
Canad. Math. Bull. Vol. 29 (4), 1986 

BI-POSITIVE SEQUENCES 
THE BILATERAL MOMENT PROBLEM 

BY 

JAIME VINUESA & RAFAEL GUADALUPE 

ABSTRACT. We pose a "moment problem" in a more general setting 
than the classical one. Then we find a necessary and sufficient condition for 
a sequence {sk}lt to have a solution of the "problem" 

J jc*da(jc) (k = 0, ± 1,±2, . . . ) 

where a is a "distribution function". 

1. Preliminaries. The Classical Moment Problem is well known: Given a sequence 
{sk}o, of real numbers, the necessary and sufficient condition for the existence of a 
distribution function CT in R (i.e. a function which is non-decreasing, bounded and with 
an infinite set of points of effective growth) such that 

r + x 

sk = J jc'da(jc) (k = 0,1,2, . . . ) 

is that the given sequence should be positive in the sense that the determinants 

So S\ sk 

Sk $k+\ S2k 

should be positive for all k. (see [1], [6]) 
This problem is very closely related to the theories of Orthogonal Polynomials and 

Continued Fractions. As a matter of fact, the answer can be obtained as a limit of step 
functions with jumps at the zeros of the Orthogonal Polynomials corresponding to {S„}Q. 

In this note we pose a generalization of that problem to the case of sequences of the 
type {sk}!2 (of moments with either positive or negative exponents). It may be worth 
to remark that the truncated sequences {s2k + n}™=0 °f a bi-positive sequence such as the 
one in Definition 2 below, generate, for each integer value of A:, a family of Orthogonal 
Polynomials {P{® (JC)}^=0. The idea of the answer we give to our problem is a peculiar 
"passing to the limit" of those families as k—» — o° (see for instance that the polynomial 
P(x) in the proof of Theorem 3 is the nth orthogonal polynomial of one of them). 
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A partial result was found by Jones and Thron in connection with their development 
of the theory of T-fractions (see [4], Chapter 9 and [5]). Their result answers what they 
call the "strong Stieltjes moment problem", which corresponds, in our setting, to the 
classical Stieltjes problem (i.e., for distribution functions supported in (0, +00)). The 
condition that they find for their case is obviously equivalent to ours, taking into 
account the sign change for the odd terms in the sequence {sk}-2, due to the fact that 
they pose the problem with powers of — x instead of powers of x (see our Corollary 4 
and their Theorem 6.3 in page 527 of [5], where a characterization of the uniqueness 
of the solution can also be found; we will not study uniqueness here). 

2. Definition (Bi-positive sequences). Given a sequence of real numbers of the type 
{sk}-2, we say that it is bi-positive if each of the determinants 

Ak) 

S2k $2k + 1 * * ' * S2k + n 

$2k + 1 S2k + 2 * " * * $2k + n + 1 

S2k + n S2k + n + 1 " " s2k + 2» 

{k = 0, ±1 ,±2 , ... n = 0,1,2, . . .) 

is positive. 

3. THEOREM (Bilateral Moment Problem). "Let {sk}-2 be a sequence of real numbers. 
The necessary and sufficient condition for the existence of a distribution function 
a : R —» R such that 

r+oo 

^ = J x'da(jc) (k = 0, ±1,±2, . . . ) 

is that the given sequence should be bi-positive". 
PROOF. 

i) The condition is necessary. 
Indeed, let us choose a fixed k E Z and prove by induction on n that A^ > 0. 

It is of course evident that 

r+oo 

Aj? - s2k = J x2kd(j(x) > 0. 

Let us suppose then that A„_, > 0 and write 

$2k $2k+\ $2k + n 

P{x) = S2k + n-i $2k + n $2* + 2/? - 1 
— \{k) vk + n 

— LX„_ i X 
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It is easy to see that 

r+oo 

P(x)xk + mdv(x) = 0 (m = 0 ,1 , . . . , / i - 1) 

and that 

| + P(jc)jc* + " d a ( j t ) = A ^ . 

Therefore 

. ( * ) 
A ( t ) , 

r + oo 

J \P(x) pda(jc) > 0, 

ii) The condition is sufficient. 

If {sk}lZ is bi-positive, then, for each h > 0, the sequence 

where 

^ = Jfl-2A (« = 0 , 1 ,2, . . . ) 

is "positive" in the above-mentioned sense. Therefore, there exists a solution of the 
classical moment problem, i.e., a distribution function <jh such that: 

s\;h) = sn-lh = f x" d<rh(x) {n = 0, 1,2, . . .). 

Let us write 

<t>h(x) = f_x t2h dvh(t) (x E R) 

which is clearly a distribution function satisfying moreover 

d®h(x) = x2h duh(x) 

and thus, 

= s^L = f x2h + md<jh(x) = \+ xmd®h(x) 
J —re • ' — T O 

(valid for m > -2h). 
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The sequence of functions {&hYh = o satisfies the conditions of Helly's Selection 
Principle (see [2] or [3]), since 

<&*(*) = f d<M0 < [+ d4>„(0 = s0 V x E tf, V h > 0; 
•'—00 *'—00 

therefore it has a subsequence {V|//(JC)} converging in R to a distribution function a(x). 
We shall prove that CT(JC) = lim/_» I|I,-(JC) satisfies the conditions of the theorem, 
i.e., that 

/ : 
x" da (x) = sR (n = 0, ± 1, ±2, . . . ). 

We will consider the following cases: 

a) n > 0: 
Given e > 0, let us take A = (2 s2J^,n. 

If Ai, A2 > A we have because of Helly's Second Theorem (see [2], [3]) 

ÇA1 CA1 

lim x" diK(x) = Jc"da(jc) 

thus we can take / such that 

ÇA-, fAj 

x" dtyi(x) - x"dci(x) < e/2 

and it results: 

r 
sn -

J -A. 

x" da(jc) Jt'dihto - xndd(x) 
• ' - o o ^ - 4 , 

< J 2 JC7' di|i,(;c) - J 2 JC" da(jc) + ( f + J ') JC" d ^ U ) 

= e/2 + — = e/2 + e/2 = e. 

Therefore the integral 

r+* 

x" da(jc) 

converges to s,,. 
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b) n < 0: 
Given e > 0, let 

a = (3 s2n/e)]/n = (e/3s2ny
]/n; 

A = (e/3s0)
l/" = (3s0/eyl/" 

(note that now -\/n > 0). 
If A\, A2 > A; 0 < a\, a2 < a, because of Helly's Second Theorem, being x" 

continuous in [—A\, - a , ] and [a2, A2], we have 

lim 
r-a, r-a, 

xn d^(x) = x"dcr(jc) 
J - 4 . J - 4 . 

and 

lim J Vd i l i /W - J Vd(j(jc) . 

Thus, we can take / such that, on the one hand i > —n and, on the other, 

I "' x" dfy(x) + J V df(jc) - I "' JC" dcr(jc) - [ V da(jc) < e/3. 

We have: 

r-a, M2 

5n - J JC" dcr(jc) - J jc"dcr(jt) 

e/3 + J \ |+)yjd^w + | jc"di[>,00 + x" dtyiix) 

e/3 + A" | + di|/,-(jc) + a-" J x2n di|/, 00 

e/3 + A" s0 + s2n a'n = e/3 + e/3 + e/3 = e 

which proves that 

i: x" dv(x) = sn. 

c) n = 0. Evident. 

4. COROLLARY. (Stieltjes S Condition). Given a sequence {sk}!2 of real numbers, the 
necessary and sufficient condition for the existence of a distribution function 
CT : R+ = [0, +oo) -» R satisfying 

sk r jc'da(jc) (k = 0, ± 1 , ± 2 , . . . ) 

is that both {sk}„Z and {sk+\}-2 should be bi-positive. (Note that the condition is 
equivalent to asking that all the minors of the matrix [si+j]^J=-x should be positive). 
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PROOF. The condition is obviously necessary, since both CT (X) and £ (x) = £ t da (t) 

satisfy the conditions of the theorem and thus {sk}lZ and {sk + \}1Z are bi-positive. 

In order to prove sufficiency it is enough to bear in mind that all the distributions 

appearing in the proof of the theorem have, in this case, their support in [0, +<*>). 

(see [6]). 

5. COROLLARY. Let {sk}lZ C R be arbitrary. Then there exists a function 

cr : R —> R of bounded variation such that 

sk = J xk da(jc), (k = 0, ± 1 , ± 2 , . . . ) . 

PROOF. We shall prove that there exist two bi-positive sequences {sk}lZ, {sk}-Z such 

that 

sk = s'k-s'k' (* = 0 , ± 1 , ± 2 , . . . ) . 

It is enough then to write CT = a ' — a", being a ' and a" the corresponding distribution 

functions. 

We begin by taking sô, s'ô positive such that SQ — s'ô = sQ. If we assume that {̂ *}—2" 

_2n are already built in such a way that sk — s [ — s k and both truncated sequences 

be bi-positive, we take: 

i) s^+us2n +1 arbitrary, except that s 2n +, - s2n +, = s2n +,. 

ii) Then s f
ln + 2, s2n + 2 such that 

A ,{'n) -

S[ S2n + 2 

^ O , 11 2w + 1 

s. 

JÏ ^2« + 2 

> 0 

and s2n + 2 s2n + 2 — s2n + 2. 

iii) s-2n-\, s"-2n-1 again arbitrary except that s'-ln-\ ~ s"-in-1 = s-2n- \ 
iv) Finally s'-2n-2, s"-2n-2 verifying k2n+

n
2
l) > 0, A ^ + Y " > 0; s'-2n_2 - s"2„_2 

= S-2n-2-

The sequences {sk}lZ {s'k}-Z built in this way are bi-positive. 

6. COROLLARY. The function a of the last corollary can be built with support in 

R+ = [0, +oo). 
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PROOF. It is enough to take in the construction just made the moments of odd 
subindex subject to the condition that the corresponding determinants should be 
positive: 

> 0 

> 0 

> 0 

> 0 

7. Trivial observation. Given a sequence {wk}lZ of complex numbers, there exists 
a function fî : (—°o, +00) —> C (resp. fl : [0, +°°) —» C) of bounded variation, such 
that 

wk r 
J — 0 0 

xk dCt(x) (k = 0, ± 1 , ± 2 , . . . ) . 
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