

COMPOSITIO MATHEMATICA

K-stability of birationally superrigid Fano varieties

Charlie Stibitz and Ziquan Zhuang

Compositio Math. 155 (2019), 1845–1852.

[doi:10.1112/S0010437X19007498](https://doi.org/10.1112/S0010437X19007498)

K-stability of birationally superrigid Fano varieties

Charlie Stibitz and Ziquan Zhuang

ABSTRACT

We prove that every birationally superrigid Fano variety whose alpha invariant is greater than (respectively no smaller than) $\frac{1}{2}$ is K-stable (respectively K-semistable). We also prove that the alpha invariant of a birationally superrigid Fano variety of dimension n is at least $1/(n+1)$ (under mild assumptions) and that the moduli space (if it exists) of birationally superrigid Fano varieties is separated.

1. Introduction

The notion of birational superrigidity was introduced as a generalization of Iskovskih and Manin's work [\[IM71\]](#page-8-0) on the non-rationality of quartic threefolds; on the other hand, the concept of K-stability emerges in the study of Kähler–Einstein metrics on Fano manifolds. While the two notions have different nature of origin, they seem to resemble each other in the following sense: it is well known that a Fano variety X of Picard number one is birationally superrigid if and only if (X, M) has canonical singularities for every movable boundary $M \sim_{\mathbb{Q}} -K_X$; on the other hand, by the recent work of $[FO18, BJ17]$ $[FO18, BJ17]$, the K-(semi)stability of X is (roughly speaking) characterized by the log canonicity of basis type divisors, which is the average of a basis of some pluri-anticanonical system. In other words, both notions are tied to the singularities of certain anticanonical Q-divisors and so it is very natural to expect some relation between them. Indeed, the slope stability (a weaker notion of K-stability) of birationally superrigid Fano manifolds has been established by [\[OO13\]](#page-8-2) under some mild assumptions, and it is conjectured [\[OO13,](#page-8-2) [KOW18\]](#page-8-3) that birationally rigid Fano varieties are always K-stable.

In this note, we give a partial solution to this conjecture. Here is our main result.

DEFINITION 1.1. The alpha invariant $\alpha(X)$ of a Q-Fano variety X (i.e. X has Kawamata log terminal (klt) singularities and $-K_X$ is ample) is defined as the supremum of all $t > 0$ such that (X, tD) is log canonical (lc) for every effective Q-divisor $D \sim_{\mathbb{Q}} -K_X$.

THEOREM 1.2. Let X be a \mathbb{Q} -Fano variety of Picard number one. If X is birationally superrigid (or, more generally, (X, M) is log canonical for every movable boundary $M \sim_{\mathbb{Q}} -K_X$) and $\alpha(X) \geqslant \frac{1}{2}$ $\frac{1}{2}$ (respectively $> \frac{1}{2}$ $\frac{1}{2}$), then X is K-semistable (respectively K-stable).

It is well known that smooth Fano hypersurfaces of index one and dimension $n \geq 3$ are birationally superrigid [\[IM71,](#page-8-0) [dFEM03,](#page-7-1) [dF16\]](#page-7-2) and their alpha invariants are at least $n/(n+1)$ [\[Che01\]](#page-7-3); hence, we have the following immediate corollary, reproving the K-stability of Fano hypersurfaces of index one.

Received 10 August 2018, accepted in final form 8 April 2019, published online 7 August 2019. [2010 Mathematics Subject Classification](http://www.ams.org/msc/) 14J45, 14E05, 32O20 (primary). Keywords: K-stability, birational superrigidity, Kähler–Einstein metrics, Fano varieties. This journal is \odot [Foundation Compositio Mathematica](http://www.compositio.nl/) 2019.

C. Stibitz and Z. Zhuang

COROLLARY 1.3 [\[Fuj19b\]](#page-8-4). Let $X \subseteq \mathbb{P}^n$ be a smooth hypersurface of degree $n \geq 4$; then X is K-stable.

Another application is to the K-stability of general index-two hypersurfaces. By [\[Che01\]](#page-7-3) and [\[Puk16\]](#page-8-5), such hypersurfaces have alpha invariant $\frac{1}{2}$ and (X, M) is lc for every movable boundary $M \sim_{\mathbb{Q}} -K_X$. Hence, by analyzing the equality case in Theorem [1.2,](#page-1-0) we prove the following result.

COROLLARY 1.4. Let $n \geq 16$ and let $U \subseteq \mathbb{P}H^0(\mathbb{P}^{n+1}, \mathcal{O}_{\mathbb{P}^{n+1}}(n))$ be the parameter space of smooth index-two hypersurfaces. Let $T \subseteq U$ be the set of hypersurfaces that are not K-stable. Then $\operatorname{codim}_UT \geqslant \frac{1}{2}$ $\frac{1}{2}(n-11)(n-10) - 10.$

Although alpha invariants are in general hard to estimate, the known examples seem to suggest that birationally (super)rigid varieties have large alpha invariants. In view of Theorem [1.2,](#page-1-0) it is therefore natural to ask the following question.

Question 1.5. Let X be a birationally superrigid Fano variety. Is it true that $\alpha(X) > \frac{1}{2}$ $rac{1}{2}$?

Obviously, a positive answer to this question will confirm the K-stability of all birationally superrigid Fano varieties. At this point, we only have a weaker estimate.

THEOREM 1.6. Let X be a \mathbb{O} -Fano variety of Picard number one and dimension $n \geq 3$. Assume that X is birationally superrigid (or, more generally, (X, M) is log canonical for every movable boundary $M \sim_{\mathbb{Q}} -K_X$, $-K_X$ generates the class group Cl(X) of X and $|-K_X|$ is base-point-free, then $\alpha(X) \geqslant 1/(n+1)$.

Note that this is in line with the conjectural K-stability of such varieties, since, by [\[FO18,](#page-8-1) Theorem 3.5, the alpha invariant of a K-semistable Fano variety is always $\geq 1/(n+1)$. We also remark that the assumptions about the index and base-point freeness in the above theorem seem to be mild and they are satisfied by most known examples of birationally superrigid varieties.

As other evidence towards a positive answer of Question [1.5](#page-2-0) and K-stability of birationally superrigid Fano varieties, we prove the following result.

THEOREM 1.7. Let $f: X \to C$, $g: Y \to C$ be two flat families of Q-Fano varieties (i.e. all geometric fibers are integral, normal and \mathbb{Q} -Fano) over a smooth pointed curve $0 \in C$. Assume that the central fibers $X_0 = f^{-1}(0)$ and $Y_0 = g^{-1}(0)$ are birationally superrigid and there exists an isomorphism $\rho: X \backslash X_0 \cong Y \backslash Y_0$ over the punctured curve $C \backslash 0$. Then ρ induces an isomorphism $X \cong Y$ over C.

In other words, the moduli space (if it exists) of birationally superrigid Fano varieties is separated. A similar statement is also conjectured for families of K-stable Fano varieties (postscript note: this has now been proved by Blum and Xu) and our proof of Theorem [1.7](#page-2-1) is indeed inspired by the recent work [\[BX18\]](#page-7-4) in the uniformly K-stable case. One should also note that if the answer to Question [1.5](#page-2-0) is positive, then Theorem [1.7](#page-2-1) follows immediately from [\[Che09,](#page-7-5) Theorem 1.5].

2. Preliminary

2.1 Notation and conventions

We work over the field $\mathbb C$ of complex numbers. Unless otherwise specified, all varieties are assumed to be projective and normal and divisors are understood as Q-divisors. The notions of canonical, klt and lc singularities are defined in the sense of [\[Kol97,](#page-8-6) Definition 3.5]. A movable boundary is defined as an expression of the form $a\mathcal{M}$, where $a \in \mathbb{Q}$ and M is a movable linear system. Its \mathbb{Q} -linear equivalence class is defined in an evident way. If $M = a\mathcal{M}$ is a movable boundary on X, we say that (X, M) is klt (respectively canonical, lc) if for $k \geq 0$ and for general members D_1,\ldots,D_k of the linear system M, the pair (X,M_k) (where $M_k = (a/k)\sum_{i=1}^k D_i$) is klt (respectively canonical, lc) in the usual sense. The lc threshold [\[Kol97,](#page-8-6) Definition 8.1] of a divisor D on X is denoted by $lct(X;D)$.

2.2 K-stability

We refer to [\[Tia97,](#page-8-7) [Don02\]](#page-7-6) for the original definition of K-stability using test configurations. In this paper we use the following equivalent valuative criterion.

DEFINITION 2.1 [\[Fuj19a,](#page-8-8) Definition 1.1]. Let X be a \mathbb{Q} -Fano variety of dimension n. Let F be a prime divisor over X, i.e. there exists a projective birational morphism $\pi: Y \to X$ with Y normal such that F is a prime divisor on Y .

- (i) For any $x \ge 0$, we define $\mathrm{vol}_X(-K_X xF) := \mathrm{vol}_Y(-\pi^*K_X xF)$.
- (ii) The pseudo-effective threshold $\tau(F)$ of F with respect to $-K_X$ is defined as

$$
\tau(F) := \sup \{ \tau > 0 \mid \text{vol}_X(-K_X - \tau F) > 0 \}.
$$

(iii) Let $A_X(F)$ be the log discrepancy of F with respect to X. We set

$$
\beta(F) := A_X(F) \cdot ((-K_X)^n) - \int_0^\infty \text{vol}_X(-K_X - xF) dx.
$$

(iv) F is said to be *dreamy* if the graded algebra

$$
\bigoplus_{k,j\in\mathbb{Z}_{\geqslant 0}}H^0(Y,-kr\pi^*K_X-jF)
$$

is finitely generated for some (hence, for any) $r \in \mathbb{Z} > 0$ with rK_X Cartier.

THEOREM 2.2 [\[Fuj19a,](#page-8-8) Theorems 1.3 and 1.4] and [\[Li17,](#page-8-9) Theorem 3.7]. Let X be a \mathbb{Q} -Fano variety. Then X is K-stable (respectively K-semistable) if and only if $\beta(F) > 0$ (respectively $\beta(F) \geq 0$) holds for any dreamy prime divisor F over X.

2.3 Birational superrigidity

A Fano variety X is said to be birationally superrigid if it has terminal singularities, is $\mathbb Q$ -factorial of Picard number one and every birational map $f: X \dashrightarrow Y$ from X to a Mori fiber space is an isomorphism (see e.g. [\[CS08,](#page-7-7) Definition 1.25]). We have the following equivalent characterization of birational superrigidity.

THEOREM 2.3 [\[CS08,](#page-7-7) Theorem 1.26]. Let X be a Fano variety. Then it is birationally superrigid if and only if it has Q-factorial terminal singularities, Picard number one and, for every movable boundary $M \sim_{\mathbb{Q}} -K_X$ on X, the pair (X, M) has canonical singularities.

C. Stibitz and Z. Zhuang

3. Proofs

In this section we prove the results stated in the introduction.

Proof of Theorem [1.2.](#page-1-0) The proof strategy is similar to those of $[Fig19c, Proposition 2.1]$. By assumption, we have $\text{lct}(X;D) \geq \frac{1}{2}$ $\frac{1}{2}$ (respectively $> \frac{1}{2}$ $\frac{1}{2}$) for every effective divisor $D \sim_{\mathbb{Q}} -K_X$. For simplicity we only prove the K-semistability, since the K-stability part is almost identical. As such, we assume that $\mathrm{lct}(X;D) \geq \frac{1}{2}$ $\frac{1}{2}$ in the rest of the proof. Let F be a dreamy divisor over X and let $\tau = \tau(F)$. Let $\pi : Y \to X$ be a projective birational morphism such that F is a prime divisor on Y and let

$$
b = \frac{1}{(-K_X)^n} \int_0^\tau \text{vol}_X(-K_X - xF) \, dx.
$$

By Theorem [2.2,](#page-3-0) it suffices to show that $b \leq A = A_X(F)$.

Suppose that this is not the case, i.e. $b > A$. As in the proof of [\[Fuj19c,](#page-8-10) Proposition 2.1], we have

$$
\int_0^{\tau} (x - b) \cdot \text{vol}_{Y|F}(-\pi^* K_X - xF) dx = 0,
$$
\n(1)

where vol $_{Y|F}$ denotes the restricted volume of a divisor to F (see [\[ELM09\]](#page-7-8)). Since X has Picard number one, every divisor on X is linearly equivalent to a multiple of $-K_X$ and hence by our assumption that (X, M) is lc for every movable boundary M, we see that there exists at most one irreducible divisor $D \sim_{\mathbb{Q}} -K_X$ such that $\text{ord}_F(D) > A$. It follows that $\text{ord}_F(D) = \tau$ by the definition of $\tau(F)$. Moreover if $x \geq A$ and $D' \sim_{\mathbb{Q}} -K_X$ is an effective divisor for which $\text{ord}_F(D') \geqslant x$ and we write $D' = aD + \Gamma$, where $D \not\subseteq \text{Supp }(\Gamma)$, then $\text{ord}_F(\Gamma) \leqslant A$. As

$$
-\pi^*K_X - xF = \frac{\tau - x}{\tau - A}(-\pi^*K_X - AF) + \frac{x - A}{\tau - A}(-\pi^*K_X - \tau F),
$$

we see that $a \geq (x - A)/(\tau - A)$ and, therefore, if in addition $x \in \mathbb{Q}$ and m is sufficiently divisible, then the natural inclusion

$$
H^{0}\left(Y, \frac{\tau - x}{\tau - A}(-m\pi^{*}K_{X} - mAF)\right) \hookrightarrow H^{0}(Y, -m\pi^{*}K_{X} - mxF)
$$

given by the multiplication of $m \cdot ((x - A)/(\tau - A))(\pi^*D - \tau F)$ is an isomorphism. By the definition and the continuity of restricted volume, this implies (note that F is not in the support of $\pi^*D - \tau F$) that

$$
\text{vol}_{Y|F}(-\pi^*K_X - xF) = \left(\frac{\tau - x}{\tau - A}\right)^{n-1} \text{vol}_{Y|F}(-\pi^*K_X - AF) \tag{2}
$$

when $A \leq x \leq \tau$. On the other hand, by the log-concavity of restricted volume [\[ELM09,](#page-7-8) Theorem A], we have

$$
\text{vol}_{Y|F}(-\pi^*K_X - xF) \geqslant \left(\frac{x}{A}\right)^{n-1} \text{vol}_{Y|F}(-\pi^*K_X - AF) \tag{3}
$$

whenever $x \in [0, A]$. Since $b > A$, combining [\(1\)](#page-4-0), [\(2\)](#page-4-1) and [\(3\)](#page-4-2), we get the inequality

$$
0 \leqslant \int_0^A (x - b) \left(\frac{x}{A}\right)^{n-1} dx + \int_A^\tau (x - b) \left(\frac{\tau - x}{\tau - A}\right)^{n-1} dx,\tag{4}
$$

which is equivalent to

$$
\frac{\tau - 2A}{n(n+1)} + \frac{A - b}{n} \geqslant 0.
$$
\n⁽⁵⁾

As $b > A$, we have $\text{ord}_F(D) = \tau > 2A$, which implies that $\text{lct}(X;D) < \frac{1}{2}$ $\frac{1}{2}$, contradicting our \Box assumption.

Remark 3.1. Let us also give a somewhat conceptual summary of the proof (for K-semistability). In terms of the equation [\(1\)](#page-4-0), it suffices to check that the center of mass of the interval $[0, \tau]$ with density function $f(x) = (1/(-K_X)^n) \text{vol}_{Y|F}(-\pi^*K_X - xF)$ is at most A. The assumption that (X, M) is lc for every movable boundary $M \sim_{\mathbb{Q}} -K_X$ implies that $g(x) = f(x)^{1/(n-1)}$ is linear when $x \geqslant A$ and $g(\tau) = 0$ if $\tau > A$, while $\alpha(X) \geqslant \frac{1}{2}$ $\frac{1}{2}$ implies that the length of the interval is at most 2A. Since $g(x)$ is also concave, it is clear (by looking at the graph of $g(x)$) that the center of mass is at most A.

It is not hard to characterize the equality case from the above proof.

COROLLARY 3.2. Let X be a \mathbb{Q} -Fano variety of Picard number one. Assume that (X, M) is lc for every movable boundary $M \sim_{\mathbb{Q}} -K_X$, $\alpha(X) \geq \frac{1}{2}$ $\frac{1}{2}$ but X is not K-stable; then there exist a dreamy prime divisor F over X, a movable boundary $M \sim_{\mathbb{Q}} -K_X$ and an effective divisor $D \sim_{\mathbb{Q}} -K_X$ such that F is a log canonical place of (X, M) and $(X, \frac{1}{2}D)$. In particular, if X is birationally superrigid and $\alpha(X) \geq \frac{1}{2}$ $\frac{1}{2}$, then X is K-stable.

Proof. We keep the notation from the above proof. Let $\eta = \eta(F)$ be the movable threshold of $-K_X$ with respect to F, i.e. the supremum of $c \geq 0$ such that there exists an effective divisor $D_0 \sim_{\mathbb{Q}} -K_X$ with $\text{ord}_F(D_0) = c$ whose support does not contain D (see e.g. [\[Zhu18,](#page-8-11) Definition 4.1]). Since F is dreamy, this is indeed a maximum and there exists $D_1 \sim_{\mathbb{Q}} -K_X$ such that $\text{ord}_F(D_1) = \eta$ (one can simply take D_1 to be the divisor corresponding to a generator of $\bigoplus_{k,j\in\mathbb{Z}_{\geqslant0}}H^0(Y,-kr\pi^*K_X-jF)$ with largest slope j/kr among those that do not vanish on D).

Suppose that X is not K-stable and choose F to be a dreamy divisor over X such that $\beta(F) = 0$; then we have $b = A \geq \eta$. In this case by the same proof as above the (in)equalities (2) , (3) , (4) and (5) hold true with η in place of A and we have

$$
\frac{\tau-2\eta}{n(n+1)}+\frac{\eta-b}{n}\geqslant 0
$$

or $(\tau - 2A) + (n - 1)(\eta - A) \ge 0$ (note that $b = A$). But by assumption we have $\tau \le 2A$ and $\eta \leq A$ and hence this is only possible when $\eta = A$ and $\tau = 2A$. Taking M to be the linear system generated by a sufficiently divisible multiple of D and D₁ (and then rescale so that $M \sim_{\mathbb{Q}} -K_X$) finishes the proof. \Box

Proof of Corollary [1.4.](#page-2-2) Let $S \subseteq U$ be the set of *regular* hypersurfaces as defined in [\[Puk17,](#page-8-12) $\S 0.2$. By [\[Puk17,](#page-8-12) Theorem 2], S is non-empty and the complement of S has codimension at least $\frac{1}{2}(n-11)(n-10) - 10$. Therefore, it suffices to show that every hypersurface in the set S is K-stable. Let X be such a hypersurface.

Let H be the hyperplane class and let $D \sim_{\mathbb{Q}} H \sim_{\mathbb{Q}} -\frac{1}{2}K_X$ be an effective divisor. By [\[Che01,](#page-7-3) Lemma 3.1, (X, D) is lc and indeed by [\[Puk02,](#page-8-13) Proposition 5] we have mult_x $D \leq 1$ for all but finitely many $x \in X$; hence, by [\[Kol97,](#page-8-6) (3.14.1)], (X, D) has canonical singularities outside a

C. Stibitz and Z. Zhuang

finite number of points. It follows that every lc center of (X, D) is either a divisor on X or an isolated point.

On the other hand, let $M \sim_{\mathbb{Q}} -K_X$ be a movable boundary; then, by the main result of $[Puk17]$, the only possible center of maximal singularities of (X, M) is a linear section of X of codimension two. It follows that (X, M) is lc and every lc center of (X, M) is a linear section of codimension two.

Hence, X is K-semistable by Theorem [1.2.](#page-1-0) Suppose that it is not K-stable; then by Corollary [3.2](#page-5-1) there exist a movable boundary $M \sim_{\mathbb{Q}} -K_X$ and an effective divisor $D \sim_{\mathbb{Q}} H$ such that (X, M) and (X, D) have a common lc center. But, by the previous analysis, this is impossible as the lc centers of (X, M) and (X, D) always have different dimension. Therefore, X is K-stable and the proof is complete. \Box

Proof of Theorem [1.6.](#page-2-3) It suffices to show that $\text{lct}(X; D) \geq 1/(n+1)$ for every $D \sim_{\mathbb{Q}} -K_X$. We may assume that D is irreducible. Since Cl(X) is generated by $-K_X$, we have mult_nD ≤ 1 , where η is the generic point of D. It follows that (X, D) is lc in codimension one [\[Kol97,](#page-8-6) (3.14.1)] and hence the multiplier ideal $\mathcal{J}(X,(1-\epsilon)D)$ (where $0 < \epsilon \ll 1$) defines a subscheme of codimension at least two. By Nadel vanishing,

$$
H^i(X, \mathcal{J}(X, (1-\epsilon)D) \otimes \mathcal{O}_X(-rK_X)) = 0
$$

for every $i > 0$ and $r \geq 0$; therefore, by Castelnuovo–Mumford regularity (see e.g. [\[Laz04,](#page-8-14) § 1.8]), the sheaf $\mathcal{J}(X,(1-\epsilon)D) \otimes \mathcal{O}_X(-nK_X)$ is generated by its global sections and we get a movable linear system

$$
\mathcal{M} = |\mathcal{J}(X,(1-\epsilon)D) \otimes \mathcal{O}_X(-nK_X)|.
$$

Suppose that $lct(X; D) < 1/(n+1)$, let E be an exceptional divisor over X that computes it, let $A = A_X(E)$ and let $\pi : Y \to X$ be a projective birational morphism such that the center of E on Y is a divisor; then $A \in \mathbb{Z}$ (since $-K_X$ is Cartier by assumption) and we have $d = \text{ord}_E(D) > (n+1)A$ and $\mathcal{J}(X,(1-\epsilon)D) \subseteq \pi_*\mathcal{O}_Y((A-1-\lfloor(1-\epsilon)d\rfloor)E) \subseteq \pi_*\mathcal{O}_Y(-(nA+1)E).$ It follows that ord $E(\mathcal{M}) \geq nA+1$ and hence for the movable boundary $M = (1/n)\mathcal{M} \sim_{\mathbb{Q}} K_X$ we have $\text{ord}_E(M) > A$ and (X, M) is not lc, violating our assumption. Thus, $\text{let}(X; D) \geq 1/(n+1)$ and we are done.

Finally we prove the separatedness statement (Theorem [1.7\)](#page-2-1). For this we recall the following criterion.

LEMMA 3.3. Let $f: X \to C$, $g: Y \to C$ be flat families of Q-Fano varieties over a smooth pointed curve $0 \in C$ with central fibers X_0 and Y_0 . Assume that K_X and K_Y are Q-Cartier and let $D_X \sim_{\mathbb{Q}} -K_X$, $D_Y \sim_{\mathbb{Q}} -K_Y$ be effective divisors not containing X_0 or Y_0 . Assume that there exists an isomorphism

$$
\rho: (X, D_X) \times_C C^{\circ} \cong (Y, D_Y) \times_C C^{\circ}
$$

over $C^{\circ} = C \setminus 0$, that $(X_0, D_X |_{X_0})$ is klt and that $(Y_0, D_Y |_{Y_0})$ is lc. Then ρ extends to an isomorphism $(X, D_X) \cong (Y, D_Y)$.

Proof. This follows from the exact same proof of [\[LWX19,](#page-8-15) Theorem 5.2] (see also [\[BX18,](#page-7-4) Proposition 3.2]). \Box

Proof of Theorem [1.7.](#page-2-1) Since birationally superrigid Fano varieties have terminal singularities, K_X and K_Y are Q-Cartier by [\[dFH11,](#page-7-9) Proposition 3.5]. Hence, the result follows from Theorem [2.3](#page-3-1) and the following more general statement. \Box LEMMA 3.4. Let $f: X \to C$, $g: Y \to C$ be flat families of Q-Fano varieties over a smooth pointed curve $0 \in C$ that are isomorphic over $C^{\circ} = C \setminus 0$. Let X_0 and Y_0 be their central fibers. Assume that:

- (i) K_X and K_Y are Q-Cartier;
- (ii) for every movable boundary $M_X \sim_{\mathbb{Q}} -K_{X_0}$, (X_0, M_X) is klt;
- (iii) for every movable boundary $M_Y \sim_{\mathbb{Q}} -K_{Y_0}$, (Y_0, M_Y) is lc.

Then $X \cong Y$ over C.

Proof. By assumption, X is birational to Y over C. Let m be a sufficiently large and divisible integer and let $D_1 \in |-mK_{X_0}|$, $D_2 \in |-mK_{Y_0}|$ be general divisors in the corresponding linear system. Choose effective divisors $D_{X,1} \sim -mK_X$, $D_{Y,2} \sim -mK_Y$ not containing X_0 or Y_0 such that $D_{X,1}|_{X_0} = D_1$ and $D_{Y,2}|_{Y_0} = D_2$. Let $D_{Y,1}$ and $D_{X,2}$ be their strict transforms to the other family. Since X and Y are isomorphic over C° , we have $D_{Y,1} \sim -mK_Y + W$, where W is supported on Y_0 ; but, as Y_0 is irreducible, we have $W = \ell Y_0 = \ell g^*(0)$ for some integer ℓ . Since the question is local around $0 \in C$, we may shrink C so that $Y_0 \sim 0$ and thus $D_{Y,1} \sim -mK_Y$. Similarly, we also have $D_{X,2} \sim -mK_X$. Let $D'_1 = D_{Y,1}|_{Y_0}$ and $D'_2 = D_{X,2}|_{X_0}$. Let \mathcal{M}_X be the linear system spanned by $D_{X,1}$ and $D_{X,2}$ and let $M_X = (1/m)\mathcal{M}_X \sim_{\mathbb{Q}} -K_X$. Similarly, we have \mathcal{M}_Y and $M_Y \sim_{\mathbb{Q}} -K_Y$. As D_1 and D_2 are general, D_1 and D_2' have no common components; hence, the restriction of M_X to X_0 is still a movable boundary and, therefore, by our second assumption, $(X_0, M_X|_{X_0})$ is klt. Similarly, $(Y_0, M_Y|_{Y_0})$ is lc and we conclude by Lemma [3.3.](#page-6-0) \Box

Acknowledgements

The authors would like to thank their advisor János Kollár for constant support, encouragement and numerous inspiring conversations. The first author wishes to thank Harold Blum for a useful discussion as well. Both authors also wish to thank Yuchen Liu for helpful discussions.

REFERENCES

- BJ17 H. Blum and M. Jonsson, *Thresholds, valuations, and K-stability*, Preprint (2017), [arXiv:1706.04548.](http://www.arxiv.org/abs/1706.04548)
- BX18 H. Blum and C. Xu, Uniqueness of K-polystable degenerations of Fano varieties, Ann. of Math., to appear. Preprint (2018), [arXiv:1812.03538.](http://www.arxiv.org/abs/1812.03538)
- Che01 I. A. Cheltsov, Log canonical thresholds on hypersurfaces, Mat. Sb. 192 (2001), 155–172.
- Che09 I. Cheltsov, On singular cubic surfaces, Asian J. Math. 13 (2009), 191–214.
- CS08 I. A. Cheltsov and K. A. Shramov, Log-canonical thresholds for nonsingular Fano threefolds, Uspekhi Mat. Nauk 63 (2008), 73–180.
- dF16 T. de Fernex, Erratum to: Birationally rigid hypersurfaces, Invent. Math. 203 (2016), 675–680.
- dFEM03 T. de Fernex, L. Ein and M. Mustata, Bounds for log canonical thresholds with applications to birational rigidity, Math. Res. Lett. 10 (2003), 219–236.
- dFH11 T. de Fernex and C. D. Hacon, *Deformations of canonical pairs and Fano varieties*, J. Reine Angew. Math. 651 (2011), 97–126.
- Don02 S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), 289–349.
- ELM09 L. Ein, R. Lazarsfeld, M. Mustată, M. Nakamaye and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), 607–651.
- Fuj19a K. Fujita, A valuative criterion for uniform K-stability of \mathbb{O} -Fano varieties, J. Reine Angew. Math. 751 (2019), 309–338.
- Fuj19b K. Fujita, K-stability of Fano manifolds with not small alpha invariants, J. Inst. Math. Jussieu 18 (2019), 519–530.
- Fuj19c K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto J. Math. 59 (2019), 399–418.
- FO18 K. Fujita and Y. Odaka, On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math. J. (2) 70 (2018), 511–521.
- IM71 V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the $Lüroth problem, Mat. Sb. (N.S.)$ 86 (1971), 140-166.
- KOW18 I.-K. Kim, T. Okada and J. Won, Alpha invariants of birationally rigid Fano threefolds, Int. Math. Res. Not. IMRN 2018 (2018), 2745–2800.
- Kol97 J. Kollár, Singularities of pairs, in Algebraic geometry—Santa Cruz 1995, Proceedings of Symposia in Pure Mathematics, vol. 62 (American Mathematical Society, Providence, RI, 1997), 221–287.
- Laz04 R. Lazarsfeld, Positivity in algebraic geometry I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge [A Series of Modern Surveys in Mathematics], vol. 48 (Springer, Berlin, 2004).
- Li17 C. Li, K-semistability is equivariant volume minimization, Duke Math. J. 166 (2017), 3147–3218.
- LWX19 C. Li, X. Wang and C. Xu, On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties, Duke Math. J. 168 (2019), 1387–1459.
- OO13 Y. Odaka and T. Okada, Birational superrigidity and slope stability of Fano manifolds, Math. Z. 275 (2013), 1109–1119.
- Puk02 A. V. Pukhlikov, Birationally rigid Fano hypersurfaces, Izv. Ross. Akad. Nauk Ser. Mat. 66 (2002), 159–186.
- Puk16 A. V. Pukhlikov, *Birational geometry of Fano hypersurfaces of index two*, Math. Ann. 366 (2016), 721–782.
- Puk17 A. V. Pukhlikov, Birational geometry of singular Fano hypersurfaces of index two, Preprint (2017), [arXiv:1712.08796.](http://www.arxiv.org/abs/1712.08796)
- Tia97 G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–37.
- Zhu18 Z. Zhuang, Birational superrigidity and K-stability of Fano complete intersections of index one (with an appendix written jointly with Charlie Stibitz), Preprint (2018), [arXiv:1802.08389.](http://www.arxiv.org/abs/1802.08389)

Charlie Stibitz cstibitz@math.northwestern.edu Department of Mathematics, Northwestern University, Evanston, IL 60208, USA

Ziquan Zhuang zzhuang@math.princeton.edu Department of Mathematics, Princeton University, Princeton, NJ 08544-1000, USA