is the proof of the Brumer–Stark conjecture away from 2 in [7]. Furthermore,
in [8], Dasgupta, Kakde, and Silliman prove eTNC− over Z, this result uses the proof
of the Brumer–Stark conjecture over Z in [9]. We remark that the argument given in
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On the root of unity ambiguity in a formula for the Brumer–Stark units 3

[8] adopts the central strategy developed in [1]. As noted above, this implies that the
integral Gross–Stark conjecture holds. Thus we can show that the formulas are equal
to the Brumer–Stark unit.

2 Brumer–Stark units

Let R denote a finite set of places of F such that R contains the archimedean places,
p ∉ R, and R contains the places that are ramified in H. We let S = R ∪ {p}. We also
denote G = Gal(H/F). We fix this notation throughout the paper.

Definition 2.1 For σ ∈ G, we define the partial zeta function

ζR(σ , s) = ∑
(a,R)=1

σa=σ

Na
−s .(2.1)

Here, the sum is over all nonzero integral ideals, a ⊂ OF , that are relatively prime to
the elements of R and with associated Frobenius element, σa ∈ G, equal to σ .

Note that the series (2.1) converges for Re(s) > 1 and has meromorphic continua-
tion to C, regular outside s = 1. The partial zeta functions associated with the sets of
primes R and S are related by the formula

ζS(σ , s) = (1 −Np
−s)ζR(σ , s).

If L is a finite abelian extension of F and σ ∈ Gal(L/F), we use the notation
ζR(L/F , σ , s) for the partial zeta function defined as above but with the equality
σa = σ being viewed in Gal(L/F).

Definition 2.2 Define the group

Up = {u ∈ H∗ ∶ ∣ u ∣P= 1 if P does not divide p}.

Here, P ranges over all finite and archimedean places of H; in particular, complex
conjugation in H acts as an inversion on Up. We introduce an auxiliary finite set T of
primes of F, disjoint from S. The partial zeta function associated with the sets R and
T is defined by the group ring equation

∑
σ∈G

ζR ,T(σ , s)[σ] = ∏
η∈T
(1 − [ση]Nη1−s) ∑

σ∈G
ζR(σ , s)[σ].(2.2)

We also assume that the set T contains at least two primes of different residue
characteristic or at least one prime η with absolute ramification degree at most l − 2,
where η lies above l. We have this assumption on T from now on. It follows from
work of Deligne and Ribet [12] and Cassou and Nogués [3] that, ζR ,T(L/F , σ , 0) ∈ Z,
for any finite abelian extension L/F unramified outside R and any σ ∈ Gal(L/F). The
following conjecture was first stated by Tate and called the Brumer–Stark conjecture
[15, Conjecture 5.4]. We present the formulation given by Gross.
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Conjecture 2.1 [14, Conjecture 7.4] Let P be a prime in H above p. There exists an
element uT ∈ Up such that uT ≡ 1 (mod T), and for all σ ∈ G, we have

ordP(σ(uT)) = ζR ,T(H/F , σ , 0).(2.3)

Our assumption on T implies that there are no nontrivial roots of unity in H that
are congruent to 1 modulo T. Thus, the p-unit, if it exists, is unique. Note also that our
uT is actually the inverse of the u in [14, Conjecture 7.4].

The conjectural element uT ∈ Up satisfying Conjecture 2.1 is called the Brumer–
Stark unit for the data (S , T , H,P). This conjecture has been recently proved, away
from 2, by Dasgupta and Kakde in [7, Theorem 1.2] and over Z by Dasgupta, Kakde,
Silliman, and Wang in [9, Theorem 1.1]. It is convenient for us to work with the
following element of H∗[G]. We define

up = ∑
σ∈G

up(σ) ⊗ σ−1 = ∑
σ∈G

σ(uT) ⊗ σ−1 ∈ H∗[G].

There have been three formulas conjectured for the Brumer–Stark unit up in
F∗p ⊗Z[G]. The first, by Dasgupta in [4], is a p-adic analytic formula which we denote
by u1. The other two formulas were defined by Dasgupta and Spieß in [10, 11], we
denote these by u2 and u3, respectively. Both these formulas are cohomological in
nature and are defined using an Eisenstein cocycle. Joint work of the author with
Dasgupta in [5] proves that these three formulas are equal. In this paper, we work with
the cohomological formula defined in [10] and justify this choice after Proposition 2.2.
To stay consistent with the notation in [5], we denote this formula by

u2 = ∑
σ∈G

u2(σ) ⊗ σ−1 ∈ F∗p ⊗Z[G].

The formulation of u2 depends on the choice of an infinite place v of F. We fix this v
from now on. Dasgupta and Spieß have shown the following proposition concerning
properties of their cohomological construction in [10]. We require this proposition
to prove the main results of this paper. We note that this proposition contains all
the information we require, and therefore, in this paper, we avoid working with the
explicit definition of u2. For the explicit construction, we refer readers to [10]. We
write

T = {t prime of F ∶ t ∣ q where, for some q ∈ T , q ∣ q}.

Proposition 2.2 [10, Proposition 6.3] We have the following properties for u2.
a) For σ ∈ G, we have ordp(u2(σ)) = ζR ,T(σ , 0).
b) Let L/F be an abelian extension with L ⊇ H and put G = Gal(L/F). Assume that

L/F is unramified outside S and that p splits completely in L. Then we have

u2(σ) = ∏
τ∈G,τ∣H=σ

u2(L/F , τ).

c) Let r be a nonarchimedean place of F with r ∉ S ∪ T. Then we have

u2(S ∪ {r}, σ) = u2(S , σ)u2(S , σ−1
r σ)−1 .
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On the root of unity ambiguity in a formula for the Brumer–Stark units 5

d) Assume that H has a real archimedean place w ∤ v. Then u2(σ) = 1 for all σ ∈ G.
e) Let L/F be a finite abelian extension of F containing H and unramified outside S.

Then we have

recp(u2(σ)) = ∏
τ∈Gal(L/F)

τ∣H=σ−1

τζS ,T(L/F ,τ−1 ,0).

In the proposition above, we note the field extension or set of primes which u2
is associated with where necessary. If nothing is noted, then u2 is assumed to be
associated with H/F and S.

The key parts of the above proposition we require are c) and e). We note that e) has
also been shown for u1 in [4]. However, c) has only been shown for u2. The closest to
this that one has for one of the other formulas is for u1 where in [4] Dasgupta proves
that, under certain conditions, c) holds up to a root of unity for u1. Since the aim of
this paper is to reduce the root of unity ambiguity, we are therefore required to work
with u2. A further advantage of using u2 is that it is formulated for all finite abelian
extensions H/F in which p splits completely. In particular, we don’t require that H
is CM or even totally complex. Then d) of Proposition 2.2 gives that the formula is
trivial if H is not totally complex (away from v). We have the following conjecture
due to Dasgupta and Spieß.

Conjecture 2.3 [10, Conjecture 6.1] We have a formula for the Brumer–Stark unit.
More precisely,

u2 = up .

Recent work of Dasgupta and Kakde has proved this conjecture, with u1 replacing
u2, up to a root of unity under some mild assumptions. In particular, they prove the
following theorem. Here and from this point on, we let p denote the rational prime
such that p ∣ p.

Theorem 2.4 [6, Theorem 1.6] Suppose that

there exists q ∈ S where q is a prime of F that is unramified in H
and whose associated Frobenius σq is a complex conjugation in H,(2.4)

and

p is odd and H ∩ F(μp∞) ⊂ H+, the maximal totally real subfield of H.(2.5)

Then, Conjecture 2.3 for u1 holds up to multiplication by a root of unity in F∗p . That is,

u1 = up in (F∗p /μ(F∗p )) ⊗Z[G].

Here, we write μ(F∗p ) for the group of roots of unity of F∗p .

The key ingredient in the proof of the above theorem is Dasgupta–Kakde’s proof of
the p-part of the integral Gross–Stark conjecture. By the main result of [5] (i.e., that
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u1 = u2 = u3), we have that Theorem 2.4 holds for u2 and u3 as well. We also remark
that by following the arguments of [4] and using Proposition 2.2 one can show that
Theorem 2.4 holds for u2 without using [5]. However, it is not currently possible to
prove Theorem 2.4 for u3 without the work in [5].

In this paper, we remove the assumption (2.4) from Theorem 2.4 and reduce the
root of unity ambiguity. In particular, the main result of this paper is the following
theorem.

Theorem 2.5 Suppose that (2.5) holds. Then, Conjecture 2.3 holds. That is,

u2 = up .

The proof of the above theorem is done in three steps. In Section 3, we show how
one can remove the assumption (2.4) from Theorem 2.4 and provide the lemma which
allows us not to require it in our work. When considering the root of unity ambiguity,
we begin by reducing, in Section 5, the ambiguity to a 2-power root of unity. In Section
6, we then remove this possible 2-power root of unity and thus complete our proof of
Theorem 2.5.

3 Action by complex conjugation

In this section, we show how one can remove the assumption (2.4) from Theorem 2.4.
Furthermore, the work in this section allows for the proof of Theorem 2.5 without such
an assumption.

The assumption (2.4) appears only in one place in the proof of Theorem 2.4.
Namely, it is used in the proof of [4, Theorem 5.18] which shows that the p-part of the
integral Gross–Stark conjecture implies Theorem 2.4. We briefly review the ideas of
[4, Theorem 5.18], this is made more explicit in the next sections where we adapt these
ideas to remove the root of unity ambiguity. Dasgupta shows that it is possible to find a
finite number of primes r1 , . . . , rs , whose associated Frobenius elements are complex
conjugation, such that the p-part of the integral Gross–Stark conjecture implies,

u1(S ∪ {r1 , . . . , rs}) = up(S ∪ {r1 , . . . , rs}) in (F∗p /μ(F∗p )) ⊗Z[G].

It is then required to show that this equality with additional places in S implies the
equality without these additional places. Let c denote the complex conjugation in H,
and let r be a prime of F with σr = c. Since complex conjugation acts as inversion on
Up one can calculate

up(S ∪ {r}, σ) = up(S , σ)up(S , σσ−1
r )−1 = up(S , σ)2 .

In the proof of [4, Theorem 5.18], it is shown that the above equality, with up

replaced by u1 holds if S contains a prime whose associated Frobenius is complex
conjugation. This is the only point where the assumption (2.4) is required. To remove
this assumption, we prove the following theorem. Note that there are no assumptions
on S required here.
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On the root of unity ambiguity in a formula for the Brumer–Stark units 7

Theorem 3.1 Let r be a prime of F with σr = c. Then,

u1(S ∪ {r}, σ) = u1(S , σ)2 .

We begin with the following lemma. The author would like to credit Michael Spieß
with central idea for the proof of the lemma below. Recall that in the definition of u2,
we fix v, an infinite place of F.

Lemma 3.2 Let c ∈ G denote a complex conjugation in H. If the complex place w
associated with c does not lie above v, then

u2(σc) = u2(σ)−1 .

Proof Let H⟨c⟩ denote the subfield of H which is fixed by c. Note that F ⊆ H⟨c⟩ ⊂ H.
By d) of Proposition 2.2 and since the complex place associated with c does not lie
above v,

u2(H⟨c⟩/F , σ) = 1,

for all σ ∈ Gal(H⟨c⟩/F). Applying b) of Proposition 2.2 with the tower of fields
H/H⟨c⟩/F we have

1 = u2(H⟨c⟩/F , σ) = u2(H/F , σ)u2(H/F , σc).

This proves the theorem. ∎

We remark that the choice of v in u1 refers to a choice of Shintani domain used in
u1; this is made clear in [5].

Proof of Theorem 3.1 In the proof of [4, Theorem 5.18] the following equality is
shown:

u1(S ∪ {r}, σ) = u1(S , σ)u1(S , σσ−1
r )−1 .

In [5] it is proved that u1 = u2. Applying Lemma 3.2 with this equality and the fact
that σr = c gives the result. ∎

4 The integral Gross–Stark conjecture

The integral Gross–Stark conjecture or, as it is also known, Gross’s tower of fields
conjecture, is an integral version of the Gross–Stark conjecture. See [13, Proposition
3.8 and Conjecture 3.13] for the statement and further details on the Gross–Stark
conjecture. Gross first stated the integral Gross–Stark conjecture in [14]. In this
conjecture, we consider a tower of fields L/H/F and as before, F is totally real. We take
H and L to be finite abelian extensions of F that are CM fields such that L contains H.
Write G = Gal(L/F). Recall that S = R ∪ {p} where p splits completely in H/F. The
integral Gross–Stark conjecture gives a relationship between Brumer–Stark units and
the Stickelberger element for L/F, ΘL/F

S ,T . We define

ΘL/F
S ,T = ∑

σ∈G
ζS ,T(L/F , σ , 0) ⊗ σ−1 ∈ C[G].
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Letting T be as in Section 2, we have ΘL/F
S ,T ∈ Z[G]. We fix this choice from now on.

Denote by

recp ∶ F∗p → A
∗
F → G

the reciprocity map of local class field theory. Since H ⊂ HP ≅ Fp, we can evaluate
recp on H∗. Note that if x ∈ H∗, then recp(x) ∈ Gal(L/H). Let I denote the relative
augmentation ideal associated withG and G, i.e., the kernel of the canonical projection

AugGG ∶ Z[G] ↠ Z[G].

We state the integral Gross–Stark conjecture.

Conjecture 4.1 [14, Conjecture 7.6] Define

recG(up) = ∑
σ∈G
(recp(up(σ)) − 1)σ̃−1 ∈ I/I2 ,

where σ̃ ∈ G is any lift of σ ∈ G and up = ∑σ∈G up(σ) ⊗ σ−1 is the Brumer–Stark unit.
Then

recG(up) ≡ ΘL/F
S ,T(4.1)

in I/I2.

To see how this conjecture can provide more information about the Brumer–Stark
unit, we consider the σ component of (4.1). We then see that Conjecture 4.1 implies

recp(up(σ)) = ∏
τ∈G

τ∣H=σ−1

τζS ,T(L/F ,τ−1 ,0) .(4.2)

Taking the inverse of recp on both sides of the above equation allows us to gain
more information about the unit up. In particular, it gives us the value of up(σ) ∈
F∗p /ker(recp). We follow the ideas presented in [4, Section 3.1]. Let f denote the
conductor of H/F. To gain some more precise information, one can apply (4.2) with
L = K for every H ⊂ K ⊂ Hfp∞ . Here, we define Hfp∞ to be the union of the narrow
ray class fields, Hfpm , of F of conductor fpm , for each m ∈ Z≥1. The local reciprocity
map at p induces an isomorphism

recp ∶ F∗p /Ê+(f)p ≅ Gal(Hfp∞/H),

where we write E+(f)p for the totally positive p-units of F which are congruent to
1 (mod f). Then, Ê+(f)p denotes the closure of E+(f)p in F∗p . Thus, we can use (4.2)
to give the value of up(σ) in F∗p /Ê+(f)p. In [4], Dasgupta develops the methods of
horizontal Iwasawa theory to further refine this kernel and shows that the p-part of
Conjecture 4.1 implies Theorem 2.4. It is these horizontal methods that we use in
Section 5 to show that Theorem 2.5 follows from the combination of the l-part of
Conjecture 4.1 for every rational prime l.

The p-part of Conjecture 4.1, when p is odd, has recently been proved by Dasgupta
and Kakde in [6]. We give the statement of their theorem below.
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Theorem 4.2 [6, Theorem 1.4] Let p be an odd prime and suppose that p lies above p.
The integral Gross–Stark conjecture (Conjecture 4.1) holds in (I/I2) ⊗Zp.

In this paper, we require the following theorem.

Theorem 4.3 The integral Gross–Stark conjecture holds over Z.

Proof Burns has proved in [2, Corollary 4.3] that Conjecture 4.1 is implied by
eTNC−, [8, Theorem 1] therefore completes the result. ∎

5 Equality of the formula up to a 2-power root of unity

In this section, we reduce the root of unity ambiguity in Theorem 2.4 to a 2-power
root of unity. We prove the following theorem.

Theorem 5.1 Suppose that (2.5) holds. Then, Conjecture 2.3 holds. That is,

u2 = up in (F∗p /μ2(F∗p )) ⊗Z[G].

Here, we write μ2(F∗p ) for the group of 2-power roots of unity of F∗p .

We show that the above theorem is implied by Theorem 4.3. To further gain more
information from (4.2), we work with all possible extensions L/H/F. For more details
on this approach, we refer readers to [4]. We present here the statements which are
required for our work.

Again, let f be the conductor of the extension H/F and write E+(f) for the totally
positive units of F which are congruent to 1 modulo f. Let g denote the product of the
finite primes in S that do not divide fp. Then, we define HS ∶= H(fpg)∞ . Here, H(fpg)∞
is the union of the narrow ray class fields Hfapbgc for all positive integers a, b, c. For
v ∣ fg, let Uv ,f denote the group of elements of O∗v which are congruent to 1 modulo
fO∗v ; in particular, Uv ,f = O∗v for v ∣ g. Let Ufg = ∏v∣fg Uv ,f.

Proposition 5.2 [4, Proposition 3.4] Theorem 4.3 is equivalent to the existence of an
element uT ∈ Up with uT ≡ 1 (mod T) and

(σb(uT), 1) = πζR ,T(Hf/F ,b,0)×∫
O×Ufg/E+(f)

x dμ(b, x)

in (F∗p ×Ufg)/E+(f) for all fractional ideals b relatively prime to S.

Here, we have denoted by E+(f), the closure of E+(f) diagonally embedded in F∗p ×
Ufg. Define

D(f, g) = {x ∈ F∗p ∶ (x , 1) ∈ E+(f) ⊂ F∗p ×Ufg}.
Dasgupta notes in [4] that Proposition 5.2 may be interpreted as stating that Conjec-
ture 4.1 is equivalent to a formula for the image of uT in F∗p /D(f, g). The reciprocity
map of class field theory induces an isomorphism

recS ∶ (F∗p ×Ufg)/E+(f)p ≅ Gal(HS/H).
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Here, we have defined E+(f)p as the group of totally positive p-units congruent to 1
modulo f.

Proposition 5.3 Let σ ∈ G. The construction, u2(σ), is equal to the Brumer–Stark unit
in F∗p /D(f, g). That is,

u2(σ) ≡ up(σ) (mod D(f, g)).

Proof We consider the unit u2(σ) and apply recS to (u2(σ), 1). Then by e) of
Proposition 2.2, we have

recS((u2(σ), 1)) = ∏
τ∈Gal(HS/F),

τ∣H=σ−1

τζS ,T(HS/F ,τ−1 ,0) = recS((up(σ), 1)),

where the second equality follows from (4.2) which, as we noted in Section 4, follows
from Conjecture 4.1. Thus, we have the result. ∎

We follow the ideas presented by Dasgupta in [4, Lemma 5.17] to control the group
D(f, g). The lemma below is simpler than [4, Lemma 5.17] since we are only required
to find conditions such that there are no roots of unity of given orders in D(f, g).
However, in [4, Lemma 5.17], Dasgupta finds conditions, for each m ∈ Z≥0, such that
D(f, g) ⊆ μ(F∗p ) (mod pm).

Let q be a prime of F that is unramified in H and whose associated Frobenius, σq,
is a complex conjugation in H. For any rational prime l, we write μ l(F∗p ) ⊆ μ(F∗p ) for
the set of roots of unity in F∗p with order divisible by l.

Lemma 5.4 Let l be an odd rational prime. There exists a finite set of prime ideals,
{r1 , . . . , rs}, in the narrow ray class of q modulo f such that the group, D(f, r1 . . . rs),
does not contain any element of μ l(F∗p ).

Proof Let ε ∈ μ l(F∗p ). Then there exists a prime, r, of F such that r is in the narrow
ray class of q modulo f and such that ε is not congruent to 1 modulo r. We note that all
but finitely many of the infinite number of primes in the narrow ray class of q modulo
f satisfy this property.

Suppose now that ε ∈ D(f, r). Then, by the definition of D(f, r) and, in particular,
the definition ofUfr we see that ε ≡ 1 (mod r). This contradicts our choice of r. Letting
the ri consist of such an ideal prime r for each element ε ∈ μ l(F∗p ) completes the
proof. ∎

We are now able to prove Theorem 5.1. We follow the ideas of the proof of [4,
Theorem 5.18].

Proof of Theorem 5.1 Let σ ∈ G. We begin by noting that the roots of unity in F∗p
have orders that divide pa(Np − 1) for some a ∈ Z≥0. Let l ∣ pa(Np − 1) be an odd
prime. Let m ∈ Z≥1 be such that l m exactly divides pa(Np − 1). Let ε l be a primitive
root of unity of order l m and write

μ l(F∗p ) ∶= ⟨ε l ⟩ ⊆ μ(F∗p ),
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for the subgroup of μ(F∗p) generated by ε l . This definition is independent of the choice
of the primitive root of unity ε l . We show that, for each σ ∈ G,

u2(σ) = up(σ) in F∗p /(μ(F∗p )/μ l(F∗p )).(5.1)

Repeating this for each such odd prime gives the result. Fix such a prime l. Let
{r1 , . . . , rs} be a finite set of prime ideals as in Lemma 5.4, and let r be one of the
ri . It follows from

ζR∪{r}(H/F , σ , s) = ζR(H/F , σ , s) −Nr
−s ζR(H/F , σσ−1

r , s),(5.2)

that the Brumer–Stark units attached to S and S ∪ {r} are related by

up(S ∪ {r}, σ) = up(S , σ)
up(S , σσ−1

r )
= up(S , σ)2 ,

where this last equation follows from the fact that complex conjugation acts as
inversion on Up. Thus, if we let S′ ∶= S ∪ {r1 , . . . , rs}, then we inductively obtain

up(S′ , σ) = up(S , σ)2s
.(5.3)

Applying Lemma 3.2 inductively, we also have

u2(S′ , σ) = u2(S , σ)2s
.(5.4)

It follows from Proposition 5.3 that in F∗p /D(f, r1 . . . rs) we have u2(S′ , σ) =
up(S′ , σ). By choice of the ri , we have that μ l(F∗p ) is not contained in D(f, r1 . . . rs).
From Theorem 2.4, we know that u2(S′ , σ) = up(S′ , σ) in F∗p /μ(F∗p ). It therefore
follows that

u2(S′ , σ) = up(S′ , σ) in F∗p /(μ(F∗p )/μ l(F∗p )).
Recall that l is an odd prime, it then follows from (5.3) and (5.4) that

u2(S , σ) = up(S , σ) in F∗p /(μ(F∗p )/μ l(F∗p )).
Thus (5.1) holds. As we noted above, repeating this for each odd prime which divides
pa(Np − 1) gives us the result. ∎

6 Equality of the formula at 2

In this section, we remove the remaining 2-power root of unity ambiguity from
Theorem 5.1.

As in the previous section, we follow an idea of Dasgupta in [4] to add additional
primes into the set S. We require a modification of Lemma 5.4, however, as we need
to work with primes in any given narrow ray class.

Lemma 6.1 Let τ ∈ G. There exists a finite prime r ∉ S ∪ T such that σr = τ−1 and the
group D(f, r) does not contain any element of μ2(F∗p ). Here, as before, μ2(F∗p ) is the
subset of μ(F∗p ) containing the roots of unity with order divisible by 2.

Proof Let ε ∈ μ2(F∗p ). As noted in the proof of Lemma 5.4, for any prime idea q,
all but finitely many of the infinite number of primes, r, in the narrow ray class of q
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modulo f are such that ε is not congruent to 1 modulo r. Since there are only a finite
number of elements in μ2(F∗p ), it is possible for us to choose one prime r such that for
any ε ∈ μ2(F∗p ), we have that ε is not congruent to 1 modulo r. The result then follows
in the same way as for Lemma 5.4. ∎

We prove that the root of unity ambiguity has some independence from the Galois
group G.

Lemma 6.2 Let σ , τ ∈ G. Then,

u2(σ)u2(σ τ)−1 = up(σ)up(σ τ)−1 .

Proof It follows from Theorem 5.1, that the result holds up to a 2-power root of
unity. Let r be a prime ideal, chosen via Lemma 6.1, with respect to τ. Let S′ = S ∪ {r}.
We consider

up(S′ , σ).

It follows from (5.2) and the definition of r, that

up(S′ , σ) = up(S , σ)up(S , σ τ)−1 .(6.1)

By c) of Proposition 2.2, we have

u2(S′ , σ) = u2(S , σ)u2(S , σ τ)−1 .(6.2)

Proposition 5.3 implies that

up(S′ , σ) = u2(S′ , σ) in F∗p /D(f, r).

Recall, that we already know from Theorem 5.1 that up(S′ , σ) = u2(S′ , σ) in
F∗p /μ2(F∗p ). Lemma 6.1 implies that for all ε ∈ μ2(F∗p ), we have ε ∉ D(f, r). It therefore
follows that

up(S′ , σ) = u2(S′ , σ).

The result then follows from combining this equality with (6.1) and (6.2). ∎

We are ready to prove the main result of this paper.

Proof of Theorem 2.5 From Theorem 5.1, we have that for each σ ∈ G, there exists
γσ ∈ μ2(F∗p ) such that

γσ u2(σ) = up(σ).

Lemma 6.2 then implies that, for any τ ∈ G,

u2(σ)u2(σ τ)−1 = up(σ)up(σ τ)−1 = γσ γ−1
σ τu2(σ)u2(σ τ)−1 .

Therefore, γσ = γσ τ . Write γ = γσ , this is independent of the choice of σ ∈ G. Thus, by
Theorem 3.1, for any σ ∈ G, we have

1 = u2(σ)u2(σc) = γ2up(σ)γσ c = γ2
σ .
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Here, c ∈ G is complex conjugation. It follows that γ ∈ {1,−1}. Since D(f, g) ∩ F ⊆
E+(f), for any integral ideal g, it is clear that −1 ∉ D(f, g). Thus, considering Proposi-
tion 5.3, we have the result. ∎
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