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A closed macroscopic model for quasi-steady, inertial, incompressible, two-phase
generalised Newtonian flow in rigid and homogeneous porous media is formally derived.
The model consists of macroscopic equations for mass and momentum balance as well
as an expression for the macroscopic pressure difference between the two fluid phases.
The model is obtained by upscaling the pore-scale equations, employing a methodology
based on volume averaging, the adjoint method and Green’s formulation, only assuming
the existence of a representative elementary volume and the separation of scales between
the microscale and the macroscale. The average mass equations coincide with those for
Newtonian flow. The macroscopic momentum balance equation in each phase expresses
the seepage velocity in terms of a dominant and a coupling Darcy-like term, a contribution
from interfacial tension effects and another one from interfacial inertia. Finally, the
expression of the macroscopic pressure difference is obtained in terms of the macroscopic
pressure gradient and body force in each phase, and interfacial terms that account
for capillary effects and inertia, if present when the interface is not stationary. All
terms involved in the macroscale equations are predicted from the solution of adjoint
closure problems in periodic representative domains. Numerical predictions from the
upscaled models are compared with direct numerical simulations for two-dimensional
configurations, considering flow of a Newtonian non-wetting fluid and a Carreau wetting
fluid. Excellent agreement between the two approaches confirms the pertinence of the
macroscopic models derived here.

† Email address for correspondence: iqfv@xanum.uam.mx

© Universidad Autónoma Metropolitana, Universidad Nacional Autónoma de México, and CNRS,
2023. Published by Cambridge University Press 970 A19-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:iqfv@xanum.uam.mx
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.615&domain=pdf
https://doi.org/10.1017/jfm.2023.615


J. Sánchez-Vargas and others

Key words: porous media, multiphase flow, rheology

1. Introduction

Two-phase non-Newtonian flow in porous media is involved in numerous applications such
as the production of scaffolds for biomedical applications (Elbert 2011), remediation of
polluted soils (Philippe et al. 2020), in trickle bed reactors (Giri & Majumder 2014) and
packed bed bioreactors (Sen, Nath & Bhattacharjee 2017), gas and liquid flow through
porous shale reservoirs (Singh & Cai 2019), polymer injection for composite materials
manufacturing (Wittemann et al. 2019), food engineering (Liu et al. 2019), gas–liquid and
liquid–liquid flow in packed columns for extraction processes and distillation (Chhabra &
Basavaraj 2019) and soil flooding for enhanced oil recovery (Sorbie 1991; Nilsson et al.
2013), to cite only a few. Despite this extensive interest, flow modelling at the macroscopic
scale relying on a physically sound basis remains challenging and, most of the time,
empirical approaches are employed. This undoubtedly stems from the nonlinear character
of the fluid rheology, combined with the complexity inherent to fluid-phase dynamics and
the porous medium description.

Triggered by the presence of non-Newtonian flows in enhanced oil recovery, the earliest
reported analyses were made essentially at the macroscopic scale, employing postulated
extensions of Darcy’s law. In this regard, two main types of heuristic models have been
proposed in the literature. The first one relies on an extension of that employed for
one-phase flow of a power-law fluid (Pascal 1983). It consists of a modified version of
Darcy’s law relating the seepage velocity, elevated at a power dependent on the fluid
rheology, to the macroscopic pressure gradient (eventually shifted by a threshold value
for a yield-stress fluid) making use of an effective dynamic viscosity. The second type
of model uses the same generalised Darcy’s law as for Newtonian fluids, albeit the
nonlinearity is lumped into the viscosity coefficients.

During the 1980s, Pascal reported a series of works concerning non-Newtonian
two-phase flow in porous media, making use of the first type of macroscopic model. In
particular, the frontal displacement of a Newtonian fluid by a power-law yield-stress fluid,
both being incompressible, was studied in the work of Pascal (1984) and further extended
to compressible and non-Newtonian conditions for both phases by Pascal & Pascal (1988).
In these works, where the displaced fluid was assumed motionless behind the front, the
question of the non-Newtonian effect on the potential instability of the front was raised
(further addressed by Pascal (1986)), and the existence of a pressure front, ahead of the
saturation front in the compressible case, was identified. Its modification when both phases
are mobile behind the saturation front was also analysed shortly after (Pascal 1990). In all
these studies, capillary effects were neglected, in accordance with the frontal displacement
approach.

The same type of model (i.e. generalised Darcy’s law with a power-law relationship for
the (weakly) non-Newtonian phase) was considered in a work dedicated to the analytical
and numerical solution of simultaneous incompressible two-phase flow of a power-law
wetting fluid and a Newtonian non-wetting fluid, including capillary pressure effects (Xi &
Shangping 1987). Using power-series expansions and a perturbation method, an analytical
solution was obtained. It was shown that, when the non-Newtonian wetting phase is
dilatant, an increment in the fractional fluid flow is observed, whereas the opposite occurs
when this phase is pseudoplastic.
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Generalised Newtonian two-phase flow in porous media

The second type of heuristic model was used by Wu, Pruess & Witherspoon (1991) to
develop analytical solutions for one-dimensional displacement of a Newtonian fluid by
a non-Newtonian one in porous media. Using a Buckley–Leverett approach (neglecting
the capillary pressure gradient), they showed how the saturation profile and the front
displacement were affected by the rheological parameters. Later on, Wu & Pruess (1998)
extended their analysis to three dimensions, using a finite difference scheme. The same
type of model was recently considered by Katiyar et al. (2020).

A somewhat general tendency in the study of two-phase non-Newtonian flow since
the beginning of this century, has been the use of pore-scale approaches, favoured by
the development of microfluidics, computational means and imaging techniques. In this
regard, Tsakiroglou (2004) performed experiments of a shear-thinning non-wetting phase
displacing a Newtonian wetting fluid in glass-etched quasi-two-dimensional porous media.
By performing inverse modelling, the relative permeabilities and capillary pressure curves
were identified, on the basis of the second heuristic model mentioned above. With this
approach, a nonlinear dependency of the non-wetting phase relative permeability upon the
capillary number was reported.

The analysis of viscous fingering resulting from Saffman–Taylor instability, mainly
motivated by the study of sweep efficiency in oil recovery processes, has been the focus of
several works, also following a pore-scale approach. The displacement of a non-Newtonian
(Bingham) fluid by a Newtonian one, using two-dimensional pore-network modelling
in a square array of tubes having uniformly distributed radii, was investigated by Tian
& Yao (1999). They highlighted the transition from the diffusion-limited aggregation
regime to a compact regime. More recently, Shi & Tang (2016) reported lattice Boltzmann
pore-scale simulations incorporating a phase-field method to study viscous fingering
during displacement of a non-Newtonian fluid by a Newtonian one in a staggered
two-dimensional pattern of square inclusions. Their results showed that displacement
becomes unstable as the capillary number, ratio of displaced to displacing fluids viscosity
and contact angle increase. In a later work, Wang et al. (2019) considered a shear-thinning
(power-law) fluid displaced by a Newtonian one, using lattice Boltzmann simulations
in a two-dimensional pattern of staggered circular solid inclusions. They showed that,
as the power-law index is reduced (i.e. increasing the shear-thinning character of the
fluid), viscous fingering is stabilised resulting in thicker fingers and better displacement
efficiency. In addition, the porous medium microstructure has been reported to play a
decisive role in the fingering phenomenon, as evidenced by Shende, Niasar & Babaei
(2021). Using also the lattice Boltzmann method, Xie, Lv & Wang (2018) investigated
the cases of shear-thinning and shear-thickening displacing fluids at the microscale
in both homogeneous and heterogeneous porous structures. In the homogeneous case,
those authors reported that the non-Newtonian character of the flow did not result in a
noticeable difference in the favourable displacement regime. However, in the unfavourable
displacement regime, shear-thinning fluids did not enhance diversion effects (i.e. the
capability of favouring flow of the displacing fluid in lower-permeability regions with
respect to the high-permeability zones). This counter-intuitive result was attributed to the
viscosity ratio and porous medium properties.

Although pore-scale approaches are of great interest in identifying and deciphering
complex conjugated mechanisms, their use is limited in terms of the size of the medium
that can be investigated. In addition, they are not dedicated to the derivation of general
models at the macroscopic (Darcy) scale. Moreover, surface tension effects may play a
relevant role in the prediction of the seepage velocities as suggested by the numerical
simulations reported by Druetta & Picchioni (2020) and Wang et al. (2020), and
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recently formally identified for two-phase Newtonian flow (Lasseux & Valdés-Parada
2022). However, these effects are not present in these commonly employed macroscopic
models, and despite the fact that their use is an appealing approach that may ease flow
description, this is a serious limitation. Indeed, even if inverse modelling is used to
predict the coefficients present in these models from experimental data, their origin
remains hypothesised. Although these issues were suggested in Pearson & Tardy (2002),
formal models for macroscopic two-phase non-Newtonian flow in porous media are still
lacking.

While many of the works cited in the previous paragraphs deal with displacement fronts
and fingering effects, where there may not be separation of length scales between the
microscale and the macroscale, it is nevertheless relevant to derive macroscopic models in
regions sufficiently far away from the front displacement zone (if present). Furthermore,
even if upscaled models were available in this zone, they should reproduce the results from
models applicable sufficiently far away from their influence. In many other circumstances,
two-phase flow in porous media may occur while the two fluids coexist everywhere in
the pore space, as for instance in two fluid-phase reactors (Safinski & Adesina 2012).
Hence, the objective of this work is to derive upscaled models in porous media regions
where it is acceptable to assume separation of length scales between the microscale
and the macroscale, and this is detailed in the following sections. In § 2, the governing
equations at the pore scale are described, along with the associated starting assumptions.
Section 3 is dedicated to the derivation of the macroscopic mass and momentum balance
equations. In addition, in § 4, the expression of the macroscopic pressure difference
is reported. These macroscopic models are obtained following the approach recently
employed by Lasseux & Valdés-Parada (2022, 2023), which makes use of a simplified
version of the volume-averaging technique along with an adjoint method and an integral
(Green’s) formulation. The average models are summarised in § 5 and they are evaluated
and validated by means of direct numerical simulations (DNS) in § 6. In this section,
an analysis of the effects of the fluid rheology, inertia and phase distribution over the
macroscopic variables and effective-medium coefficients is provided. Conclusions are
finally reported in § 7.

2. Pore-scale model

2.1. Starting assumptions and system configuration
The incompressible, inertial and quasi-steady flow under consideration is that of two
non-Newtonian fluid phases, β and γ , through a rigid and homogeneous porous medium
(for which the solid skeleton is denoted as the σ phase). By quasi-steady it is meant that
the shapes and positions of the fluid–fluid interfaces within the pores are not stationary,
although momentum transfer in the bulk of each phase is considered steady. Furthermore,
the derivations that follow are applicable in situations in which both fluid phases circulate
in either a continuous or discontinuous manner. Under these conditions, the mass and
momentum balance equations at the pore scale are written as (in the following, α = β, γ

is used to represent either one of the fluid phases)

∇ · vα = 0, in Vα, (2.1a)

ραvα · ∇vα = ραbα + ∇ · T pα in Vα, (2.1b)

where T pα is the total stress tensor in the α phase, defined by

T pα = −Ipα + μ(Γα)(∇vα + ∇vT
α). (2.1c)
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Generalised Newtonian two-phase flow in porous media

In these equations, vα , ρα and pα are, respectively, the velocity, density and pressure of the
α phase, whereas I is the identity tensor and bα represents the body force per unit mass,
which is assumed to be constant within Vα . Moreover, in the viscous part of the total stress
tensor, a generalised Newton’s law of viscosity is used, which means that the apparent
viscosity, μ(Γα), is a function of the shear-rate modulus, Γα , defined as

Γα =
√

1
2 [(∇vα + ∇vT

α) : (∇vα + ∇vT
α)]. (2.1d)

While writing (2.1b), it is assumed that, albeit convective acceleration may be significant
in accordance with a Reynolds number not exceedingly small compared with unity,
the frequency parameter in the α phase, defined as ρα�2

refα/(μrefαtref ), remains small
compared with 1 (�refα , μrefα and tref being, respectively, a reference length and viscosity
in the α phase and a reference time; these definitions are further discussed in § 6 once a
particular rheological model is chosen).

2.2. Flow problem in a periodic unit cell
Following a classical assumption in upscaling, the analysis is restricted to systems in
which there is a separation of length scales. This means that the following developments
correspond to two-phase flow far away from a displacement front, if present, or within
the entire system if the two phases coexist mixed as exemplified in figure 1. In the
former case, it is assumed that the porous medium (of characteristic length L ) can
be subdivided into regions (of characteristic length L < L ) that have a hierarchical
nature. In these circumstances, an averaging domain, V (of measure V and characteristic
size r0 � L), representative of the pore-scale configuration and transport processes (at
least for momentum as discussed below) can be assumed to exist. For this reason, r0
must also be much larger than the characteristic pore-scale length, max(�β, �γ ). This
concept, which is introduced in the form of a periodic unit cell at the beginning in the
homogenisation technique (Auriault, Boutin & Geindreau 2009) or at the closure level in
the volume-averaging method (Whitaker 1999), is necessary for a local description. At this
point, it is pertinent to mention that the periodicity assumption is a commodity more than
a necessity in the upscaling approach used here. It allows the closure problems to be solved
only in a unit cell, thus leading to local effective-medium coefficients. Furthermore, the
upscaled models can be used in practice even in situations when the real porous medium
is not periodic. In other words, periodicity is a convenient assumption for the closure
problem definition and it has a minor impact at the macroscopic level. In the following,
the averaging domain is denoted as V and the space occupied by each fluid phase is Vα
(of measure Vα).

In terms of the averaging domain, the superficial and intrinsic averages of a pore-scale
quantity, ψα , defined at any point within the α phase, located by rα with respect to a fixed
system of coordinates, are respectively defined by the following integral operators:

〈ψα〉α|xα = 1
V

∫
Vα

ψα|rα dV, (2.2a)

〈ψα〉α|xα = ε−1
α 〈ψα〉α|xα = 1

Vα

∫
Vα

ψα|rα dV. (2.2b)

The two resulting averages are assigned at the barycentre of each phase, xα = 〈rα〉α , of Vα .
The volume fraction of the α phase is denoted by εα = Vα/V = εSα , where ε = (Vβ +
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L L

L

r0

σ-phase

�σ

�γ

�β

�

γ-phase

β-phase

Averaging domain,

REV scale

Pore scale

xγ

xβ

zβγ

zγβ

rβγ

(b)

(a)

Figure 1. (a) Sketch of a porous medium saturated with two fluid phases, β (in blue) and γ (in white), flowing
in the presence of a displacement front or as coexisting mixed phases including the scales, averaging domain
and characteristic lengths. (b) Example of a periodic unit cell, of side length �, illustrating the position vectors
locating the barycentres of each fluid phase (xβ and xγ ), as well as an example of the position vectors that
locate the fluid–fluid interface with respect to a fixed system of coordinates (rβγ ) and with respect to the phase
barycentres (zβγ and zγβ ).
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Generalised Newtonian two-phase flow in porous media

Vγ )/V is the porosity of the porous medium and Sα the α phase saturation. From the
above definition, a pore-scale quantity can be expressed in terms of its intrinsic average
and deviation by means of the following decomposition (Gray 1975):

ψα|rα = 〈ψα〉α|rα + ψ̃α|rα . (2.3)

Furthermore, the following Taylor series expansion can be used in order to evaluate 〈ψα〉α
at the phase barycentre:

〈ψα〉α|rα = 〈ψα〉α|xα + zα · ∇〈ψα〉α|xα + 1
2 zαzα : ∇∇〈ψα〉α|xα + · · · , (2.4)

where zα = rα − xα locates the same point as rα but with respect to xα as illustrated
in figure 1(b). Note that, by definition, 〈zα〉α = 0 and zα = O(r0). If this expansion
is used for ∇〈pα〉α , since this quantity can be assumed to be slowly varying (i.e. its
spatial variations are characterised by L), it is reasonable to assume, on the basis of the
length-scale constraint r0 � L, that

∇〈pα〉α|rα � ∇〈pα〉α|xα ≡ ∇〈pα〉α, (2.5)

which means that ∇〈pα〉α can be considered as constant at the scale r0.
The pore-scale momentum balance equation is hence written in a periodic unit cell

under the following form:

ραvα · ∇vα = −∇〈pα〉α + ραbα + ∇ · T p̃α in Vα, (2.6)

with
T p̃α = −I p̃α + μ(Γα)(∇vα + ∇vT

α). (2.7)

To complete the statement of the flow problem, it is assumed that no mass transport and
no slip take place at the solid–fluid interfaces, Aασ , which leads to the following boundary
condition:

vα = 0, at Aασ . (2.8a)

Moreover, the same assumption is imposed at the fluid–fluid interface, Aβγ . Hence, the
mass balance boundary condition at this interface can be written as

vβ = vγ = w at Aβγ , (2.8b)

where w represents the speed of displacement of Aβγ . In this work, no triple-phase contact
is considered. Nevertheless, the pore-scale flow model statement considered here has been
used by many authors (e.g. Auriault & Sanchez-Palencia 1986; Whitaker 1986, 1994;
Lasseux, Quintard & Whitaker 1996; Lasseux, Ahmadi & Arani 2008; Picchi & Battiato
2018) and serves as a useful archetype for future studies that would address this issue.
Indeed, there is no definite model that allows one to take into account the physics in the
contact line neighbourhood, and this deserves a specific analysis that is beyond the scope
of the present work.

Assuming that no specific viscosity effects occur at the fluid–fluid interface, the stress
jump at Aβγ is compensated by capillary forces, leading to the following boundary
condition:

nβγ · (T pβ − T pγ ) = ∇sγ + 2Hγnβγ at Aβγ . (2.8c)

After application of Gray’s decomposition to the pressure in each phase, the above
equation can be equivalently written as

nβγ · (T p̃β − T p̃γ ) = nβγ (〈pβ〉β − 〈pγ 〉γ )rβγ + ∇sγ + 2Hγnβγ at Aβγ . (2.8d)

In the above equations, nβγ is the unit normal vector at Aβγ , directed from the β phase
towards the γ phase, rβγ locates points at Aβγ with respect to a fixed system of coordinates

970 A19-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.615


J. Sánchez-Vargas and others

(see figure 1b), H is the mean curvature of the interface and γ is the interfacial tension
between the two fluids. In this boundary condition, possible spatial variations of γ along
Aβγ are considered, expressed by ∇sγ , where ∇s is the surface gradient operator defined
as ∇s = (I − nβγnβγ ) · ∇. Note that 2H = −∇s · nβγ .

Using Taylor series expansions for the average pressure terms (see (2.4)) about the phase
barycentres, xα , recalling that ∇〈pα〉α can be assumed constant within the unit cell, the
boundary condition given in (2.8d) can be rewritten as

nβγ · (T p̃β − T p̃γ ) = nβγ (〈pβ〉β |xβ − 〈pγ 〉γ |xγ )− nβγ (xβ − xγ ) · ∇〈pβ〉β
+ ∇sγ + 2Hγnβγ at Aβγ . (2.8e)

While writing (2.8e), use was made of the fact that, if a periodic unit cell representative
of the local process is employed for the averaging domain, the macroscopic pressure
gradients are equal (see the proof in Appendix B in Lasseux & Valdés-Parada (2022)).

The problem statement in the unit cell is completed with the following periodicity
conditions:

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = vα, p̃α, (2.8f )

and with the average constraint
〈p̃α〉α = 0, (2.8g)

which results from applying the intrinsic averaging operator to (2.3) (with ψα = pα) and
the use of the Taylor series expansion (2.4), while recalling that 〈zα〉α = 0 and that ∇〈pα〉β
is taken as a constant in the unit cell.

To finalise this section, it is worth mentioning that the assumptions imposed in this
work do not constitute a severe restriction in terms of application of the model. In fact,
some systems where it is reasonable to adopt these assumptions (and hence where the
macroscopic models presented below are applicable) are the following: incompressible
gas–liquid and liquid–liquid packed columns for extraction processes and distillation
(Chhabra & Basavaraj 2019), incompressible gas and liquid flow through porous shale
reservoirs (Singh & Cai 2019), water and non-Newtonian soil flooding for enhanced oil
recovery (Sorbie 1991; Nilsson et al. 2013), as well as industrial applications in packed
bed reactors (Giri & Majumder 2014) and bioreactors (Sen et al. 2017).

3. Mass and momentum macroscopic equations

The method to derive the macroscopic equations takes elements of the volume-averaging
method, the adjoint technique and Green’s integral formulation. The essential steps to
carry out the developments are reported in the following paragraphs.

3.1. Averaged mass equations
Derivation of the macroscopic mass equation in each phase was reported in previous
works dedicated to two-phase flow in homogeneous porous media (Whitaker 1986, 1994;
Lasseux et al. 1996; Lasseux & Valdés-Parada 2022) and remains unchanged in the present
configuration. The upscaled equation can be written as

∂εα

∂t
+ ∇ · 〈vα〉α = 0. (3.1)

This expression, which is obtained without assuming that V is periodic, takes into
account the temporal changes of the α phase volume fraction. Time dependency at the
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macroscale arises from the possible non-stationary character of Aβγ , implicitly making
the pore-scale problem time-dependent, even if temporal acceleration is neglected with
respect to viscous effects, as already discussed in § 2. Indeed, if V is assumed periodic,
(1/V)

∫
Aβγ

nβγ · vα dA = 〈∇ · vα〉α , which, after application of the superficial averaging
operator to (2.1a), allows concluding that ∇ · 〈vα〉α = 0. An equivalent result is obtained
if the fluid–fluid interface is stationary, which means

nβγ · w = 0, at Aβγ . (3.2)

In that case, it follows from the general transport theorem that ∂εα/∂t = 0. This allows
concluding that

∇ · 〈vα〉α = 0, V periodic or Aβγ stationary. (3.3)

3.2. Averaged momentum equations
To obtain the macroscopic momentum equation in each phase, the upscaling approach
detailed in Lasseux & Valdés-Parada (2022) is used. In brief, it consists of the following
steps. First, propose pertinent adjoint (or closure) problems in a periodic unit cell, which
can be subsequently related to the flow problem by means of Green’s formula. Second,
substitute the corresponding differential equations and boundary conditions to carry out
the necessary algebraic manipulations to obtain the upscaled models. In this way, the
derivations commence by introducing the four second-order tensors, Dακ , and vectors,
dακ(α, κ = β, γ ), that solve the following adjoint closure problems in a periodic unit cell
(cf. Bottaro 2019):

Problem I

∇ · Dαβ = 0, in Vα, (3.4a)

− ρα

μrefα
vα · ∇Dαβ = ∇ · T dαβ + δK

αβ I, in Vα, (3.4b)

nβγ · μrefβT dββ = nβγ · μrefγ T dγβ , at Aβγ , (3.4c)

Dββ = Dγβ, at Aβγ , (3.4d)

Dαβ = 0, at Aασ , (3.4e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = Dαβ, dαβ, (3.4f )

dαβ = 0, at r0
α. (3.4g)

Problem II

∇ · Dαγ = 0, in Vα, (3.5a)

− ρα

μrefα
vα · ∇Dαγ = ∇ · T dαγ + δK

αγ I, in Vα, (3.5b)

nβγ · μrefβT dβγ = nβγ · μrefγ T dγ γ , at Aβγ , (3.5c)

Dβγ = Dγ γ , at Aβγ , (3.5d)

Dαγ = 0, at Aασ , (3.5e)

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = Dαγ , dαγ , (3.5f )

dαγ = 0, at r0
α. (3.5g)
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In the above equations, r0
α locates an arbitrary point in the α phase and δK

ακ is the Kronecker
delta. In addition,

T dακ = −Idακ + μ(Γα)

μrefα
(∇Dακ + ∇DT1

ακ), (3.6)

where the superscript T1 denotes the transpose of a third-order tensor that permutes its first
two indices, i.e. (∇Dακ)T1

ijk = (∇Dακ)jik. Note that the boundary conditions given in (3.4g)
and (3.5g) are necessary in order to well pose the closure problems. A practical solution
of closure problems I and II, written under the forms given in (3.4) and (3.5), entails a
pre-determination of the pore-scale velocity and viscosity fields over the corresponding
periodic domain. These adjoint problems can be derived from the associated velocity
Green’s function pair problems, as detailed in Lasseux & Valdés-Parada (2022) for
Newtonian creeping two-phase flow. It is worth noting that, in that case, the same closure
problems as those previously reported in Auriault & Sanchez-Palencia (1986), Whitaker
(1994), Lasseux et al. (1996) and Picchi & Battiato (2018) were retrieved, albeit the
macroscale model is different. Analogously, the closure problems reported in (3.4) and
(3.5) are the adjoint versions of those derived in Lasseux et al. (2008) (see (114) and (115)
therein) in the case of Newtonian and inertial two-phase flow in homogeneous porous
media.

The next step in the derivations consists of relating the associated closure problems
with the flow problem with the help of a Green’s formula. Considering a constant scalar
d and arbitrary and sufficiently regular scalar fields a and c, vector fields a, b and c and a
second-order tensor field B, together with the following definitions:

T a = −Ia + c(∇a + ∇aT), (3.7a)

T b = −Ib + c(∇B + ∇BT1), (3.7b)

this formula is written (see the proof in Appendix A in Sánchez-Vargas, Valdés-Parada &
Lasseux (2022))

∫
Vα

[a · (dc · ∇B + ∇ · T b)− (−dc · ∇a + ∇ · T a) · B − ∇ · ab

+ d(∇ · ca) · B + a∇ · B] dV

=
∫

Aα

[a · (nα · T b)− nα · (−dca + T a) · B] dA. (3.8)

Here, Aα denotes the surfaces bounding Vα .
Attention is now focused on the derivation of the average momentum balance in the β

phase. To this end, the above Green’s formula is employed, taking a = vβ , a = p̃β , B =
Dββ , b = μrefβdββ , c = μ(Γβ), c = vβ and d = ρβ . Once the corresponding differential
equations and boundary conditions from the pore-scale problem and closure problem I are
substituted in the ensuing relationship, keeping in mind the definition of the superficial
averaging operator and the fact that ∇〈pα〉α and ραbα are constant in Vα , the following
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Generalised Newtonian two-phase flow in porous media

expression for 〈vβ〉β is obtained:

〈vβ〉β = − 1
μrefβ

(∇〈pβ〉β − ρβbβ) · 〈Dββ〉β + 1
μrefβV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dββ dA

− 1
μrefβV

∫
Aβγ

[μrefγw · (nβγ · T dγβ )− nβγ · (−ρβww + T p̃γ ) · Dγβ] dA

+ 1
μrefβV

∫
Aβγ

nβγ · Dββ dA(〈pβ〉β |xβ − 〈pγ 〉γ |xγ − (xβ − xγ ) · ∇〈pβ〉β).
(3.9a)

Since Dββ is a solenoidal field that is periodic and zero at Aβσ , one can make use of the
divergence theorem to conclude that

∫
Vβ

∇ · Dββ dV = ∫
Aβγ

nβγ · Dββ dA = 0. This leads
to simplifying the expression of 〈vβ〉β into the following form:

〈vβ〉β = − 1
μrefβ

(∇〈pβ〉β − ρβbβ) · 〈Dββ〉β + 1
μrefβV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dββ dA

− 1
μrefβV

∫
Aβγ

[μrefγw · (nβγ · T dγβ )− nβγ · (−ρβww + T p̃γ ) · Dγβ] dA.

(3.9b)

This last relationship is still non-local due to the presence of p̃γ in the last interfacial
integral term. To progress towards a local form, Green’s formula (3.8) can be employed
once more taking a = vγ , a = p̃γ , B = Dγβ , b = μrefγ dγβ , c = μ(Γγ ), c = vγ and d =
ργ . Using the definition of the superficial averaging operator, the resulting expression can
be written as follows:

1
V

∫
Aβγ

[μrefγw · (nβγ · T dγβ )− nβγ · (−ργww + T p̃γ ) · Dγβ] dA

= (∇〈pγ 〉γ − ργ bγ ) · 〈Dγβ〉γ . (3.10)

Substituting this expression in (3.9b), while recalling the interfacial boundary condition
given in (3.4d), yields

〈vβ〉β = − 1
μrefβ

(∇〈pβ〉β − ρβbβ) · 〈Dββ〉β − 1
μrefβ

(∇〈pγ 〉γ − ργ bγ ) · 〈Dγβ〉γ

+ 1
μrefβV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dββ dA + ργ − ρβ

μrefβV

∫
Aβγ

nβγ · ww · Dββ dA.

(3.11)

The last area integral term on the right-hand side of the above equation is related to the
displacement of Aβγ when inertia is present.

The above procedure can be repeated in a similar way for the γ phase. The resulting
equation can be written as follows:

〈vγ 〉γ = − 1
μrefγ

(∇〈pγ 〉γ − ργ bγ ) · 〈Dγ γ 〉γ − 1
μrefγ

(∇〈pβ〉β − ρβbβ) · 〈Dβγ 〉β

+ 1
μrefγV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dγ γ dA + ργ − ρβ

μrefγV

∫
Aβγ

nβγ · ww · Dγ γ dA.

(3.12)
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At this point, it is convenient to adopt the following nomenclature (α, κ = β, γ ):

Hακ = μrefκ

μrefα
〈Dκα〉T

κ , (3.13)

Hαα and Hακ being respectively identified as the classical dominant and coupling apparent
permeability tensors in the α phase. This allows writing the macroscopic momentum
balance equations in the following compact form:

〈vα〉α = − Hαα
μrefα

· (∇〈pα〉α − ραbα)− Hακ
μrefκ

· (∇〈pκ〉κ − ρκbκ)

+ 1
μrefαV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dαα dA + ργ − ρβ

μrefαV

∫
Aβγ

nβγ · ww · Dαα dA.

(3.14a)

This is the first important result of the present work. The first two terms on the right-hand
side of (3.14a) are the Darcy-like terms. The first one accounts for the viscous resistance in
the phase under concern, while the second one results from the viscous coupling between
the two fluid phases. These terms include bulk inertial effects, justifying the apparent and
non-intrinsic character of the permeability tensors Hακ . In addition to the Darcy-like terms,
a contribution of the interfacial effects is also present, which is accounted for by the last
two terms in (3.14a). The first one, dealing with interfacial tension effects, is formally the
same as that identified in a previous work dedicated to creeping Newtonian two-phase flow
in porous media (Lasseux & Valdés-Parada 2022). The second one results from inertial
effects. Note that, both inertial and non-Newtonian effects are reflected in the values of
the closure variable Dαα at Aβγ (and also in H). The first interfacial term was not present
in the development of the average model proposed by Lasseux et al. (2008) in the case of
two-phase inertial Newtonian flow. This is because a simplification of the contribution of
the capillary forces was assumed. Such an assumption lacks careful justification, and this
was extensively discussed in the case of creeping Newtonian two-phase flow (see Lasseux
& Valdés-Parada (2022), pp. 14–15). When the fluid–fluid interface is stationary, or flow
remains in the creeping regime in the α phase, this equation reduces to

〈vα〉α = − Hαα
μrefα

· (∇〈pα〉α − ραbα)− Hακ
μrefκ

· (∇〈pκ〉κ − ρκbκ)

+ 1
μrefαV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dαα dA,

creeping flow in the α phase or Aβγ stationary. (3.14b)

Note that (3.14b) is valid in the creeping flow regime, even if nβγ · w /= 0. To that extent,
the model reported in Lasseux & Valdés-Parada (2022) is valid even if the fluid–fluid
interface is not in its stationary configuration.

All the terms in the macroscopic momentum equations are determined from the solution
of the two (adjoint) closure problems I and II, which requires knowledge of the interface
position, Aβγ , and of its speed of displacement, w, if inertia is significant and the interface
has not reached a stationary configuration. Note that these closure problems also require
accounting for the velocity field in each phase even under creeping flow conditions for the
computation of the viscosity coefficient μ(Γα).
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Generalised Newtonian two-phase flow in porous media

3.3. Symmetry and reciprocity relationships for Hαα and Hακ (α, γ = β, γ , α /= κ)
In Appendix A, a symmetry analysis of Hαα is provided, along with a reciprocity
relationship between Hβγ and Hγβ . The results are respectively given in (A7) and
(A10). The relationship (A7) shows, first, that Hαα is not symmetric and, second, that
its skew-symmetric part only results from inertial effects. In addition, the reciprocity
relationship given in (A10) indicates that the two coupling apparent permeability tensors
are not independent and that the right-hand side also only results from inertia. Indeed,
in the absence of inertial effects, the right-hand sides of both (A7) and (A10) are zero.
This allows concluding that, under creeping flow conditions, the dominant permeability
tensors are symmetric, as for Newtonian flow, and the coupling permeability tensors satisfy
the same relationship as for μ(Γα) = Cst = μrefα . This extends the results reported in
Lasseux et al. (1996) and Lasseux & Valdés-Parada (2017) (section II.E) for Newtonian
two-phase flow, showing that the non-Newtonian character of the flow does not alter
the properties of the permeability tensors in the absence of inertia. It also extends the
result obtained for one-phase incompressible Newtonian and inertial flow in porous media
for which the apparent permeability tensor was shown to be non-symmetric, with its
skew-symmetric part only due to inertia (Lasseux & Valdés-Parada 2017, § II.A).

To complete the macroscopic description of the two-phase flow process, it is of interest
to derive an expression for the macroscpic pressure difference. This is the objective of the
development that follows.

4. Macroscopic pressure difference

The derivation steps are the same as those followed in Lasseux & Valdés-Parada
(2023) in which a model for the macroscopic pressure difference was proposed for
two-phase creeping Newtonian flow in homogeneous porous media. In order to determine
the expression for the macroscopic pressure difference, i.e. 〈pβ〉β |xβ − 〈pγ 〉γ |xγ , it is
convenient to introduce the scalar and vector fields, fα and f α . These closure variables are
associated with the pore-scale fluid pressures and solve a new adjoint (closure) problem
that is defined as follows:

∇ · f β = 1
Vβ
, in Vβ, (4.1a)

∇ · f γ = − 1
Vγ
, in Vγ , (4.1b)

−ραvα · ∇f α = ∇ · T fα , in Vα, (4.1c)

nβγ · T fβ = nβγ · T fγ , at Aβγ , (4.1d)

f β = f γ , at Aβγ , (4.1e)

f α = 0, at Aασ , (4.1f )

ψ(r + li) = ψ(r), i = 1, 2, 3; ψ = f α, fα, (4.1g)

fα = 0, at r0
α. (4.1h)

In this problem, in which T fα = −fα I + μ(Γα)(∇ f α + ∇ f T
α) is the associated stress-like

second-order tensor, the closure variables f α are non-solenoidal. In fact, this new closure
problem involves the source terms in the mass-like equations and can be inferred from the
pressure Green’s functions pair problem, as reported by Choi & Dong (2021) for one-phase
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creeping flow. It clearly differs from the two adjoint problems associated with the velocities
reported in § 3.2, where the source terms are located in the momentum-like equations
(3.4b) and (3.5b).

In order to derive the relationship between the new adjoint closure variables and the
pore-scale velocities and pressures, the following Green’s formula is employed (see the
derivation in Sánchez-Vargas et al. 2022):

∫
Vα

[a · (dc · ∇b + ∇ · T b)− (−dc · ∇a + ∇ · T a) · b − b∇ · a

+ d(∇ · ca) · b + a∇ · b] dV

=
∫

Aα

[a · (nα · T b)− (nα · (−dca + T a)) · b] dA, (4.2)

with T a defined in (3.7a) and

T b = −Ib + c(∇b + ∇bT). (4.3)

In these two equations, d is a constant scalar, whereas a, b, c and a, b, c are respectively
three arbitrary scalar and three arbitrary vector fields having sufficient regularity.

When this formula is employed with a = c = vβ , c = μ(Γβ), a = p̃β , b = f β , b = fβ
and d = ρβ , and by making use of the differential equations and boundary conditions for
the pore-scale flow and the adjoint closure problem, the resulting expression can be written
as follows:

〈pγ 〉γ |xγ − 〈pβ〉β |xβ = −
∫

Aβγ

[w · (nβγ · T fγ )− (nβγ · (−ρβww + T p̃γ )) · f β] dA

− (ϕβ + xβ − xγ ) · ∇〈pβ〉β + ρβbβ · ϕβ + sβγ . (4.4)

To arrive at this result, the fact that
∫
Aβγ

nβγ · f β dA = 1 was employed. Moreover, the
following nomenclature was adopted:

ϕα =
∫

Vα

f α dV, (4.5a)

sβγ =
∫

Aβγ

(∇sγ + 2Hγnβγ ) · f β dA. (4.5b)

Let now attention be directed to the γ phase. The Green’s formula given in (4.2) is
used again, setting a = c = vγ , c = μ(Γγ ), a = p̃γ , b = f γ , b = fγ and d = ργ , and, by
making use of the corresponding differential equations and boundary conditions, this leads
to

(∇〈pβ〉β − ργ bγ ) · ϕγ =
∫

Aβγ

[w · (nβγ · T fγ )− (nβγ · (−ργww + T p̃γ )) · f β] dA.

(4.6)
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Generalised Newtonian two-phase flow in porous media

When this result is substituted back into (4.4), the following expression for the
macroscopic pressure difference, ΔP ≡ 〈pγ 〉γ |xγ − 〈pβ〉β |xβ , is obtained:

ΔP = −(ϕβ + ϕγ + xβ − xγ ) · ∇〈pβ〉β + ρβbβ · ϕβ + ργ bγ · ϕγ + sβγ

+ (ργ − ρβ)

∫
Aβγ

nβγ · ww · f β dA. (4.7a)

This is the second salient result of the developments reported in this work, which extends
the analysis detailed in Lasseux & Valdés-Parada (2023) to inertial and non-Newtonian
flow. When there is no inertia and μ(Γα) is constant, the expression for ΔP exactly
coincides with the one derived in that reference.

From (4.7a), it is clear that the average pressure difference depends on the macroscopic
pressure gradient and bulk force in each phase as well as on capillary effects, implicitly
involving the shape, position and area of Aβγ . It also depends on inertia, when present, if
the fluid–fluid interface is not stationary, as reflected by the last term in (4.7a). All these
dependencies can be determined from the solution of the adjoint closure problem given
in (4.1), providing the fields of f α that are affected by inertia and the non-Newtonian
character of the fluids. The first three terms and the last one on the right-hand side of
(4.7a) only result from dynamic effects contributing to the average pressure difference.
Nevertheless, dynamic effects are also implicitly present in sβγ through f β , which
operates as a weighting factor. When inertia is insignificant, or when Aβγ is stationary,
(4.7a) simplifies to

ΔP = −(ϕβ + ϕγ + xβ − xγ ) · ∇〈pβ〉β + ρβbβ · ϕβ + ργ bγ · ϕγ + sβγ ,

creeping flow orAβγ stationary. (4.7b)

Finally, when there is no macroscopic forcing, no interfacial tension gradient and the
fluid–fluid interface is in its stationary position, H is constant and ΔP reduces to the
classical Laplace relationship, ΔP = PcL = 2Hγ . When these conditions are not met,
ΔP may significantly differ from this equilibrium relationship as previously suggested by
Marle (1981), Hassanizadeh & Gray (1993) and Gray & Miller (2011) and evidenced in
Lasseux & Valdés-Parada (2023).

5. Macroscopic model summary

The set of averaged equations that constitutes the macroscopic models derived here is
now summarised. On the basis of the existence and pertinence of a periodic unit cell,
justified by the length-scale separation, the macroscale mass and momentum balance
equations for incompressible, quasi-steady, inertial, generalised Newtonian flow in rigid
and homogeneous porous media can be written in the following manner:

∂εα

∂t
+ ∇ · 〈vα〉α = 0, (5.1a)

〈vα〉α = − Hαα
μrefα

· (∇〈pα〉α − ραbα)− Hακ
μrefκ

· (∇〈pκ〉κ − ρκbκ)

+ 1
μrefαV

∫
Aβγ

(2γHnβγ + ∇sγ ) · Dαα dA + ργ − ρβ

μrefαV

∫
Aβγ

nβγ · ww · Dαα dA.

(5.1b)
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In addition, the expression that predicts the macroscopic pressure difference is given by

ΔP = 〈pγ 〉γ |xγ − 〈pβ〉β |xβ = −(ϕβ + ϕγ + xβ − xγ ) · ∇〈pβ〉β
+ ρβbβ · ϕβ + ργ bγ · ϕγ
+ sβγ + (ργ − ρβ)

∫
Aβγ

nβγ · ww · f β dA. (5.1c)

In fact, the above equations can be simplified under creeping flow conditions or when the
fluid–fluid interface is stationary as, under such circumstances, the last interfacial integral
term in both (5.1b) and (5.1c) vanishes. Otherwise, knowledge of the displacement velocity
of the fluid–fluid interfaces, w, is required. The macroscopic equations (5.1) are written in
terms of effective-medium quantities (see (3.13) and (4.5)) that can be predicted from the
solution of the adjoint closure problems derived in the previous sections, given by (3.4) and
(3.5) for the macroscopic momentum balance equation and (4.1) for the average pressure
difference. These problems require the location of the fluid–fluid interfaces, as well as the
velocity field in each phase in the periodic unit cell, even under creeping flow conditions,
due to the apparent viscosity coefficient μ(Γα). The validity of these models, as well as
the dependence with the rheological parameters, are investigated in § 6 for a particular
non-Newtonian viscosity model.

To conclude this section, it is worth recalling that the macroscopic models derived here
involve the use of no-slip conditions at the solid–fluid interfaces. If such condition is
replaced by a Navier-slip condition and triple-phase contact line effects are disregarded,
it is reasonable to propose, from previous works on one-phase flow with slip (cf.
Lasseux, Valdés-Parada & Porter 2016), that the structure of macroscopic models remains
unchanged as the slip effects play a role only at the closure problems level. In addition,
many works have reported on hysteretic effects when studying two-phase flow in porous
media. For example, this is the case when the capillary pressure is assumed to only depend
on the saturation. In this regard, the macroscopic models reported here clearly show
that both macroscale fluid velocities and pressure difference depend on the macroscopic
forcings, saturation, shapes and positions of the interfaces, interfacial tension effects
as well as inertial effects, when present. This more exhaustive dependence is prone to
alleviate the conjectured hysteretic behaviour.

6. Numerical simulations

The objective of this section is twofold. Firstly, average velocities and pressure difference
predicted from the upscaled models are compared with the corresponding average
quantities resulting from DNS of the pore-scale equations, for validation purposes.
Secondly, the influence of the non-Newtonian and inertial character of the flow on the
predictions of the effective-medium coefficients and macroscale variables is analysed.

The macroscale models derived in the previous two sections were obtained without
assuming any particular geometrical configuration in the periodic unit cell nor any
constitutive relationship for the apparent viscosity μ(Γα), hence keeping generality. Here,
results are reported considering that the γ phase is Newtonian and that a Carreau model
is applicable for μ(Γβ). This model involves four parameters, namely the infinite and zero
shear-rate viscosities μ∞ and μ0, the relaxation time λ and the power-law index n, and can
be expressed as follows:

μ(Γβ) = μ∞ + (μ0 − μ∞)[1 + (λΓβ)
2](n−1)/2. (6.1)
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Generalised Newtonian two-phase flow in porous media

The particular two-phase flow configurations used for the numerical simulations are
sketched in figure 2 and consist of square (figure 2a,b) and random (figure 2c) patterns
of solid cylinders with circular cross-section in periodic unit cells of side length �. In
the numerical simulations that follow, the β-phase saturation is varied in the geometries
depicted in figures 2(a) and 2(b) (albeit the porosity is fixed at ε = 0.8), whereas, in
the case of figure 2(c), Sβ = 0.346 and ε = 0.915. Although the models derived in the
previous sections are applicable over a wider set of conditions, for the sake of simplicity
in the analysis, here the flow is considered to be two-dimensional. In addition, fluid phase
distributions are considered such that the (wetting) β phase flows under continuous and/or
discontinuous forms of layers attached to each solid cylinder (note that the latter case
mimics residual fluid trapping), whereas the (non-wetting) γ phase flows in the remaining
core of the pore space. Moreover, in the case of figure 2(c), the non-wetting fluid is also
partially in contact with the solid phase, as would be the case for a mixed-wet medium.
The two phases are flowing under the macroscopic forcing given by

∇〈pα〉α = ∂〈pα〉α
∂x

ex = −hex, (6.2)

assuming bα = 0 and a constant interfacial tension, i.e. ∇sγ = 0. Moreover, the analysis
comprises both the laminar and creeping flow regimes. In the latter case, the terms
involving n · w in the upscaled models can be safely discarded as explained in the previous
sections. It is worth mentioning that, in the absence of inertia, the apparent permeability
tensors (Hακ ) reduce to the permeability tensors Kακ . In addition, in the case depicted
in figure 2(a), for each wetting-phase saturation value, Sβ , the shape and position of
the fluid–fluid interface are taken to correspond to the steady pore-scale flow solution
when both phases are Newtonian. They were obtained using a boundary integral element
method, as reported by Lasseux & Valdés-Parada (2022). Obviously, this interface shape
and position cannot be assumed to correspond, in general, to steady-state conditions
when the wetting phase is non-Newtonian. Fortunately, as explained above, the upscaled
models derived here are applicable under unsteady conditions as discussed in § 2.1. For
this reason, the shapes and positions of Aβγ obtained for Newtonian two-phase flow
can also be used in the present analysis in order to test the robustness of the models for
situations in which the fluid–fluid interfaces are not stationary. With the same reasoning,
the shapes and positions used for the configurations in figure 2(b,c) can be arbitrarily
set. Indeed, the unit cell concept allows considering three-dimensional porous media
geometries and phase distributions that can be as complex as desired and that would be
obtained from laboratory images, albeit without compromising the periodicity condition.
Furthermore, some statistical distribution of flow properties can be determined by applying
the upscaling approach developed here over a range of specific microscale realisations,
and then combining these in different arrangements to extend the model applicability.
A thorough investigation of the many geometrical configurations that can be considered
together with particular applications, although interesting, lies beyond the scope of this
work.

For the analysis that follows, it is convenient to reformulate both the microscale and
macroscale models, as well as the closure problems, in their dimensionless form as
presented in Appendix B. Under this form, the flow and closure problems depend on
the porosity, ε, the wetting phase saturation, Sβ , the viscosity ratio, μ∗ = μrefβ/μrefγ ,
the power-law index, n, the dimensionless relaxation time, λ∗ = λh�/μrefγ , the Reynolds
numbers, Reα = ρα�

2/(trefαμrefα), and the capillary number, Ca = h�2/γ .
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ey

ex

�

(b)(a) (c)

Figure 2. Sketch of the two-dimensional periodic unit cells, of side length �, corresponding to square (a,b) and
random (c) patterns of parallel cylinders of circular cross-section. The wetting phase (blue) can be continuous
(a), discontinuous (b) or both (c), whereas the non-wetting phase (white) is flowing continuously in all cases.
In (c), both fluids are in contact with the σ phase.

Following previous works (e.g. Airiau & Bottaro 2020; Sánchez-Vargas et al. 2022), it
is assumed that μ∞ = 0. Thus, the remaining degrees of freedom in the Carreau model
are μ0 (= μrefβ), n and λ.

Reported values for the power-law index of a variety of shear-thinning fluids range
mostly from 0.2 to 0.8, whereas the dimensional relaxation time can vary over several
orders of magnitude, from O(0.001) s to O(100) s (Chhabra & Uhlherr 1980; Yasuda,
Armstrong & Cohen 1981; Bird, Armstrong & Hassager 1987; Piau, Kissi & Tremblay
1988; Marcovich et al. 2004; Kwon et al. 2008; Liu et al. 2022). In order to reduce the
number of degrees of freedom, the analysis is carried out fixing the following parameters
in the unit cells depicted in figure 2(a,b): ε = 0.8, μ∗ = 0.1 and Ca = 10, while Sβ
is varied from 0.4 up to 0.75, n ranging between 0.4 and 1, and λ∗ between 0 and
100. Some examples of fluids with a power-law index of about 0.4 include blood with
65 % haematocrit (Kwon et al. 2008), plant-based biopolymers derived from soy, wheat
or pea protein (Hayashi, Hayakawa & Fujio 1993; Klüver & Meyer 2014) and some
ultrahigh-viscosity silica nanoparticle suspensions (Liu et al. 2022). Finally, 2 %–5 %
alginate solutions in distilled water (Rezende et al. 2009; Belalia & Djelali 2014) are
examples of shear-thinning fluids with n = 0.8. In addition, λ∗ depends on the dimensional
value of the relaxation time, and on the magnitude of the applied pressure gradient.
Therefore, λ∗ = 100 represents a fluid with a strong non-Newtonian character, subject to
large pressure gradients as can be encountered, for instance, in polymer and resin injection
(Meng 2019; Liu et al. 2022).

To carry out the closure problem solutions, as well as the DNS, the finite-element
software Comsol Multiphysics 6.1 was employed, using a direct PARDISO solver. In
addition, typical mesh refinement tests were performed in order to ensure that the results
were independent of this degree of freedom. The numerical simulations were carried
out in two steps. The first one consisted of the computation of the pore-scale velocity
and pressure fields in a unit cell. These results allow, on the one hand, computing the
dimensionless average velocity and average pressure difference, which constitute the DNS
results. On the other hand, the wetting-phase viscosity becomes available, together with
the velocity fields, vα (α = β, γ ), within each phase and at the fluid–fluid interface (i.e.
w) when inertia is present, for the closure problem solution carried out in the second step.
In the following sections, an analysis of the prediction of the effective parameters and the
validation of the macroscopic models are proposed for both momentum (§ 6.1) and average
pressure difference (§ 6.2).
970 A19-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

61
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.615


Generalised Newtonian two-phase flow in porous media

6.1. Analysis of the macroscopic velocity
This part of the work is dedicated first to the study of the influence of rheological
parameters under creeping flow conditions for the configuration in which the β phase
is continuous (see figure 2a). The use of creeping flow conditions in the first set of
simulations is justified both to contrast with previously reported results (Lasseux &
Valdés-Parada 2022), and also to isolate the effects of rheology. Secondly, inertial effects
are studied in the three configurations depicted in figure 2. In all cases, emphasis is laid
upon validation with DNS results.

6.1.1. Influence of the rheological parameters in continuous fluid phases
In figure 3, a first set of results corresponding to the pore-scale flow streamlines,
superimposed to the velocity magnitude, are represented, taking n = 0.4, λ∗ = 0.5 and
four values of Sβ ranging from 0.4 to 0.7. For the Newtonian case (figure 3a,c,e,g), the
results reproduce those reported in figure 5 of Lasseux & Valdés-Parada (2022) and are
recalled here for comparison purposes. As expected, Aβγ coincides with a streamline in
that case. This feature is not observed in figure 3(b,d, f,h), which correspond to a situation
where the β phase obeys a Carreau model. In addition, the viscosity parameters employed
here, corresponding to a shear-thinning wetting phase, lead to a very significant increase
of the velocity by more than an order of magnitude in both phases in comparison with
the case in which the β phase is Newtonian. The change in the flow structure observed
when the β phase is non-Newtonian results from both the change in rheology and the
fact that the fluid–fluid interface does not correspond to its steady configuration. In all
cases, the largest wetting-phase velocity is located in the constriction between the solid
cylinder and Aβγ , which corresponds to a low-pressure zone. In contrast, the portions of
the wetting phase where eddies are present correspond to those where the viscosity is the
largest and correlate to large-pressure zones. Consequently, as the saturation increases,
the low-pressure zones increase in size, thus favouring the overall fluid flow. The same
effect is observed when λ∗ increases, or when n decreases, which is consistent with the
shear-thinning nature of the Carreau fluid considered here.

At this point, it is worth pondering the contribution of the different terms present in the
dimensionless macroscopic flow model as expressed in (B7). In table 1, data are reported
to evaluate both the Darcy-like part and the interfacial part of 〈v∗

αx〉α predicted by this
model, taking n = 0.4 and λ∗ = 5, for the same wetting-phase saturation values considered
in figure 3. These predictions yield relative errors with respect to DNS of less than 1 %
for all the values of Sβ considered here. Moreover, the Darcy-like terms are found to be,
at least, one order of magnitude larger than the interfacial terms for the set of parameters
considered here. Furthermore, since, for each given saturation, the macroscopic pressure
gradient is along ex (see (6.2)), 〈v∗

αy〉α is numerically verified to be zero, so, from this
point forth, focus is laid upon 〈v∗

αx〉α . Results in table 1 also show that the contributions
from K∗

ββxx, K∗
βγ xx and K∗

γβxx increase with Sβ . However, for K∗
γ γ xx the same observation

is not applicable and this needs to be further analysed. To address this point, figures 4
and 5 report the predictions of the permeability coefficients and the average velocities for
different wetting-phase saturations, while varying n and λ∗. In these figures, results are
presented in terms of the xx component krακ of the relative permeability tensor, defined as

krακ = Kακxx

K
, α, κ = β, γ, (6.3)
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Figure 3. Fields of the velocity magnitude and streamlines (in white) under Newtonian (a,c,e,g) and
non-Newtonian (b,d, f,h) flow conditions for the wetting β phase, taking four values of the β-phase saturation
(Sβ ): (a,b) Sβ = 0.4; (c,d) Sβ = 0.5; (e, f ) Sβ = 0.6; (g,h) Sβ = 0.7. The fluid–fluid interface is represented as
a black curve and the central solid cylinder in white. Simulations for non-Newtonian flow (b,d, f,h) correspond
to a Carreau fluid considering the power-law index n = 0.4 and the dimensionless relaxation time λ∗ = 5. Due
to symmetry, results are only reported for the top half of the unit cell depicted in figure 2(a). Other parameters:
ε = 0.8, Ca = 10 and μ∗ = 0.1.

where Kακxx is the xx component of the permeability tensor Kακ and K is the intrinsic
permeability, which is a scalar since, for the case under consideration, the structure is
orthotropic.

In figure 4, an analysis is presented fixing λ∗ and varying the power-law index n in a
range of values representative of different non-Newtonian fluids. Regarding these results,
the following remarks are in order.

• From figure 4(a,b), it is clear that the values of the x component of the velocity,
resulting from averaging the pore-scale simulation fields and predicted from solving
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Generalised Newtonian two-phase flow in porous media

Wetting-phase saturation (Sβ )

0.4 0.5 0.6 0.7

〈v∗
βx〉β 6.55 × 10−2 0.55 1.48 2.63

Errorβ (%) 7.47 × 10−3 0.15 0.37 0.16
〈v∗
γ x〉γ 1.25 2.53 3.11 2.85

Errorγ (%) 3.03 × 10−2 0.16 0.38 0.17
K∗
ββxx 2.02 × 10−3 1.38 × 10−2 5.34 × 10−2 0.13

K∗
γ γ xx 1.20 2.11 2.16 1.55

K∗
βγ xx 4.55 × 10−2 0.42 0.95 1.30

K∗
γβxx 4.55 × 10−3 4.20 × 10−2 9.48 × 10−2 0.13
α∗
β −2.44 × 10−4 −9.90 × 10−5 −3.54 × 10−5 −1.12 × 10−5

α∗
γ 3.38 × 10−5 −7.18 × 10−5 −1.91 × 10−5 −3.08 × 10−6

Table 1. Predictions of the macroscopic flow model for different saturations of the non-Newtonian
wetting phase, Sβ . The error is defined as Errorα (%) = 100 × |〈vαx〉αDNS − 〈vαx〉α |/〈vαx〉αDNS. Here,
K∗
ακxx stands for the xx component of the corresponding dimensionless permeability tensor and α∗

α =
2μrefγ /(μrefαCaV∗)

∫
Aβγ

H∗nβγ · D∗
αα dA∗ · ex. Also, ε = 0.8, Ca = 10, μ∗ = 0.1, n = 0.4 and λ∗ = 5. The

results correspond to the geometry depicted in figure 2(a).

the upscaled model, show excellent agreement for both fluid phases. In fact,
the relative error of the upscaled model predictions with respect to those from
pore-scale simulations is less than 5 % in all cases. This comment is also applicable
to the results reported in figure 5(a,b), for 0 ≤ λ∗ ≤ 100.

• Clearly, as the non-Newtonian character of the wetting phase is more pronounced,
the average flow in both phases is favoured, in agreement with the shear-thinning
model under consideration. The increment in both phases is very important as it can
reach two orders of magnitude with respect to the Newtonian case. This is attributed
to the increase of the relative permeability xx component and this is in agreement
with the observations made in figure 3.

• As n decreases, the relative permeabilities and the average velocities become more
sensitive to its variations. This is more evident for n < 0.5.

• The graphs in figure 4(e, f ), describing the xx component of the coupling relative
permeabilities, are related by krγβ = μ∗krβγ . This proportionality can be deduced
from (A10) under creeping flow conditions.

The second degree of freedom in this analysis is the dimensionless relaxation
time, λ∗. Results corresponding to the sensitivity of macroscale fluid velocities and
relative permeabilities to this parameter are reported in figure 5 for several values of
the wetting-phase saturation. Regarding these results, the following observations are
pertinent.

• Consistent with the results shown in figure 4, flow within the unit cell is improved
as the shear-thinning character of the wetting phase is increased. Once more, both
the relative permeabilities and macroscale velocities increase by roughly two orders
of magnitude as λ∗ increases from 1 to 100. Note that the flow is more sensitive to
variations of λ∗ in the range 0 ≤ λ∗ ≤ 5.

• Similar to the analysis of the impact of n, it must be noted that krβγ /krγβ = 10
(see figure 5e, f ) and the similarity with figure 4(e, f ). This confirms the expected
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(d )(c)
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Figure 4. The x component of the dimensionless average velocity in the β phase (a) and in the γ phase
(b) versus the wetting-phase saturation Sβ . (c–f ) The xx component of the dominant (krαα) and coupling (krακ ,
α /= κ) relative permeabilities versus Sβ , taking the intrinsic permeability as the reference. Results correspond
to a Newtonian γ phase and a Carreau fluid for the β phase with λ∗ = 5. • (red), Newtonian case (n = 1);
�, n = 0.8; �, n = 0.7; �, n = 0.6; �, n = 0.5; �, n = 0.4. In (a,b), results from DNS and the upscaled
model are reported with open circles and plain symbols, respectively. Other parameters: ε = 0.8, Ca = 10 and
μ∗ = 0.1. The results correspond to the geometry depicted in figure 2(a).

reciprocity relationship reported in § 3.3 (see also (A10)), in agreement with the fact
that μ∗ = 0.1.

The above analysis shows the important role played by both the dominant and coupling
Darcy-like terms. For the specific combination of values of the capillary number and
viscosity ratio, together with the porous medium geometry and interface configuration
chosen here, there is no relevant contribution from surface tension effects (i.e. α∗

α , cf.
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Figure 5. The x component of the dimensionless average velocity in the β phase (a) and in the γ phase
(b) versus the wetting-phase saturation Sβ . (c–f ) The xx component of the dominant (krαα) and coupling (krακ ,
α /= κ) relative permeabilities versus Sβ , taking the intrinsic permeability as the reference. Results correspond
to a Newtonian γ phase and a Carreau fluid for the β phase with n = 0.5. • (red), Newtonian case (λ∗ = 0);
�, λ∗ = 1; �, λ∗ = 5; �, λ∗ = 25; �, λ∗ = 50; �, λ∗ = 100. In (a,b), results from DNS and the upscaled
model are reported with open circles and plain symbols, respectively. Other parameters: ε = 0.8, Ca = 10 and
μ∗ = 0.1. The results correspond to the geometry depicted in figure 2(a).

(B8a)) to the prediction of the macroscopic fluid velocities. However, this should not
be considered as a general result as the contribution of this interfacial term was shown
to become even dominant in some circumstances, in particular while decreasing Ca or
increasing μ∗ (see table 1 in Lasseux & Valdés-Parada (2022)). The contribution of this
term, along with the inertial interfacial term, ω∗

α (cf. (B8)), is further explored next when
inertia is present.
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6.1.2. Influence of inertial effects
Let now attention be directed to the influence of inertial effects over the predictions of
the macroscale velocity and effective-medium coefficients. The results presented below
require specifying the Reynolds number values, Reα , α = β, γ , in both fluid phases. For
this reason, Reβ was arbitrarily set equal to one-tenth of Reγ . Despite the fact that in
the case of figure 2(c) the absence of symmetry of the unit cell makes the apparent
permeability tensors fully populated, in the following, only the xx components of these
tensors are reported, normalised with the xx component of the intrinsic permeability. This
is,

hrακ = Hακxx

K
, α, κ = β, γ. (6.4)

Accordingly, only the x components of the average velocities are reported.
In figures 6 and 7, the predictions of the average velocities and relative permeabilities

versus Sβ , taking four values of Reγ , resulting from solving the closure problems in the
geometries depicted in figures 2(a) and 2(b), are respectively reported for n = 0.5 and
λ∗ = 5 in the Carreau model. From these results, it is clear that the influence of the
rheology, combined with inertia, yields a complex dependence of the average velocities
and effective-medium coefficients on Sβ for the Reynolds number values considered here.
An important remark must be made for the situation in which the β phase is trapped (see
figure 2b). It is worth noticing in that case, that 〈v∗

βx〉β is not zero, despite the fact that it is
trapped. However, this is not surprising as this is a signature of the fact that the interface is
not at its steady position (i.e. the interface position can be thought of as being captured at
a given time at which this phase is rearranging, before equilibrium is reached). Therefore,
there is a net local momentum transport in the β phase in the x direction. This should not
be confused with the fact that, in this configuration, the β phase remains macroscopically
trapped in the porous medium, hence yielding no mass flow rate at the macroscopic system
boundaries.

The effects of α∗
κx are not reported here since they are negligible when the β phase is

continuous (cf. figure 2a), and they are exactly zero when it is discontinuous (cf. figure 2b),
since H is constant in that case. Note that the dependence of the average velocities and
h∗

rαα (α = β, γ ) on the Reynolds number is not monotonic over the reported range of
saturations. This can be attributed to pore-scale balance between viscous dissipation and
inertial acceleration in both fluid phases and to the fact that the fluid–fluid interface is
not at its stationary position. Nevertheless, as expected, when the β phase is continuous,
the values of both the average velocities and h∗

rαα are larger than those corresponding
to the case in which the β phase is trapped. This contrast is more pronounced in the γ
phase, as a result of the fact that, when the β phase is trapped, the wetting phase exerts
an extra drag on the surrounding non-wetting phase flow. Finally, for h∗

rακ (α, κ = β, γ ,
α /= κ), the simple reciprocity relationship observed in the previous section is no longer
valid, especially when the β phase is discontinuous (see figure 7e, f ). This is because the
terms on the right-hand side of (A10) are no longer vanishingly small compared with their
counterparts on the left-hand side when inertia is present. Despite this, the predictions
for hrβγ remain one order of magnitude larger than those for hrγβ as was observed in the
previous paragraphs under creeping flow conditions.

The last part of the analysis of inertial effects is focused on the configuration depicted
in figure 2(c). In this case, ε = 0.915, Sβ = 0.346, μ∗ = 0.1, n = 0.5, λ∗ = 5 and Ca =
10, so the results for the velocity and the relative (dominant and coupling) apparent
permeabilities reported in figure 8 are presented as functions of the Reynolds number
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Figure 6. The x component of the dimensionless average velocity in the β phase (a) and in the γ phase
(b) versus the wetting-phase saturation Sβ . (c–f ) The xx component of the dominant (hrαα) and coupling (hrακ ,
α /= κ) apparent relative permeabilities versus Sβ , taking the xx component of the intrinsic permeability tensor
as the reference. Results correspond to a Newtonian γ phase and a Carreau fluid for the β phase with n = 0.5
and λ∗ = 5 for the geometry depicted in figure 2(a) in which the β phase is continuous. • (red), creeping
flow regime (Reγ = 0); �, Reγ = 10; �, Reγ = 50; � (grey), Reγ = 100. In (a,b), results from DNS and the
upscaled model are reported with open circles and plain symbols, respectively. Other parameters: ε = 0.8,
Ca = 10 and μ∗ = 0.1.

in the γ phase. These results show that larger values of Reγ are required to appreciate the
effect of inertia, in contrast to the results for the configurations in figures 2(a) and 2(b).
This is attributed to the viscous drag exerted by the solid on both fluid phases, and this
was not the case in the other geometries for which the γ phase experienced lubrication
effects. The predictions for 〈v∗

αx〉α are qualitatively alike in both fluid phases, although
〈v∗
γ x〉γ and hrγ γ are one order of magnitude larger than their counterparts in the β phase.

The dependence of 〈v∗
αx〉α on the Reynolds number is consistent with observations made
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Figure 7. The x component of the dimensionless average velocity in the β phase (a) and in the γ phase
(b) versus the wetting-phase saturation Sβ . (c–f ) The xx component of the dominant (hrαα) and coupling (hrακ ,
α /= κ) apparent relative permeabilities versus Sβ , taking the xx component of the intrinsic permeability tensor
as the reference. Results correspond to a Newtonian γ phase and a Carreau fluid for the β phase with n = 0.5
and λ∗ = 5 for the geometry depicted in figure 2(b) in which the β phase is discontinuous. • (red), creeping
flow regime (Reγ = 0); �, Reγ = 10; �, Reγ = 50; � (grey), Reγ = 100. In (a,b), results from DNS and the
upscaled model are reported with open circles and plain symbols, respectively. Other parameters: ε = 0.8,
Ca = 10 and μ∗ = 0.1.

in inertial one-phase flow in porous media (cf. Lasseux, Arani & Ahmadi 2011). Finally,
the coupling permeability terms maintain the same properties observed in the previous
geometries, i.e. hrβγ is one order of magnitude larger than hrγβ , albeit their dependence
upon the Reynolds number is not the same. It is worth adding that the results presented in
figures 6–8 show an excellent agreement between DNS and the upscaled model predictions
for the average fluid velocities, thus validating the upscaled model in the presence of
inertia.
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Figure 8. The x component of the dimensionless average velocity in the β phase (a) and in the γ phase
(b) versus Reγ . (c–f ) The xx component of the dominant (hrαα) and coupling (hrακ , α /= κ) apparent relative
permeabilities versus Reγ , taking the xx component of the intrinsic permeability as the reference. Results
correspond to Ca = 10 and μ∗ = 0.1 for a Newtonian γ phase and a Carreau fluid for the β phase with n = 0.5
and λ∗ = 5 for the geometry depicted in figure 2(c) in which the β phase is both continuous and discontinuous
and both phases are in contact with the solid phase σ . In (a,b), results from DNS and the upscaled model are
reported with open and filled circles, respectively. Other parameters are ε = 0.915 and Sβ = 0.346.

To conclude this part of the analysis, it is pertinent to examine the contributions to
〈v∗
κx〉κ (κ = β, γ ) from the x component of the interfacial terms α∗

κ and ω∗
κ (κ = β, γ ). In

figure 9, these contributions are reported normalised with 〈v∗
κx〉κ (κ = β, γ ) in both fluid

phases against Reγ . These results show that, for the particular configuration under study,
the contributions from ω∗

κ can be neglected for Reγ ≤ 10 with respect to those from α∗
κ .

Nevertheless, ω∗
κ becomes especially relevant for Reγ > 103 as it can be roughly equal to
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Figure 9. Per cent contribution to 〈v∗
κx〉κ (κ = β, γ ) of the interfacial term x component defined in (B8) in

(a) the β phase and (b) the γ phase (i.e. ψ%
κ = 100 × |ψ∗

κx|/〈v∗
κx〉κ , ψ = α, ω, κ = β, γ ) as functions of the

Reynolds number in the γ phase (Reγ ). Results correspond to Ca = 10 and μ∗ = 0.1 for a Newtonian γ phase
and a Carreau fluid for the β phase with n = 0.5 and λ∗ = 5 for the geometry depicted in figure 2(c). Other
parameters are ε = 0.915 and Sβ = 0.346.

the macroscopic velocity values of both fluid phases. In contrast, the contributions from
α∗
κ , representing between 3 % and 10 % of the average velocities, remain relevant in the

entire range of Reynolds number values considered here.

6.2. Analysis of the average pressure difference
An analysis similar to that reported above for the average velocities is now performed for
the macroscopic pressure difference model, as given in (B10). For the sake of brevity, only
the case depicted in figure 2(a) in the creeping regime is considered, keeping ∇∗〈p∗

α〉α as
given by (B2). In figure 10(a), the predictions of ΔP∗ from the dimensionless upscaled
equation (B10) in which Reynolds numbers are zero are compared with the DNS results,
ΔP∗

DNS, for different wetting-phase saturations Sβ and values of the power-law index n
ranging from 0.4 to 1.0, fixing λ∗ = 5. Clearly, the derived model predictions perfectly
match the pore-scale numerical simulations. In all cases, the error %, calculated as
100 × |ΔP∗

DNS − ΔP∗|/ΔP∗
DNS, remains smaller than 5 %. This is also true for the results

reported in figure 10(b) corresponding to values of the dimensionless relaxation time λ∗
ranging from 0 to 50, keeping n = 0.5. Results for ΔP∗ for larger values of λ∗ do not
significantly change, and, therefore, are not reported in figure 10(b).

Increasing the shear-thinning effect of the β phase, by either decreasing n or increasing
λ∗, yields a decrease of the macroscopic pressure difference as shown in figures 10(a)
and 10(b), respectively. This is particularly noticeable for Sβ < 0.6, whereas, for larger
values of the saturation, the impact of the wetting-phase rheology is almost insignificant.
Moreover, in agreement with the velocity fields reported in figure 3, it is verified that the
average pressure in each phase decreases while increasing the wetting-phase saturation.
This is consistent with the fact that the size of the recirculation zones in the wetting
phase decreases with Sβ . Nevertheless, the above does not necessarily explain why the
macroscopic pressure difference tends to zero as the wetting-phase saturation increases.
To address this issue, it is worth recalling that ΔP∗ results from the contribution of both
dynamic (i.e. the macroscopic forcing) and capillary effects, represented by ψ∗ and s∗

βγ ,
respectively. Therefore, the impact of the rheological parameters n and λ∗ on ψ∗ and s∗

βγ ,
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Figure 10. Dimensionless macroscopic pressure difference ΔP∗ versus the wetting-phase saturation Sβ
resulting from the upscaled model (filled symbols) and from DNS (open circles). Results correspond to the
geometry depicted in figure 2(a) with a Newtonian γ phase and a Carreau fluid for the β phase. In (a),
λ∗ = 5 and • (red), Newtonian case (n = 1); �, n = 0.8; �, n = 0.7; �, n = 0.6; �, n = 0.5; �, n = 0.4.
In (b) n = 0.5 and • (red), Newtonian case (λ∗ = 0); �, λ∗ = 1; �, λ∗ = 5; �, λ∗ = 25; �, λ∗ = 50. Other
parameters: ε = 0.8, Ca = 10 and μ∗ = 0.1.

representing the (dimensionless) dynamic and capillary contributions, respectively given
by (B11a) and (B11b), is now analysed.

The effective quantities ψ∗ and s∗
βγ , obtained from the closure problem solution with

n ranging from 1 to 0.4, while fixing λ∗ = 5, are reported versus Sβ in figures 11(a) and
11(b), whereas, in figures 11(c) and 11(d), the same representation is provided for results
obtained by varying λ∗ from 0 to 50, fixing n = 0.5. From figures 11(a) and 11(c), it
can be noted that the contribution of the dynamic effects ψ∗ to ΔP∗ is always negative,
contrary to the dimensionless capillary effect contribution s∗

βγ (see figures 11b and 11d).
From these figures, it is clear that both ψ∗ and s∗

βγ tend to zero as Sβ increases. This
results in a macroscopic pressure difference that also tends to zero when Sβ takes large
enough values (i.e. > 0.6). In addition, results in figures 11(a) and 11(c) show that ψ∗
increases in magnitude when the shear-thinning effect in the β phase becomes more
pronounced, whereas the opposite holds for s∗

βγ (see figures 11b and 11d). It must be
noted that both dynamic and capillary effects play a significant role in the prediction of
the average pressure difference for the conditions under consideration here. This is in
contrast with what was concluded for the average velocities for which the interfacial term
is insignificant under the same conditions.

To conclude this section, it is worth remarking that the main objective of the present
work is the derivation of the macroscopic models summarised in § 5. Therefore, an
exhaustive analysis of all the degrees of freedom involved in the closure problems solution
was not carried out. Indeed, the numerical analysis presented here is only illustrative, as
the upscaled models are applicable under broader flow conditions. Moreover, rather than
reproducing the conditions of a particular experimental system, the interest lies here in
analysing the contributions of each term constituting the upscaled models. Importantly,
in all the situations considered in this work, the upscaled models for both the average
velocities and average pressure difference are validated by the pore-scale direct numerical
simulations. It must be emphasised that this holds even if the fluid–fluid interface is not in
its stationary configuration, if it is continuous or not through the unit cell and in potentially
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Figure 11. Dynamic (i.e. macroscopic forcing) ψ∗ = ϕ∗
βx + ϕ∗

γ x + x∗
β − x∗

γ and capillary effect s∗
βγ

contributions versus the wetting-phase saturation Sβ . In (a,b) λ∗ = 5 and • (red), Newtonian case (n = 1);
�, n = 0.8; �, n = 0.7; �, n = 0.6; �, n = 0.5; �, n = 0.4. In (c,d) n = 0.5 and • (red), Newtonian case
(λ∗ = 0); �, λ∗ = 1; �, λ∗ = 5; �, λ∗ = 25; �, λ∗ = 50. In all cases, ε = 0.8, Ca = 10 and μ∗ = 0.1 in the
geometrical configuration of figure 2(a).

mixed-wet conditions. This should be regarded as a first validation step and motivates
further comparisons with laboratory experiments.

7. Conclusions

Closed upscaled models for generalised Newtonian two-phase, quasi-steady,
incompressible and inertial fluid flow in rigid and homogeneous porous media, including
possible interfacial tension gradient (i.e. Marangoni) effects, are formally derived from the
governing equations at the pore scale employing a simplified volume-averaging technique
coupled to an adjoint method and Green’s formulation. No other assumptions than those
classically adopted for upscaling, i.e. separation between the microscopic and macroscopic
characteristic length scales and existence of a representative elementary volume, are
required in the derivation. The models consist of macroscopic mass and momentum
balance equations in each phase and an expression of the average pressure difference.
The macroscopic mass balance equations are identical to those already reported for
the Newtonian case. For momentum, the averaged velocities are given by the classical
generalised Darcy’s law that takes inertia and viscous coupling into account, but that
is complemented by additional terms resulting from the upscaling process. Indeed, the
average velocities are shown to depend on the intrinsic average pressure gradient and
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body force in each phase through Darcy-like terms expressed with dominant and coupling
apparent (i.e. inertia-dependent) permeability tensors. The former are symmetric while
the latter satisfy a reciprocity relationship. Moreover, two additional terms are involved,
including a contribution from interfacial tension effects and another one, accounting for
interfacial inertia, that vanishes when fluid–fluid interfaces are in their stationary position.
All the effective quantities involved in the expression of the macroscopic velocities are
evaluated from the solution of a pair of (adjoint) closure problems on periodic unit
cells representative of the microscale process and microstructure of the porous medium.
Similarly, the average pressure difference is shown to include terms that involve the
macroscopic forcing (i.e. the macroscopic pressure gradient and body force) in each
phase, interfacial tension and inertia, the latter vanishing when fluid–fluid interfaces are
stationary. The effective quantities for this model are determined from the solution of
another closure problem on the periodic unit cell.

Numerical tests were performed on model two-dimensional configurations considering
a Newtonian non-wetting phase and a shear-thinning Carreau fluid for the wetting phase.
Many different situations were envisaged, for which the wetting phase is either continuous
or not, a combination of the two and a mixed-wet type of system where both fluid
phases are in contact with the solid phase. The effects of the (wetting-phase) saturation,
rheology parameters in the Carreau model and Reynolds numbers were analysed. In all the
situations, excellent agreement was achieved between the average velocities and pressure
difference obtained from DNS on the one-hand, and predicted by the macroscopic models,
after solving the closure problems, on the other-hand, hence validating the models derived
here. Indeed, in all the situations, the maximum error is less than 5 %, confirming the
performance of the average models. All the effective quantities, and consequently the
macroscopic velocity in each phase and the average pressure difference, were shown
to be very sensitive to changes in the wetting-phase rheology and the presence or not
of inertia. The interfacial terms, resulting from capillary effects and inertia, present in
both the macroscopic momentum balance equations and pressure difference relationship,
were shown to depend on the rheology and flow conditions and their contributions in the
macroscale models were clearly identified and analysed.

To the best of our knowledge, the derivation of these two models in the context of
non-Newtonian two-phase inertial flow in porous media represents a novelty. A salient
feature lies in the fact that, in addition to the formal derivation, the roles played by the
different sources, originating from viscous, interfacial tension and inertial effects, are
clearly identified and can be evaluated from the adjoint closure problems. In particular,
for a given porous structure, all the effective quantities are expected to depend on the
porosity, Reynolds number in each phase, capillary number, (wetting-phase) saturation,
ratio of the reference viscosities, rheology in each phase and pressure gradient orientation
and, importantly, on the configuration of the fluid–fluid interfaces. The locality of closure
problems, which is required to define the effective coefficients involved in the average
equations, relies on the identification of a representative periodic unit cell, a concept that
is classical during upscaling. Nevertheless, this is not prone to represent a major limitation
in the validity of the macroscopic models. However, in the case of a frontal displacement
of one phase by another, more attention would have to be paid in the vicinity of the
macroscopic front since, in this region, separation of length scales may fail. This situation
and other physical conditions remain to be further studied in future works.
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Appendix A

In this appendix, a symmetry analysis of the dominant apparent permeability tensors, Hαα
(α = β, γ ), and a reciprocity relationship between the coupling apparent permeability
tensors, Hβγ and Hγβ , are reported. For this purpose, the following Green’s formula is
of interest:

∫
Vα

[AT · (dc · ∇B + ∇ · T b)− (−dc · ∇A + ∇ · T a)
T · B

− ∇ · Ab + d∇ · cAT · B + a∇ · B] dV

=
∫

Aα

[AT · (n · T b)− (n · (−dcA + T a))
T · B] dA, (A1)

the proof of which can be found in Appendix A in Sánchez-Vargas et al. (2022). Here,
d, a, c, B, T b, b and c have the same properties as for (3.8) and (4.2), whereas A is a
second-order tensor having appropriate regularities and

T a = −Ia + c(∇A + ∇AT1). (A2)

A.1. Dominant apparent permeability tensors
The analysis starts by considering Green’s formula (A1) with A = B = Dαα , c = vα ,
a = b = μrefαdαα , c = μ(Γα) and d = ρα (α = β, γ ). Substitution of the differential
equations and corresponding boundary conditions given in closure problems I and II leads
to (α, κ = β, γ , α /= κ)

μrefα

∫
Vα

(Dαα − DT
αα) dV = −2ρα

∫
Vα

(vα · ∇Dαα)
T · Dαα dV

+
∫

Aβγ

[DT
κα · (nακ · μrefκT dκα )− (nακ · (μrefκT dκα ))

T · Dκα] dA

+
∫

Aβγ

(nακ · (ραvαDαα))
T · Dαα dA, (A3)

where T dκα is defined in the same form as in (3.6). Dividing both sides of the above
equation by V and taking the transpose of the resulting expression while recalling the
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definitions given in (3.13), leads to

μrefα(Hαα − HT
αα) = −2ρα〈DT

αα · (vα · ∇Dαα)〉α
+ 1

V

∫
Aβγ

[(nακ · μrefκT dκα )
T · Dκα − DT

κα · (nακ · μrefκT dκα )] dA

+ ρα〈∇ · (vαDT
αα · Dαα)〉α. (A4)

Note that the divergence theorem was employed in the last term. In addition, the
identities [(nακ · cA)T · B]T = nακ · (cBT · A) and ((c · E)T · A)T = AT · (c · E) were
used, with E being a third-order tensor.

Next, Green’s formula (A1) is employed again with A = B = Dκα , c = vκ , a = b =
μrefκdκα , c = μ(Γκ) and d = ρκ (α /= κ). The same procedure as that used above leads to

1
V

∫
Aβγ

[(nακ · μrefκT dκα )
T · Dκα − DT

κα · (nακ · μrefκT dκα )] dA =

− 2ρκ〈DT
κα · (vκ · ∇Dκα)〉κ + ρκ〈∇ · (vκDT

κα · Dκα)〉κ . (A5)

Substituting this last expression into (A4) and making use of the identity

∇ · (cAT · B) = AT · (c · ∇B)+ [BT · (c · ∇A)]T , (A6)

valid when the vector field c is solenoidal, allows writing the following relationship
between the dominant apparent permeability tensors:

Hαα − HT
αα = ρα

μrefα
(〈DT

αα · (vα · ∇Dαα)〉T
α − 〈DT

αα · (vα · ∇Dαα)〉α)

+ ρκ

μrefα
(〈DT

κα · (vκ · ∇Dκα)〉T
κ − 〈DT

κα · (vκ · ∇Dκα)〉κ), α /= κ. (A7)

Under this form, it follows that Hαα is not symmetric when inertia is present, its
skew-symmetric part being expressed on the right-hand side of (A7). The latter is zero
when the flow is in the creeping regime, showing that the dominant permeability tensors
are symmetric in that case.

A.2. Coupling apparent permeability tensors
A relationship between the coupling apparent permeability tensors can be obtained using
a procedure similar to the preceding one, namely by making use of Green’s formula (A1)
with A = Dβγ , B = Dββ , c = vβ , a = μrefβdβγ , b = μrefβdββ , c = μ(Γβ) and d = ρβ .
Once the differential equations and boundary conditions of the closure problems I and II
are employed, taking the transpose of the result and dividing by V , the following expression
is obtained:

μrefβ〈Dβγ 〉β = 2ρβ〈DT
ββ · (vβ · ∇Dβγ )〉β − ρβ〈∇ · (vβDT

ββ · Dβγ )〉β

− 1
V

∫
Aβγ

[(nβγ · μrefγ T dγβ )
T · Dγ γ − DT

γβ · (nβγ · μrefγ T dγ γ )] dA.

(A8)
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Carrying out the same operations with A = Dγ γ , B = Dγβ , c = vγ , a = μrefγ dγ γ , b =
μrefγ dγβ , c = μ(Γγ ) and d = ργ , yields

μrefγ 〈Dγβ〉T
γ + 2ργ 〈DT

γβ · (vγ · ∇Dγ γ )〉γ − ργ 〈∇ · (vγDT
γβ · Dγ γ )〉γ

= − 1
V

∫
Aβγ

[(nβγ · μrefγ T dγβ )
T · Dγ γ − DT

γβ · (nβγ · μrefγ T dγ γ )] dA. (A9)

Substituting this result into (A8), taking into account the nomenclature given in (3.13), and
making use of (A6), allows writing the final reciprocity relationship as

μrefγHT
γβ − μrefβHβγ = ρβ[〈DT

ββ · (vβ · ∇Dβγ )〉β − 〈DT
βγ · (vβ · ∇Dββ)〉T

β ]

+ ργ [〈DT
γβ · (vγ · ∇Dγ γ )〉γ − 〈DT

γ γ · (vγ · ∇Dγβ)〉T
γ ]. (A10)

The right-hand side of this expression only results from inertia, hence being zero in the
creeping flow regime.

Appendix B

In this appendix, the microscale and macroscale models, as well as the closure problems,
are formulated in their dimensionless version, considering no body force and a constant
interfacial tension, i.e. bα = 0 (α = β, γ ) and ∇sγ = 0. Moreover, the γ phase is
considered as Newtonian and the (wetting) β-phase viscosity is supposed to obey the
Carreau model given in (6.1). To derive the dimensionless equations, the reference length,
velocity and pressure in the α phase are respectively chosen as �, �/tref and μrefα/tref with
tref = μrefγ /(h�). In this way, the following definitions are proposed:

r∗ = r
�
, v∗

α = vαtref

�
, p∗

α = pαtref

μrefα
, Ca = h�2

γ
, H∗ = H�,

μ∗ = μrefβ

μrefγ
, Reα = ρα�

2

μrefαtrefα
.

⎫⎪⎪⎬
⎪⎪⎭

(B1)

Here, and in the following, the superscript ∗ denotes dimensionless quantities and Ca is
the capillary number. Consequently, the macroscopic forcing defined in (6.2) takes the
following dimensionless form:

∇∗〈p∗
α〉α = −μrefγ /μrefαex. (B2)

B.1. Dimensionless microscale flow model
Applying the above mentioned scalings to (2.1a), (2.1b) and (2.8a)–(2.8c) yields the
following form of the pore-scale flow problem, which is written in the computational
domain of figure 12:

∇∗ · v∗
α = 0, in Vα, (B3a)

Reαv∗
α · ∇∗v∗

α = ∇∗ · T ∗
p∗
α

in Vα, (B3b)

nβγ · (μ∗T ∗
p∗
β

− T ∗
p∗
γ
) = 2H

Ca

∗
nβγ at Aβγ , (B3c)

v∗
β = v∗

γ at Aβγ , (B3d)
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x

y

βσ
βγ γσ

1γ

γ

β

σ

1β 3β

2

0

3γ

Figure 12. Computational domain and bounding surfaces considered to carry out the numerical solution,
taking the example of the unit cell depicted in figure 2(c).

v∗
α = 0 at Aασ , (B3e)

(n · T ∗
p∗
α
)S1α = −(n · T ∗

p∗
α
)S3α + μrefγ

μrefα
ex, (B3f )

v∗
γ |S0 = v∗

γ |S2, (B3g)

v∗
α|S1α = v∗

α|S3α , (B3h)

T ∗
p∗
γ
|S2 = T ∗

p∗
γ
|S0, (B3i)

p∗
α = 0, at r0∗

α . (B3j)

In (B3f ), the fact that the driving force is the macroscopic pressure gradient applied on the
x direction and expressed in (B2) was taken into account. In addition, the dimensionless
stress tensor in the α phase is defined as T ∗

p∗
α

= −Ip∗
α + (μ(Γα)/μrefα)(∇∗v∗

α + ∇∗v∗T
α ).

Since the γ phase is Newtonian, μ(Γγ ) = μrefγ ; however, the Carreau model is adopted
in the β phase, which implies writing

μ(Γβ)

μrefβ
= [1 + (λ∗Γ ∗

β )
2](n−1)/2. (B4)

Here, μrefβ = μ0, Γ ∗
β = Γβ tref and λ∗ = λ/tref .

B.2. Dimensionless closure problems for the velocity
The dimensionless versions of the closure problems given in (3.4) and (3.5) follow from
the same length scaling and can be written as follows (α, κ = β, γ , α /= κ):

Problem I

∇∗ · D∗
αβ = 0, in Vα, (B5a)

−Reαv∗
α · ∇∗D∗

αβ = ∇∗ · T ∗
d∗
αβ

+ δK
αβ I, in Vα, (B5b)

nβγ · T ∗
d∗
ββ

= nβγ · 1
μ∗ T ∗

d∗
γβ
, at Aβγ , (B5c)
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D∗
ββ = D∗

γβ, at Aβγ , (B5d)

D∗
αβ = 0, at Aασ , (B5e)

ψ |S1α = ψ |S3α , ψ = D∗
αβ, d∗

αβ, (B5f )

ψ |S0 = ψ |S2, ψ = D∗
αβ, d∗

αβ, (B5g)

d∗
αβ = 0, at r0∗

α . (B5h)

Problem II

∇∗ · D∗
αγ = 0, in Vα, (B6a)

−Reαv∗
α · ∇∗D∗

αγ = ∇∗ · T ∗
d∗
αγ

+ δK
αγ I, in Vα, (B6b)

nβγ · T ∗
d∗
βγ

= nβγ · 1
μ∗ T ∗

d∗
γ γ
, at Aβγ , (B6c)

D∗
βγ = D∗

γ γ , at Aβγ , (B6d)

D∗
αγ = 0, at Aασ , (B6e)

ψ |S1α = ψ |S3α , ψ = D∗
αγ , d∗

αγ , (B6f )

ψ |S0 = ψ |S2, ψ = D∗
αγ , d∗

αγ , (B6g)

d∗
αγ = 0, at r0∗

α . (B6h)

In these problems, d∗
ακ = dακ/� and D∗

ακ = Dακ/�2, whereas T ∗
d∗
ακ

= T dακ /� = −Id∗
ακ +

(μ(Γα)/μrefα)(∇∗D∗
ακ + ∇∗D∗T1

ακ ).

B.3. Dimensionless macroscale momentum equation
Using the definitions and assumptions stated above, (3.14b) yields the following
dimensionless expressions of the macroscopic velocities:

〈v∗
α〉α = μrefγ

μrefα

(
H∗
αα + μrefα

μrefκ
H∗
ακ

)
· ex + α∗

α + ω∗
α, α /= κ, (B7)

where, for the sake of conciseness, the following definitions were used:

α∗
α = 2μrefγ

μrefαCaV∗

∫
Aβγ

H∗nβγ · D∗
αα dA∗, (B8a)

ω∗
α = μrefγ (Reγ − Reβμ∗)

μrefαV∗

∫
Aβγ

nβγ · w∗w∗ · D∗
αα dA∗. (B8b)

In (B7), H∗
αα = Hαα/�2 and H∗

ακ = Hακ/�2 reduce to K∗
αα and K∗

ακ in the creeping
regime. Moreover, the dimensionless pressure gradient expression (B2) is taken into
account.
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B.4. Dimensionless closure problem for the average pressure difference
Employing � as the scaling for length allows writing the closure problem (4.1) for the
average pressure difference in its dimensionless form as

∇∗ · f ∗
β = 1

V∗
β

, in Vβ, (B9a)

∇∗ · f ∗
γ = − 1

V∗
γ

, in Vγ , (B9b)

−Reαv∗
α · ∇∗f ∗

α = ∇∗ · T ∗
f ∗
α
, in Vα, (B9c)

nβγ · T ∗
f ∗
β

= nβγ · 1
μ∗ T ∗

f ∗
γ
, at Aβγ , (B9d)

f ∗
β = f ∗

γ , at Aβγ , (B9e)

f ∗
α = 0, at Aασ , (B9f )

ψ |S1α = ψ |S3α , ψ = f ∗
α , f ∗

α , (B9g)

ψ |S0 = ψ |S2, ψ = f ∗
α , f ∗

α , (B9h)

f ∗
α = 0, at r0∗

α . (B9i)

In this problem, f ∗
α = f α�

2, f ∗
α = fα�3/μrefα and T ∗

f ∗
α

= −f ∗
α I + (μ(Γα)/μrefα)(∇∗ f ∗

α +
∇∗ f ∗T

α ).

B.5. Dimensionless average pressure difference
The dimensionless form of the average pressure difference follows from its expression
given in (4.7b), which, under the assumptions adopted above and by using the reference
length and pressure, can be written as

ΔP∗ = ΔP
h�

= 〈p∗
γ 〉γ − μ∗〈p∗

β〉β = ψ∗ + s∗
βγ + (Reγ − Reβμ∗)

∫
Aβγ

nβγ · w∗w∗ · f ∗
β dA∗,

(B10)

where the capillary and dynamic contributions to the macroscopic pressure difference are
respectively defined as

s∗
βγ = 2

Ca

∫
Aβγ

H∗nβγ · f ∗
β dA∗, (B11a)

ψ∗ = ϕ∗
βx + ϕ∗

γ x + x∗
β − x∗

γ , (B11b)

with ϕ∗
αx = ϕ∗

α · ex = ∫
Vα

f ∗
α · ex dV∗ and x∗

α = x∗
α · ex.
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