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Within the last decade, Silicon Drift Detectors (SDD) have become more and more popular in the 

field of X-ray detection and microanalysis. One of the significant differences in the functional 

principle to other solid state detectors has its origin in the SDD’s design which is characterized by 

an additional electrical field parallel to the detector surface established by a set of additional contact 

strips, fig. 1a. The other important feature of these devices is the extremely low capacitance 

established by an integrated field effect transistor. The main characteristic of SDDs is their  

extremely high pulse load capacity of up to one million counts per second at good or reasonable 

energy resolution.  

The third generation of SDD devices, the Silicon Drift Detector Droplet (SD³) with an optimized 

geometry [1], fig. 1b, combine the speed benefit with high quality light element performance and 

superior energy resolution values, even when compared with the best conventional Si(Li) detectors 

[2]. 

Besides other advances in detector technology like the development of a four-channel detector [3],     

further optimization now allows SDD systems with an energy resolution of around 125eV at Mn-

Kα. These high performance SDD spectrometers show an improved energy resolution also in the 

low energy range, e.g. 59eV at F-Kα. This significantly improves the deconvolution accuracy of 

overlapping lines as well as quantitative light element analysis. 

New signal electronic topologies, namely the pulsed charge reset principle, make it possible to 

maintain the excellent energy resolution values even at extreme count rates, fig.2, 3, thus rendering 

the inherent speed benefits of the SDD technology not only applicable for high speed mapping but 

also for high performance quantitative analysis. The latter enables new approaches in many fields 

such as defect analysis, mineralogy, or even gun shot residual measurements. An exemplary 

application is the discrimination of tungsten and silicon in a sample can be done by deconvolution 

and quantification of the W-M and Si-K series, fig. 4. 
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Fig. 1.  Functional principle of (a) Silicon Drift Detector (SDD) and (b) Silicon Drift Detector Droplet (SD³) 
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Fig. 2.  Energy resolution (FWHM) of SD³ with different shaping amplifier types. 
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Fig. 3.  Energy resolution (FWHM) of SD³ and state-of-the-art Si(Li) detectors at optimized shaping times. 

 

     
Fig. 4.  Quantitative mapping of a W and Si sample. Determination of the W (left) and Si (right) components by 

discrimination of Si-K and W-M series. 
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