Nutritional evaluation of the germ meal and its protein isolate obtained from the carob seed (*Ceratonia siliqua*) in the rat

BY N. J. DROULISCOS AND VASILIKI MALEFAKI

Department of Biology, Nuclear Research Centre Democritos Aghia Paraskevi Attiki, Greece

(Received 31 January 1979 – Accepted 20 June 1979)

I. Evaluation of the germ meal (CGM) of carob seed (*Ceratonia siliqua*) and its protein isolate was carried out with weanling rats. Comparisons were made with casein, soya-bean meal, whole defatted egg and a soya-bean protein isolate (Promine-D) as protein sources. The growth-promoting effects and certain biological indices were evaluated using the protein efficiency ratio (PER), biological value (BV) and net protein utilization (NPU) bioassay procedures.

2. The unsupplemented CGM had a PER of 1.66 ± 0.09 and an NPU of 0.58 ± 0.013 . Addition of DLmethionine at 4, 8 and 12 g/kg diet resulted in a PER of 1.95 ± 0.11 , 2.01 ± 0.11 and 1.90 ± 0.11 respectively. The corresponding BV values were 0.80 ± 0.003 , 0.78 ± 0.015 and 0.74 ± 0.011 , and those for NPU 0.69 ± 0.013 , 0.66 ± 0.026 and 0.63 ± 0.020 respectively. The addition of amino acids improved the PER (2.24-2.59), BV (0.78-0.79) and NPU (0.71-0.73) values.

3. The BV and NPU assays for the unsupplemented carob germ isolate were low (BV 0.36 \pm 0.016, NPU 0.35 \pm 0.015). Supplementation with amino acids resulted in a positive increase with values of 0.66 \pm 0.013 and 0.64 \pm 0.013 for BV and NPU respectively.

The nutritional potential of certain agricultural by-products has not been adequately studied, a fact that limits their utilization as animal food ingredients. The shortage and high prices paid for protein concentrates in livestock feeding has stimulated nutritional and economic feasibility studies of by-products and wastes as sources of protein. It appears therefore that the resources in such products need to be further exploited and thoroughly evaluated nutritionally.

Carob germ meal (CGM) is a by-product obtained from the germ of the carob seed (*Ceratonia siliqua*) after the separation of gums and the fibrous coating of the seed. The milled germ has a uniform consistency and is a light greyish colour. It provides in the dry state as fed, approximately 955 g dry matter and 426 g crude protein (nitrogen $\times 6.25$)/kg. The current annual production of this by-product in Greece is approximately 2000 t and is likely to increase.

The literature contains only one report by Ferreira (1964) of the evaluation of CGM protein. The CP content varies from 488 to 507 g/kg and biological indices (biological value (BV) 0.51, protein efficiency ratio (PER) 1.20) have been reported for the rat.

In the present study well-established rat bioassay procedures were used to assess protein quality and obtain information on the nutritional value of CGM. An attempt has also been made to prepare a protein isolate from the CGM and evaluate in a comparative study its performance in the rat. The biological indices measured were BV, net protein utilization (NPU), PER and growth response of the rats to different levels of amino acid supplementation.

EXPERIMENTAL

Analytical procedures

Standard methods for moisture, CP, diethyl ether extract, crude fibre and ash were those described by the Association of Official Analytical Chemists (1970). Gross energy was determined in an adiabatic bomb calorimeter (Gallenkamp Co.). Total phenolic compounds

Table	I.	Composition	of carob (C	Ceratonia	siliqua)	germ	meal	(<i>CGM</i>)*	and
			CGM	protein i	solate				

Analytical composition	CGM (g/kg)	CGM protein isolate (g/kg)
Moisture	45.0	14.0
Total nitrogen	68.2	141.9
Diethyl ether extract	56.6	_
Crude fibre	49.9	_
N-free extract	374.6	
Total ash	47.7	_
Total energy (MJ/kg)	18-8	19.8
Total phenolic compounds	4.3	3.0
Amino acid profile (g/16 g N)		
Aspartic acid	7:47	7.00
Threonine	3.16	2.21
Serine	4.23	4.02
Glutamic acid	25.26	27.80
Proline	4.31	1.87
Glycine	4.43	4.23
Alanine	3.84	2.96
Valine	4.06	2.16
Isoleucine	3.13	2.15
Leucine	5.78	5.86
Tyrosine	2.78	2.00
Phenylalanine	2.61	2.30
Lysine	5.16	4.21
Histidine	2.29	2.29
Arginine	11.55	12.40
Methionine	1.16	0.47
Cystine	1.63	0.48
FDNB, fluorodinitrobenzene reactive lysine	4.70	3.47

* The part remaining after removal of gums and seed coat.

were extracted by boiling 0.5 g CGM in 100 ml distilled water for 30 min and estimated in the filtrate by the Folin-Denis colorimetric method as described in the Association of Official Analytical Chemists (1970). The proximate composition of CGM and its protein isolate and the amino acid profile are given in Table 1.

Amino acids were determined by column chromatography using a Spinco Beckman 120-C automatic amino acid analyzer (Beckman Instruments, Palo Alto, Calif. USA). The samples were weighed and 6 M-hydrochloric acid added in glass-tubes frozen in liquid N_2 and vacuum-sealed. The ratio of sample to hydrochloric acid was 1 mg sample: 1 ml acid and the hydrolysis continued for 24 h at 110°. The hydrolysate was then filtered and the acid removed by evaporation under reduced pressure. The residue was taken up in 6 ml 0.2 M-sodium citrate buffer, pH 2.2. For the determination of sulphur-amino acids the samples were first oxidized with performic acid for 18 h according to the method of Lewis (1966) before acid hydrolysis. Fluorodinitro-benzene-reactive lysine was determined by the method of Carpenter (1960) as modified by Booth (1971). All analyses were replicated and accepted with a deviation from the mean value not more than 5%.

Preparation of the protein isolate

A measured quantity (75 g) of the CGM was used, suspended in 1 l water and the pH adjusted to 1.5 with hydrochloric acid. The suspension was stirred for 1 h at room temperature and the supernatant fraction was separated after centrifugation (4000 g for 20 min).

Table 2. Composition (g/kg) of experimental diets containing the stock protein-free, whole defatted egg, carob (Ceratonia siliqua) germ mea	(CGM) and the CGM protein isolate
---	-------------------------------------

		PER and N	PU tests		4	N-balance tests	74	
Ingredient	Stock protein-free*	Egg*	CGM	CGM	CGM protein isolate	Casein	Soya bean	Promine-D
Maize starch	990 9	490	360					
Sucrose	200	250	250					
Cellulose	50	2	6					
Maize oil	. S	. S	, 2	Stock prote	sin-free diet adde	d to make up	I kg diet	
Mineral salts [†]	ŝ	30	06	•		•	1	
Vitamin supplement	10	2	0					
Egg powdert	ł	120	ł					
CGM	ł	I	250	208	l	1	I	ł
CGM protein isolate	ļ	I	5	ſ	105	I	1	ł
Casein	ł	I	1	1	1	IOI	ļ	ł
Soya-bean	l	1	ļ	I	1	1	188	ľ
Promine-D	ļ	1	ļ	1		I	1	57
Total	0001	1000	1000	1000	0001	1000	1000	1000
Amino acid supplement	ļ	Ì	1, 2, 3	. 4. 5	9	I	1	ł
Total nitrogen (by analysis)	0.76	17-00	16.50	14.15	14.17	14.29	14-11	14.03
* Also used in the N-balance † Drouliscos & Bowland (190	s test. 69).	•		•	•	;		

Nutritional evaluation of carob germ meal

‡ Egg powder (40 g/kg) was included in the stock protein-free diet for the determination of the metabolic and endogenous N in the N-balance tests. || Supplements (g/kg) 1, 4 DL-methionine; 2, 8 DL-methionine; 3, 12 DL-methionine; 4, 4 DL-methionine; 5 L-Lysine; 5, 3 L-Lysine, 4:5 DL-methionine, 3 DL-phenylalanine, 0:5 DL-histidine, 3 DL-leucine, 3 DL-leucine, 2:5 DL-valine, 0:5 DL-tryptophan, 2 DL-threonine; 6, 4:5 L-lysine 3:0 DL-threonine, 4:0 DL-valine, 2:0 DL-tryptophan, 2 DL-threonine; 6, 4:5 L-lysine 3:0 DL-threonine, 4:0 DL-valine, 2:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 5:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 4:0 DL-threonine, 5:0 DL-threonine, 4:0 DL-threonine, 5:0 DL-threonine, 5:0 DL-threonine, 4:0 DL-threonine, 5:0 DL-threonine, 5:0 DL-threonine, 5:0 DL-threonine, 4:0 DL-threonine, 5:0 DL-threonine, 5:0

118 N. J. DROULISCOS AND VASILIKI MALEFAKI

The residue was washed once with 500 ml water and the supernatant fraction collected after centrifugation. Protein in the combined supernatant fractions was precipitated at pH 4.5. After washing with water the protein was separated by centrifugation and freeze dried.

Animals

The rats used for the bioassays were of both sexes and of the Hooded strain weighing 45-50 g for PER and NPU (carcass analysis) tests and 75-80 g for the N balance study. The number of rats varied from six to ten for PER, a total of eight rats (four in each of the duplicate tests) for the NPU and four to five for the N balance. For each of the balance experiments the rats were placed in individual cages equipped for the separation of faeces and urine and the measurement of food intake. The experimental period lasted for 10 d (5 d preliminary and 5 d collection). For NPU determination the rats were caged in groups of four and the experiment he rats were caged individually and the experiment lasted for 28 d. Food was offered *ad lib*. for PER and NPU tests and a premeasured quantity of food calculated to provide 150 mg N and 10 g dry matter/rat per d was offered to each rat for the N balance tests as described by Eggum (1973). All animals were maintained under controlled temperature $(21 \pm 1^\circ)$ and humidity (55%) conditions.

Diets

The composition of the experimental diets is given in Table 2. The stock protein-free diet was mixed with the test protein to provide the required N and DM content for the nitrogen balance experiments.

Nutritional indices

PER was calculated from values for body-weight gain and CP intake over a 28 d period with a diet providing 16 g N/kg. PER was calculated as body-weight gain/unit CP intake. In each case the figures of CP intake used for the calculation of PER, N balance and NPU were based on actual nitrogen analysis of the test diets. NPU was calculated from information on carcass composition with a protein-free and a test diet.

The procedure followed was as described by Bender & Miller (1953) and Miller & Bender (1955). The N balance trials were carried out according to the procedures followed by Eggum (1973). Metabolic and endogenous N were determined separately with a protein-free diet in several replicates (four runs with 21 rats) and the mean values were used in the determination of Bv and true digestibilities (TD).

RESULTS AND DISCUSSION

Analysis of CGM (Table 1) indicated that the CP content of 426 g/kg is at a level comparable to that of the soya-bean meal (SOM-45, 457 g/kg) (Drouliscos, 1976) and certain other protein-rich vegetable concentrates.

The amino acid profile of CGM (Table 1) suggests that methionine and cystine are first limiting. The remaining amino acids were also present at levels that were somewhat lower than those recommended in the FAO/WHO pattern (Table 3). In comparison with the FAO/WHO amino acid pattern CGM and CGM protein isolate contain insufficient leucine, isoleucine, threonine and valine. Arginine is exceptionally high in CGM (11.55 g/16 g N) and CGM protein isolate (12.40 g/16 g N). A high arginine content (11.24 g/16 g N) was also reported by Ferreira (1964). When the values of essential amino acids (Table 4) were expressed as essential amino acid content:N content, the value for CGM (2.56) was higher than that of the CGM protein isolate (2.18) but lower than those of the soya-bean protein isolate (Promine-D) (2.68), SOM-45 (2.80), casein (3.28) and whole defatted egg

		Amino acid pattern	Proteir	n source
		(1973)	CGM	Isolate
Phenylalanine Tyrosine	}	6.0†	5.44	4.34
Isoleucine	2	4.0	3.1	2.2
Leucine		7.0	5.8	5.9
Lysine		5.5	5.2	4.2
Methionine)		[•2	0.2
	}	3.24	2.8†	1- 0 †
Cystine	J		1.6	0.2
Threonine	-	4.0	3.2	2.2
Valine		5.0	4.1	2.2
Arginine		—	11.5	12.4

Table 3.	Essential	amino	acid (A)	4) patter	n (gAA/	16 g N)) and	amount.	s of each	AA	provided
	by carob	(Cerate	onia silio	jua) gerr	n meal (CGM)*	and	CGM p	rotein isd	late	

* The part remaining after removal of gums and seed coat.

† Combined value for the two amino acids.

(3·40). Table 5 shows an inverse relationship between urinary N excretion (g/kg metabolic body size) (W^{0.75}) and Bv. The lowest value of urinary N excretion (o·86 g/kg W^{0.75}) was recorded for whole defatted egg and the highest (2·69 g/kg W^{0.75}) for CGM protein isolate, corresponding to Bv values of 0·93 and 0·36 respectively. The faecal N excretion remained at fairly constant levels (0·37–0·48 g/kg W^{0.75}) with the exception of SOM-45 (0·95 g/kg W^{0.75}) and CGM (1·17 g/kg W^{0.75}). This discrepancy might be explained on the grounds of product-purity since SOM-45 and CGM are not pure proteins and contain other material such as celluloses, hemicelluloses, pentosans, phenolic compounds and other organic substances. The excess N that appeared in the faeces with SOM-45 and CGM may have been due to an undigested portion of protein encapsulated in a fibrous coating within the plant tissue and so protected from the proteolytic enzymes of the gut (Drouliscos & Bowland 1969). It is also likely that in the CGM protein was precipitated due to the presence of the phenolic compounds.

The results recorded with feeding trials with rats show that at a level of inclusion of CGM in the diet of 250 g/kg the PER and NPU values were 1.66 and 0.58 compared with those recorded for dried tomato pomace (PER 2.18 NPU 0.55) (Drouliscos, 1976) and SOM-45 (PER 2.40 NPU 0.80) (Drouliscos & Bowland, 1969).

Supplementation with DL-methionine at 4 and 8 g/kg diet elicited a growth response but further addition (12 g/kg) had a depressing effect on growth, protein intake and BV (Table 6).

The addition of other essential amino acids improved growth, PER and BV, indicating a deficiency or an imbalance in the protein provided by the CGM (supplements 4 and 5) Table 6. Biological values were restored with supplements 4 and 5 (0.79 and 0.78) to the level recorded with supplement I (0.80) (Table 6). This response is indicative of a methionine deficiency since the inclusion of lysine in supplement 4 and of isoleucine, histidine and other essential amino acids in supplement 5 (Table 2) had no effect on the BV value. It is therefore likely that under the present experimental conditions methionine was the most limiting amino acid followed by leucine, isoleucine and threonine as second limiting. It could be of interest to see the response to leucine and isoleucine supplementation without methionine. This was not done in this study. Accordingly the value of PER of unsupplemented CGM was improved by 34.9% by supplement 4 and 56% by supplement 5 (Table 6). This suggests that the response in growth and PER was the result of the extra N intake (Table 6). It is not surprising that the lowest BV and NPU (by N balance) values

119

CGMCGM isolatePromine-DSOM-45CSWhole defatted646711310610197977662917687771411681631701731621261291461791731621261291461431571256827533576113987772739782897772737611387685773978289777273761138768577376113875463455347422564217726802796328334062564217726802796328334065369.652.474778.088.6 $$	CGMCGM isolatePromine-DSOM-45CSWhole defatted6467113106101977776629176877776629176877714116813914614315712512612914614315712599628110317017377727397828977727376113877873761138289787576113828778531405963474782356152140593283340625642177268027963283340625642177268027963283340625642177268027963283340669-652-474778·088·67605 5314078·088·67617778·0328334067778·088·6279632837652-652-474778·07778·088·6767778·088·67779·088·67616277·00f rats in the experimental diets60052-474778·0<				Pro	tein source				
64 67 113 106 101 97 76 62 91 76 87 77 141 168 163 170 173 162 126 129 146 143 157 125 68 27 53 35 71 98 77 72 73 97 82 89 77 72 73 76 113 162 77 72 73 76 113 87 78 57 73 76 113 87 78 57 73 76 113 87 78 57 73 76 113 87 54 63 45 53 47 42 554 2177 2680 2796 3283 3406 2564 2177 2680 2796 3283 3406 556 $52\cdot4$ 747 $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $52\cdot4$ 747 $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $52\cdot4$ 747 $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $69\cdot6$ $52\cdot4$ 747 $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $52\cdot4$ 747 $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $52\cdot4$ 747 $78\circ0$ $88\cdot6$ $$ $69\cdot6$ $69\cdot6$ $69\cdot6$ $69\cdot6$ $$ $$ $69\circ69\cdot669\cdot669\cdot678\cdot0$	64 67 113 106 101 97 76 62 91 76 87 77 141 168 163 170 173 162 126 129 146 143 157 129 126 129 146 143 157 129 82 27 53 35 71 98 99 62 81 103 110 98 77 72 73 76 113 87 82 356 162 140 59 47 42 82 356 162 140 59 113 87 54 2177 268 2796 3283 3406 2564 2177 268 2796 3283 3406 2.56 2.18 2.68 2.80 3283 3406 2.56 52.4 74.7 78.0 88.6 $$ 76 97 97 97		CGM	CGM isolate	Promine-D	SOM-4	45	S	Whol	le defatted egg
7662917687771411681631701731621261291461431571251261291461431571256827533577739968577397828977727397828968577397828954634553474228235616214059116546321772682796328334062564217726827963283340669:652:474778:088:6 $$ ne part remaining after removal of gums and seed coat.18:01 -1 -1	7662917687771411681631701731621261291461431571251261291461431571256827333571987772737611387685773761138777737611387685773761138758162140597611642585345534742564217726827963283340625642182-682-8037834069.652-474778-088-67he part remaining after removal of gums and seed coat.58-6Calculated as described by Oser (1951).78-088-6fological value, urine and faecal N excretion (g/kg W ⁰⁻⁷⁸) of rats in the experimental diets		64	67	113	106		101		57
141168163170173162126129146143157125682753353571989962811031101097772739782896857737611387535773761138753577376113875463455347422564217726802796328334062:562:182:682:80373340669:652:474.778:088:6ne part remaining after removal of gums and seed coat.aced coat.aced coat.	141168163170173162126129146143157125126129146143157125682753351031101097772739782896857737611387685773761138758162140594742585345534742256421772682796328334062:562:182:682:803783406:052:474778:088:6The part remaining after removal of gums and seed coat.collogical value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		76	62	16	26		87		77
12612914614315712568 27 533571989962811031101097772739782896857737611387535773761138754634553474255621772680279632833406256421772680279532833406534774778°088·6a part remaining after removal of gums and seed coat.aced coat	126129146143157125682753357198777397811031107772739782896857737611387533561621405911654217726802796328334062564217726802796328334062.562.182.682.803783406952.474.778.088.6The part remaining after removal of gums and seed coat.Calculated as described by Oser (1951).of rune and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		141	168	163	170		173		162
68 27 53 35 71 98 99 62 81 103 110 109 77 72 73 97 82 89 76 113 82 89 87 68 57 73 76 113 87 282 356 162 140 59 113 87 282 356 162 140 59 113 87 284 2177 2680 2796 3283 3406 2564 2177 2680 2796 3283 3406 256 2.18 2.68 2.80 3283 3406 69.6 52.4 74.7 78.0 88.6 $$ ne part remaining after removal of gums and seed coat. $acccribed by Oser (1951).$ $accvited by Oser (1951).$	68275335719899628110311010977727397828968577376113875335616214059113875453455347422564217726802796328334062:562:182:682:80328334052:562:182:682:8032833405Calculated as described by Oser (1951).78·088·6W^{0.78}) of rats in the experimental diets		126	129	146	143	_	157		125
99 62 81 103 110 109 77 72 73 97 82 89 68 57 73 76 113 87 282 356 162 140 59 17 42 282 356 162 140 59 116 282 356 162 140 59 116 54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 2:56 2:18 2:68 2:80 3:28 3:40 69.6 52:4 74.7 78.0 88.6 ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951). -	9962811031101097772739782896857737611387683561621405911628235616214059116282356162140591162564217726802796328334062:562:182:682:803:283:4069:652:474.778.088.6-Calculated as described by Oser (1951).cological value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		68	27	53	35		17		98 80
77 72 73 97 82 89 68 57 73 76 113 87 282 356 162 140 59 116 282 356 162 140 59 116 284 63 45 53 47 42 2564 2177 2680 2796 3283 3406 $2:56$ $2:18$ 2.68 $2:80$ $3:28$ $3:406$ 69.6 $52\cdot4$ $74\cdot7$ $78\cdot0$ $88\cdot6$ $-$ ne part remaining after removal of gums and seed coat.and seed coat. $accribed$ by Oser (1951).	77727397828968577376113875853534787875453455347422564217726802796328334062:562:182:682:803:283:4069:652:474.778.088.6 $$ Calculated as described by Oser (1951).iological value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		66	62	81	103	-	110		60I
68 57 73 76 113 87 282 356 162 140 59 116 54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 2564 2177 2680 2796 3283 3406 256 2-18 2-68 2-80 3283 3406 2:56 2-18 2-68 2-80 3283 3406 2:56 2-18 2-68 2-80 3283 3406 69·6 52·4 74.7 78·0 88·6 ac part remaining after removal of gums and seed coat. accortibed by Oser (1951).	68 57 73 76 113 87 282 356 162 140 59 116 47 42 54 63 45 53 47 42 42 2564 2177 2680 2796 3283 3406 $2:56$ $2\cdot18$ $2\cdot68$ $2\cdot80$ $3:28$ $3:40$ $2:56$ $2\cdot18$ $2\cdot68$ $2\cdot80$ $3:28$ $3:40$ $69\cdot6$ $52\cdot4$ $74\cdot7$ $78\cdot0$ $88\cdot6$ $-$ Calculated as described by Oser (1951). $Calculated value, urine and faecal N excretion (g/kg W^{0.78}) of rats in the experimental diets$		17	72	73	26		82		89
282 356 162 140 59 116 54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 2564 2177 2680 2796 3283 3406 2564 218 2.68 2.80 3283 3406 2:56 2.18 2.68 2.80 328 3.40 69:6 52:4 74.7 78.0 88.6 ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	282 356 162 140 59 116 54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 256 $2\cdot18$ $2\cdot68$ $2\cdot80$ $3\cdot28$ $3\cdot406$ $2\cdot56$ $5\cdot4$ $74\cdot7$ $78\cdot0$ $88\cdot6$ $$ $69\cdot6$ $5\cdot2\cdot4$ $74\cdot7$ $78\cdot0$ $88\cdot6$ $$ Calculated as described by Oser (1951). $2\cdot100$ 10^{-15}) of rats in the experimental dietsiological value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		68	57	73	40		113		87
54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 2:56 2:18 2:68 2:80 3:28 3:40 69:6 52:4 74.7 78:0 88:6 ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	54 63 45 53 47 42 2564 2177 2680 2796 3283 3406 2:56 $2\cdot18$ $2\cdot68$ $2\cdot80$ 3283 3406 2:56 $2\cdot18$ $2\cdot68$ $2^{\circ}80$ 3:28 $3:40$ 69·6 $52\cdot4$ $74\cdot7$ $78\cdot0$ $88\cdot6$ $-$ Calculated as described by Oser (1951). coat. $14\cdot7$ $78\cdot0$ 05 rats in the experimental diets		282	356	162	140	_	59		911
2564 2177 2680 2796 3283 3406 2:56 2:18 2:68 2:80 3:28 3:40 69:6 52:4 74.7 78:0 88:6 ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	2564 2177 2680 2796 3283 3406 $2:56$ $2:18$ 2.68 $2:80$ $3:28$ $3:40$ 69.6 52.4 74.7 78.0 88.6 $-$ Calculated as described by Oser (1951).cological value, urine and faecal N excretion (g/kg $W^{0.75}$) of rats in the experimental diets		54	63	45	53		47		42
2:56 2:18 2:68 2:80 3:28 3:40 69.6 52:4 74.7 78.0 88.6 ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	2.56 2.18 2.68 2.80 3.28 3.40 69.6 52.4 74.7 78.0 88.6 $-$ The part remaining after removal of gums and seed coat.Calculated as described by Oser (1951).cological value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		2564	2177	2680	2796		3283		3406
69·6 52·4 74·7 78·0 88·6 — ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	69.6 52.4 74.7 78.0 88.6 $-$ The part remaining after removal of gums and seed coat. Calculated as described by Oser (1951). iological value, urine and faecal N excretion (g/kg $W^{0.78}$) of rats in the experimental diets		2.56	2.18	2.68	2.80	D	3.28		3.40
ne part remaining after removal of gums and seed coat. alculated as described by Oser (1951).	The part remaining after removal of gums and seed coat. Calculated as described by Oser (1951). Cological value, urine and faecal N excretion (g/kg $W^{0.75}$) of rats in the experimental diets		9.69	52.4	74-7	78-0		88.6		ŀ
	logical value, urine and faecal N excretion (g/kg W ^{0.75}) of rats in the experimental diets	4 ℃ + +	ie part remaii Iculated as d	ning after removal escribed by Oser (of gums and see 1951).	od coat.				
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS)			(values are n	neans with their st	andard errors)					
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors)	(values are means with their standard errors)		¢ CS	SOM-45	Promi	ne-D	CGM		CGM prote	ein isolate
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate	(Values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate	Mea	ID SE	Mean SE	Mean	SE	Mean	SE	Mean	SE
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate SE Mean SE Mean SE Mean SE Mean SE	(values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate CS Note: CGM CGM protein isolate CS Mean se Mean se Mean se Mean se	81.6	7	72.75	- 73.40	1	79-76	١	67-97	1
I (CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors) (Values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate SE Mean SE Mean	(values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate CS SOM-45 Promine-D CGM CGM protein isolate CS Mean se Mean	11.8	1 0-157	4.71 0.13	0 7-28	0.101	4'11	0-094	2-01	0.210
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors) (Values are means with their standard errors) CS SOM-45 Promine-D CGM CS Promine-D CS SOM-45 Promine-D 73.40 Promine-D 73.40 Promine-D 73.40 Promine-D 73.40 Promine-D 73.40 Promine-D 73.40 Promin	(values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate CS Mean $s \in Mean s \in Mean s \in Mean s = Mean s = 0.004$ brow $s = $	ò	0.00 6	0.67 0.02	0 0.49	0-004	0-67	0-015	0.36	910-0
(CGM), CGM protein isolate, Promine-D, soya-bean meal (SOM-45), egg and casein (CS) (Values are means with their standard errors) (Values are mean (SOM-45), egg and casein (CS) (Values are means with their standard errors) (Values are mean (SOM-45), egg and casein (CS) (Values are means with their standard errors) (Values are mean (SOM-45), egg and casein (CS) (Values are means (SOM-45), egg and casein (CS) (Values (SOM-45), egg and errors) (Values (SOM-45), egg and errors (SOM-4	(values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate CS CGM	<u>e</u> .	9 0.085	2.25 0.08	3 2.33	0.023	2.16	0.083	2.69	0.134
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(Values are means with their standard errors) CS SOM-45 Promine-D CGM CGM protein isolate C SOM-45 Promine-D CGM CGM CGM Protein isolate 1 st Mean st Mean st Mean st Mean st 0 0157 471 0130 728 0101 411 0094 501 0210 0 0010 0.67 0.003 2.16 0.033 2.69 0134	ò	410-0 X	0.95 0.04	4 0:40	0.051	1.17	610.0	0:37	0-020

* Percentage nitrogen in dry matter \times net protein utilization. Wº-75, metabolic body size.

https://doi.org/10.1079/BJN19800071 Published online by Cambridge University Press

x 7 ъ т .

Nutritional evaluation of carob germ meal

Table 6. Nutritional and	l biological	indices m	for rats { leal (CGN	civen es M) and	cperimen CGM pr	tal diets otein is	contain olate as p	ing who protein 2	le defatt sources	ed egg,	carob (C	Ceraton	ia siliqu	1) germ
(Mean va	alues with th	eir stand	ard errors	for six t	o ten rats	for the P	ER, five ra	its for the	BV and	eight rats	for the N	PU)		
			PER te	st					N-bala	nce test				
	l		Crude p (nitrogen	rotein ×6·25)		ſ								
Protein source	Body gain	y-wt (g)	intako 28	e (g)	PE	~	jan, ≺	>	ΗÌ	Α,	R × ×	rD)	NPU Carcass a	by nalysis)
	Mean	RE	Mean	B	Mean	SE)	Mean	8	Mean	K	Mean	SE	Mean	SE
Egg	92-80	7-68	28-73	1.12	3.24	0-29	6-03	110-0	66 .0	700-0	0.92	700-0	I	ł
CGM: unsupplemented	40-30	3-38	24.20	1-92	99·I	60.0	0-67	0.015	0-87	0-004	0-58	610-0	0-59	0-051
+Supplement no. 1*	47-93	2.17	24.45	0.86	1-95	0-11	0.80 080	0.003	0-87	0-015	69-0	0-013	99 99	0-070
2	49.38	2. 60	24-51	2.15	10-2	0-11	0.78	0-015	0.85	0-023	0.66	0-026	0.6 <u>3</u>	0.00
m	41-30	86-1	17.12	0.84	06·1	0-11	0-74	110-0	0.86	0-022	0.63	0-020	0.56	100.0
4	61.70	4.10	27-35	0-93	2-24	0.08	62.0	0.021	0-93	110-0	0-73	0.015	0.77	I
S	90:40	8-51	34:55	I •26	2-59	0-20	0-78	0-012	0.92	0-021	16-0	610-0	17-0	0.045
CGM protein isolate:	l		ł		ł		0.36	910-0	26.0	0-003	0-35	0.015	I	
+Supplement no. 6	1		I		ļ		9 . 0	£10.0	26.0	0-004	0-64	£10-0	1	
	8	•												

BV biological value; PER protein efficiency ratio; TD true digestibility; NPU net protein utilization. * For details, see Table 2.

121

122 N. J. DROULISCOS AND VASILIKI MALEFAKI

were recorded for CGM protein isolate (BV 0.36, NPU 0.35) (Table 6) since as shown in Table 1 the methionine and cystine content is one-third of the value recorded for the CGM. Supplementation of CGM protein isolate with methionine and other amino acids (supplement 6; Table 2) raised the BV value to 0.66. Due to the limited quantity of the isolate that was available for the bioassays the PER was not carried out. The poor performance of CGM protein isolate as judged by the low NPU (0.35) is in close agreement with values reported by Shemer & Perkins (1974) for soya-bean protein isolate (Promine-D), the range was 0.24–0.36.

It is interesting to note that in the present study the BV obtained with Promine-D was 0.49 (Table 5) with value for NPU ($BV \times TD$) of 0.47. This value is higher than the value of 0.29 reported by Shemer & Perkins (1974) for Promine-D. The recorded value could have been due to the heavier and older rats used for the NPU determination resulting in lower N retention.

On the basis of the previously mentioned observations some conclusions may be drawn regarding the protein quality of CGM and its isolate. With CGM used in the present study at 250 g/kg diet to supply all the protein, growth in rats was $43 \cdot 4\%$ of that with the egg diet. The addition of amino acids (supplements nos. 1, 2, 4 and 5, Table 2) progressively improved body-weight gain to a maximum of $97 \cdot 4\%$ (Table 6). Supplement no. 3 (12 g DL-methionine/kg) reduced growth and protein intake (Table 6) suggesting that the methionine added was in excess and could have created an amino acid imbalance or a slight toxicity. Similar observations have been reported by Drouliscos (1976) with dry tomato pomace supplemented with 5 g methionine/kg diet in rats, by Muramatsu *et al.* (1971) with the addition of 50 g methionine/kg diet in rats and by Smith *et al.* (1975) with 2 g methionine/kg diet (Aspergillus oryzae biomass) in pigs.

CGM could replace part of the protein portion of a compounded feed for single-stomached species provided its amino acid deficiencies are corrected. Experiments with broiler chicks are in progress and the observations made will be reported in a later communication.

There appears to be some indication that during the preparation of the protein isolate under the experimental conditions of this study a certain loss of the sulphur containing amino acids is taking place together with some other essential amino acids such as lysine, valine, threonine and isoleucine (Table 1).

It should therefore be pointed out that although isolates appear to have a high CP content, they may not necessarily be well balanced in terms of their amino acid composition.

It is in this context that the incorporation of such products in various food preparations should be carefully planned and the required amino acids added if necessary.

This study was partly supported by a grant of the National Research Foundation. The authors thank Dr B. Macris for the preparation of the carob germ isolate and Miss I. Siganou for laboratory assistance.

RERERENCES

Association of Official Analytical Chemists (1970). Official Methods of Analysis, 11th ed. Washington, DC: Association of Official Analytical Chemists.

- Bender, A. E. & Miller, D. S. (1953). Biochem. J. 53, VII.
- Booth, V. H. (1971). J. Sci. Fd Agric. 22, 658.
- Carpenter, K. J. (1960). Biochem. J. 77, 604.
- Drouliscos, N. J. (1976). Br. J. Nutr. 36, 449.
- Drouliscos, N. J. & Bowland, J. P. (1969). Br. J. Nutr. 23, 113.
- Eggum, B. O. (1973). Bereth. Forsøgslab. no. 406.
- FAO/WHO. (1973). Geneva, Tech. Rep. Ser. Wld Hlth Org. no. 522. Geneva: WHO.
- Ferreira, M. F. (1964). Bolm pecuár. 32, 5.
- Lewis, O. A. H. (1966). Nature, Lond. 209, 1239.
- Miller, D. S. & Bender, A. E. (1955). Br. J. Nutr. 9, 382.

Maramatsu, K., Odagiri, H., Morishita, S. & Takeuchi, H. (1971). J. Nutr. 101, 1117. National Research Council (1962). Publs natn. Res. Coun. Wash., no. 990. Oser, B. L. (1951). J. Am. diet. Ass. 27, 396. Shemer, M. & Perkins, E. G. (1974). J. Nutr. 104, 1389.

Smith, R. H., Palmer, R. A. & Reade, A. E. (1975). J. Sci. Fd Agric. 26, 785.

123

Printed in Great Britain