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ON THE IMPLICIT DARBOUX PROBLEM
IN BANACH SPACES

DARIA WOITOWICZ

In this paper we prove the existence theorem for the implicit Darboux problem on
the quarterplane z > 0, y > 0. Moreover, we study the topological structure of the
solution set of this problem.

1. INTRODUCTION

In this paper we shall consider the following implicit Darboux problem

9z Pz
axay = g x’y,Z76IL'8y ’

(1) z(z,0) = 0, 0<z < +o0,
2(0,y) = 0, 0<y<+oo,
2z

in a Banach space, where denotes the mixed derivative of z. We shall give sufficient

0x0y
conditions for the existence of a solution of (1). Moreover, under the same assumptions

we shall prove an Aronszajn type theorem for this problem.

In our considerations we shall apply the following two theorems.

THEOREM 1 (3] Let D be a closed and convex subset of a Hausdorff locally convex
space such that 0 € D, and let G be a continuous mapping of D into itself. If the
implication

(2) (V=convG(V) or V =G(V)U({0}) ==V is relatively compact

holds for every subset V of D, then G has a fixed point.

THEOREM 2 [7] Let X, Y be metric spaces. Assume that y is a point of Y with a
neighbourhood homeomorphic to a closed convex subset of a Fréchet space. Let T : X —
Y be a continuous y-closed mapping, and T,, : X — Y a homeomorphism into. If y is an
interior point of ﬁl T.(X) and T~Y(y) is compact and nonempty, then T~'(y) is an R;

n=
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whenever lim T, =T uniformly on T-(y) and all sets of the form (CJO T.7Y(C), where C
n—00 n=1

o0
is a compact subset of N T,(X).
n=1
Recall that a subset of a metric space is an R if it is homeomorphic to the intersection
of a decreasing sequence of compact absolute retracts.
Our main condition that guarantee the existence of the solution of (1) will be for-

mulated in terms of the measure of noncompactness « introduced by Kuratowski (see 2]
for the definition and basic properties).

2. AN EXISTENCE THEOREM

Let I = [0, +00) and let E be a Banach space. Assume that:
1° ¢g:Ix1x E x E — E is a continuous mapping;
20 there exists a number k € [0, 1) such that

”g(xay)u,vl) - g(xvy”uWU?)” < k ”Ul - v2”

for every (z,y,u) € I x I x E and v, v; € E;
3% for every a,b > 0 there exists m(a,b) € Ry such that

llo(z, y,u,0)|| € m(a,b) whenever |z|<a, |y|<b.

First we shall show that (1) is equivalent to some Darboux problem in the explicit
form. Indeed, consider the sequence of functions f, : IxIx E — E such that fy(z,y,u) =
0, fari(z,y,u) = g(z,y,u, fulz,y,u)) for every (z,y,u) € IXIx Eandn € {0,1,2,...}.
By 2°, in view of the Banach contraction principle, for every (z,y,u) € I x I x E
there exists exactly one element f(z,y,u) € E such that f(z,y,u) = g(z,y,u, f(z,y,u))
and f(z,y,u) = lim fa(z,y,u). Hence the mapping (z,y,u) — f(z,y,u) satisfies the
equation

f(=,y, u) = g(z,y,u, flz,y, u)).
Moreover, for every n,p € N we have

n

1-%

“fn+p(xa y,u) - fn(zvyau)“ < m(av b)7

whenever |z| < a, ly| < b. Thus f, — f as n — oo, uniformly on every bounded subset
of I x I x E. Hence the mapping f : I x [ x E — FE is continuous and

f(z,y,u)|| € M(a,b) for |z|<a, |y|<b,

where M(a,b) = 1/(1 — k)m(a,b).
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We note that the mapping z : / x I — E is a solution of (1) if and only if it is a
solution of the following Darboux problem

&z
azay - f(xvyaz)y
(3) 2(z,0) = 0, < 400,

0<zx
z(0,y) = 0, 0<y < +oo.

Now, we shall prove the following
LEMMA Let h: Ry — R, be a function such that

(4) a(g{A x X x Y)) < max (h(a(X)), a(Y))
for all bounded subsets AC I x I and X xY C E x E. Then
(5) a(f(A x Z)) < h(a(Z))

for all bounded subsets A C I x I and Z C E (see [5]).

PRrROOF: From the definition of the sequence (f,) and (4), by mathematical induction
we have

a(fn(A x 2)) < h(a(2))

for all bounded subsets A C I x I and Z C F.
Fix € > 0. Since f, — f uniformly on every bounded subset of I x I x E, as n — o0,

f(AX Z)C fu(A X Z)+ K(0,¢)

for all bounded subsets A C I x I and Z C F, and for sufficiently large n € N, where
K(0,¢) denotes the open ball of center 0 and radius ¢ in E.
Hence
a(f(A x Z)) € afalA x Z)) + 26 < Ma(2)) + 2.
Since £ > 0 is arbitrary, we receive (4). a
Our first main result is given by the following

THEOREM 3 If g satisfies 1° — 3° and (4), where h : Ry — R, is a continuous,
nondecreasing function such that the inequality

(6) 0 < u(z,y) < ]/h(u(t,s)) dtds, (z,y)elIxI
00

has only a trivial solution, then the problem (1) has a solution.

The above theorem extends the main result from [6].
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PRroOF: Let C = C(I x I, E) be the space of all continuous functions I x I — E
with the topology of uniform convergence on each compact subset of I x I. Set

F(z)(z,y) = / f(t, s, 2(t,8)) dids,
D(z.y)
(z,y) € IxI,z€ Cand D(z,y) ={(t,s) e IxI: 0<t<z 0<s<y} Obviously
the operator F maps C into C and is continuous. Let D = conv(F(C) U {0}). It is clear
that F' maps D into itself. We shall show now that F satisfies (2).
Indeed, let V be a subset of D such that V' C conw(F(V)U {0}). First, we verify
that V is equicontinuous on every compact subset of I x I. Since

1P @ ~F@@wl = | [ fesatdds— [ 1t s)dtds
D(z1,y1) D(z2,y2)

< /‘(D(xl, yl) - D(:E27 yQ))M(a’ b)

where [z1| < a, [22] < a, 11| < b, |y2] < b, 2 € C the family F(C) is equicontinuous on
every compact subset of I x I. Hence V is equicontinuous on every compact subset of
Ix1I.

Let W = F(V), v(z,y) = a(V(z,y)) and w(z,y) = a(W(z,y)) for (z,y) € I x I.
From the basic properties of a we obtain

v(z,y) = a(V(z,y)) < afconv(F(V)(z,y) U {0}))

a(F(V)(z,y) U {0}) = max (a(F(V)(z,y)), «({0}))
a(F(V)(z,9)) = w(z,y), (z,y)elxI

(7)

I

and, similarly,
a(V(T)) € o(W(T)) for each compact subset T for I x I.

Further, we have

lw(z1, 1) ~ wlze, y2)| = la(W(z1, 1)) — a(W(z2, 32))|
= |a(F(V)(z1,11)) — a(F(V)(22, 1))
< sup | F(u)(z1, 91) = F(w)(z2,92) — F(v)(z1,31) + F(v) (22, y2)

<2 SUPV “F(u)(fﬁ,yl) — Fu)(z2, ll, (z1,1),(x2,12) € I x I.
uWEe

By the above inequality and the equicontinuity F(V) on every compact subset of I x I,
we deduce that w is continuous on every compact subset of I x I. Hence w is continuous
onlxI.

Divide the rectangle D(z,y) into n? parts: 0 = 25 < 27 < ... < z, =z, 0 =
Yo < y1 < ... < yp = yin such a way that 2; — 2,01 < 1/nand y; — y;—1 < 1/n
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for i, = 1,...,n. Put Dy(z,y) = [zicy, %] X [Yj~1, %], 6,7 = 1,...,n. Since W is
equicontinuous and uniformly bounded on every compact subset of I x I, by Ambrosetti’s
Lemma [1] and the continuity of w there exists (p;, ¢;) € D;j(z,y) such that

(8 oW(Dy(z,y))) =  sup oW(ts)= sup ws)

{t:8)eDij(z.y) {£,8)€ Di; (z,¥)
= w(Pi;(Ij)y (I,y) el xlI.

From the mean value theorem, for every z € V we obtain

F(z)(z,y) = / f(t,s,2(t,s)) dtds

D(z,y)
-3 / F(t,s, 2(t, 5)) dtds
g j:IDiJ (z.y)
€ E w(D. 15 (x, Y) COan(D,](I y) x Z(D{j(l‘, y))); (z, y) elxlI.
i,7=1
Thus n
F(V)(z,y) C Y w(Dij(z,y))eonvf(Dy(z,y) x V(Di;(z,y))),
ij=1
(z,y) eI x1.

Hence, by the Lemma, the properties of «, (8) and (7) we have

n

w(z,y) < Y w(Dy(z,v))a(f(Dij(z,y)) x V(Di(z,y)))

i,j=1
n

< X uDij(z,y)ha(V(Di(2,))))

i,j 1

< Z u(Dij(z Y)h(a (W(Dij(zvy))))

1,]“1

= Z/‘ (T )h(w(p,q5) (zy) eI x 1

1,j=1

If n — oo, by the continuity of A and w we obtain

w(z,y) € / h(w(t, s))dtds, (z,y)elxI.

D(z,y)

Thus, by (6) w(z,y) = 0 and, therefore by (7), v(z,y) = 0 for every {z,y) € I x I. Hence
V(z,y) is relatively compact for every (z,y) € I x I. In view of the generalisation of
Ascoli’s Theorem [4, p.81], V is relatively compact.

The operator F satisfies all the assumptions of Theorem 1 and, therefore, there exists
z € D such that z = F(z). This completes the proof of Theorem 3. 0
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3. AN ARONSZAJN PROPERTY

The aim of this Section is to prove the following Aronszajn type theorem.

THEOREM 4 Under the assumptions of Theorem 3 the set S of all solutions of (1)
on I x I is an Ry.

ProorF: Let F : C — C be the operator defined in the proof of Theorem 3 and let
T =1 - F, where I denotes the identity map. Obviously T is continuous mapping of C
into itself. Now, we verify that T is O-closed, that is, the following implication

0eT(V)=0eT(V)
holds for every closed subset V C C. It is enough to verify that T is a proper map, that
is, if Z is relatively compact, then T~'(Z) is relatively compact.

Let Z C C be a relatively compact set and put U = T-}(Z). Consider the se-
quence (u,), where u, € U for n € N. Set V = {u, : n € N}. Since V(z,y) C
(T = P)(V)(@,9) + FV)@y) € Z(@,y) + FV)y), aV@y) < oZ@y) +
a(F(V)(z,y) = a(F(V)(z,y)), (z,y) € I x L.

By arguing similarly as in the proof of Theorem 3, we infer that V is relatively
compact. Hence there exists a convergent subsequence (u,,) of (u,)}, so U is relatively
compact.

Define

F.(z)(z,y) = / ft,s,2(t,8))dtds, (z,y)€IxI, z€C, n€N,
D(ra(z,y))

where

ra(z,y) = 0, (z,y) € K(1/n),
o 1 -1/ v)l)n) (2,9), (z,9) € (I x )\ K(1/n),

K@1/n)={(z,y):z >0,y > 0,vVz2 + 32 < 1/n}.

Obviously, the operators F;, map C into itself and are continuous. Put T, = I — F},,
n € N. Now, we shall prove that T,, is a homeomorphism of C into itself for every n € N.
Obviously the mappings 7,, are continuous. Fix n € N. It is easy to see that for any
21,29 € C

9) Ton(21) = Ta(22) = 21 = 2.

It is enough to prove the continuity of 7);. Assume that 2,20 € C, Tn(z) = Tn(z),
as 1 — oo. We have F.(z)(z,y) = Fu(zo)(z,y) = 0 for (z,y) € K(1/n), so z — z
uniformly on K(1/n), as 1 = oo. Since f(¢,s,2(t,8)) — f(t,3,20(t,s)) uniformly on
K(1/n), as i — oo,

f(t, s, 2(t, 8)) dtds — / f(t, s, z(t, s)) dtds

D(rn(z,9)) D(rn(z,y))
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for (z,y) € K(2/n)\ K(1/n) (that is, to the closure of K(2/n) \ K(1/n)), as i — oc.
Hence, it is clear that z; — z¢ uniformly on K(2/n)\ K(1/n). By arguing similarly to
the above, we infer that z; — 2 uniformly on every compact subset of I x I, as i — oo.

This proves the continuity of T, 1.
Now, we shall show that nll)rgo T, = T uniformly. Fix a set K(r), 7 > 0. Choose
n € N such that K(1/n) C K(r). From the inequalities

IRy - FR @l = | [ 15 2(ts) deds|
D(z.y)
< M(%,%)%, for (z,y) € K(%), z € C,

and
1 Fn(2)(z, y) = F(z)(z, )]
= “ / f(t,s, z(t,8)) dtds — / F(t, s, 2(t,s)) dtds

D(rn(z.y))
< l(27" - %)M(r,r) for (z,y) € K(r)\K(;), z €C,

n

it is clear that F,(z) — F(z) uniformly in z, on every compact subset of I x I.

Further, since T~1(0) is the set of all fixed points of ', by Theorem 3 it is nonempty.
Let (z) be sequence such that zx € T771(0) for k¥ € N. Put V = {2 : k € N}. Obviously
V = F(V). By arguing similarly as in the proof of Theorem 3, we deduce that V is
relatively compact. Hence T71(0) is relatively compact. Since it is closed, it is compact

To complete our proof, it is enough to show that 0 is an interior point of ﬂ T.(C).

We shall prove that C C (I — F;)(C) for every k € N. Fix k € Nand 2 € C’ Deﬁne a
sequence (u;), u; € C in the following way:

1
u(z,y) = z(z,9), (zy) € K(;)
U;(z,y) is a continuous extension of u;(z,y) from K ( k) tol x1,
uiri(z,y) = wilz,v) for (z,y) € K(%)

wina(,) = 2(2,9) + Fe@)(9) for (0.9) € K(S2)\K(3).

Put u(z,y) = 11_1'1{.10 u;(z,y). This convergence is uniform on every compact subset of 7 X I.

Hence in view of the continuity of Fy, we obtain u = z + Fi(u), so z € (I — F)(C).
In view of Theorem 2 the set 77(0) is an Rj, which completes our proof. 0
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