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Abstract

We prove that every birationally superrigid Fano variety whose alpha invariant is greater
than (respectively no smaller than) 1

2 is K-stable (respectively K-semistable). We also
prove that the alpha invariant of a birationally superrigid Fano variety of dimension n
is at least 1/(n+ 1) (under mild assumptions) and that the moduli space (if it exists)
of birationally superrigid Fano varieties is separated.

1. Introduction

The notion of birational superrigidity was introduced as a generalization of Iskovskih and Manin’s
work [IM71] on the non-rationality of quartic threefolds; on the other hand, the concept of
K-stability emerges in the study of Kähler–Einstein metrics on Fano manifolds. While the two
notions have different nature of origin, they seem to resemble each other in the following sense:
it is well known that a Fano variety X of Picard number one is birationally superrigid if and
only if (X,M) has canonical singularities for every movable boundary M ∼Q −KX ; on the other
hand, by the recent work of [FO18, BJ17], the K-(semi)stability of X is (roughly speaking)
characterized by the log canonicity of basis type divisors, which is the average of a basis of some
pluri-anticanonical system. In other words, both notions are tied to the singularities of certain
anticanonical Q-divisors and so it is very natural to expect some relation between them. Indeed,
the slope stability (a weaker notion of K-stability) of birationally superrigid Fano manifolds has
been established by [OO13] under some mild assumptions, and it is conjectured [OO13, KOW18]
that birationally rigid Fano varieties are always K-stable.

In this note, we give a partial solution to this conjecture. Here is our main result.

Definition 1.1. The alpha invariant α(X) of a Q-Fano variety X (i.e. X has Kawamata log
terminal (klt) singularities and −KX is ample) is defined as the supremum of all t > 0 such that
(X, tD) is log canonical (lc) for every effective Q-divisor D ∼Q −KX .

Theorem 1.2. Let X be a Q-Fano variety of Picard number one. If X is birationally superrigid
(or, more generally, (X,M) is log canonical for every movable boundary M ∼Q −KX) and
α(X) > 1

2 (respectively > 1
2), then X is K-semistable (respectively K-stable).

It is well known that smooth Fano hypersurfaces of index one and dimension n > 3 are
birationally superrigid [IM71, dFEM03, dF16] and their alpha invariants are at least n/(n+ 1)
[Che01]; hence, we have the following immediate corollary, reproving the K-stability of Fano
hypersurfaces of index one.
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Corollary 1.3 [Fuj19b]. Let X ⊆ Pn be a smooth hypersurface of degree n > 4; then X is

K-stable.

Another application is to the K-stability of general index-two hypersurfaces. By [Che01] and

[Puk16], such hypersurfaces have alpha invariant 1
2 and (X,M) is lc for every movable boundary

M ∼Q −KX . Hence, by analyzing the equality case in Theorem 1.2, we prove the following result.

Corollary 1.4. Let n> 16 and let U ⊆ PH0(Pn+1,OPn+1(n)) be the parameter space of smooth

index-two hypersurfaces. Let T ⊆ U be the set of hypersurfaces that are not K-stable. Then

codimUT > 1
2(n− 11)(n− 10)− 10.

Although alpha invariants are in general hard to estimate, the known examples seem

to suggest that birationally (super)rigid varieties have large alpha invariants. In view of

Theorem 1.2, it is therefore natural to ask the following question.

Question 1.5. Let X be a birationally superrigid Fano variety. Is it true that α(X) > 1
2?

Obviously, a positive answer to this question will confirm the K-stability of all birationally

superrigid Fano varieties. At this point, we only have a weaker estimate.

Theorem 1.6. Let X be a Q-Fano variety of Picard number one and dimension n > 3. Assume

that X is birationally superrigid (or, more generally, (X,M) is log canonical for every movable

boundary M ∼Q −KX),−KX generates the class group Cl(X) of X and |−KX | is base-point-free,

then α(X) > 1/(n+ 1).

Note that this is in line with the conjectural K-stability of such varieties, since, by [FO18,

Theorem 3.5], the alpha invariant of a K-semistable Fano variety is always > 1/(n+ 1). We also

remark that the assumptions about the index and base-point freeness in the above theorem seem

to be mild and they are satisfied by most known examples of birationally superrigid varieties.

As other evidence towards a positive answer of Question 1.5 and K-stability of birationally

superrigid Fano varieties, we prove the following result.

Theorem 1.7. Let f : X → C, g : Y → C be two flat families of Q-Fano varieties (i.e. all

geometric fibers are integral, normal and Q-Fano) over a smooth pointed curve 0 ∈ C. Assume

that the central fibers X0 = f−1(0) and Y0 = g−1(0) are birationally superrigid and there exists

an isomorphism ρ : X\X0
∼= Y \Y0 over the punctured curve C\0. Then ρ induces an isomorphism

X ∼= Y over C.

In other words, the moduli space (if it exists) of birationally superrigid Fano varieties

is separated. A similar statement is also conjectured for families of K-stable Fano varieties

(postscript note: this has now been proved by Blum and Xu) and our proof of Theorem 1.7

is indeed inspired by the recent work [BX18] in the uniformly K-stable case. One should also

note that if the answer to Question 1.5 is positive, then Theorem 1.7 follows immediately from

[Che09, Theorem 1.5].
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2. Preliminary

2.1 Notation and conventions
We work over the field C of complex numbers. Unless otherwise specified, all varieties are assumed
to be projective and normal and divisors are understood as Q-divisors. The notions of canonical,
klt and lc singularities are defined in the sense of [Kol97, Definition 3.5]. A movable boundary
is defined as an expression of the form aM, where a ∈ Q and M is a movable linear system. Its
Q-linear equivalence class is defined in an evident way. If M = aM is a movable boundary on X,
we say that (X,M) is klt (respectively canonical, lc) if for k � 0 and for general members
D1, . . . , Dk of the linear system M, the pair (X,Mk) (where Mk = (a/k)

∑k
i=1Di) is klt

(respectively canonical, lc) in the usual sense. The lc threshold [Kol97, Definition 8.1] of a divisor
D on X is denoted by lct(X;D).

2.2 K-stability
We refer to [Tia97, Don02] for the original definition of K-stability using test configurations. In
this paper we use the following equivalent valuative criterion.

Definition 2.1 [Fuj19a, Definition 1.1]. Let X be a Q-Fano variety of dimension n. Let F be
a prime divisor over X, i.e. there exists a projective birational morphism π : Y → X with Y
normal such that F is a prime divisor on Y .

(i) For any x > 0, we define volX(−KX − xF ) := volY (−π∗KX − xF ).

(ii) The pseudo-effective threshold τ(F ) of F with respect to −KX is defined as

τ(F ) := sup{τ > 0 | volX(−KX − τF ) > 0}.

(iii) Let AX(F ) be the log discrepancy of F with respect to X. We set

β(F ) := AX(F ) · ((−KX)n)−
∫ ∞
0

volX(−KX − xF ) dx.

(iv) F is said to be dreamy if the graded algebra⊕
k,j∈Z>0

H0(Y,−krπ∗KX − jF )

is finitely generated for some (hence, for any) r ∈ Z> 0 with rKX Cartier.

Theorem 2.2 [Fuj19a, Theorems 1.3 and 1.4] and [Li17, Theorem 3.7]. Let X be a Q-Fano
variety. Then X is K-stable (respectively K-semistable) if and only if β(F ) > 0 (respectively
β(F ) > 0) holds for any dreamy prime divisor F over X.

2.3 Birational superrigidity
A Fano variety X is said to be birationally superrigid if it has terminal singularities, is Q-factorial
of Picard number one and every birational map f : X 99K Y from X to a Mori fiber space is an
isomorphism (see e.g. [CS08, Definition 1.25]). We have the following equivalent characterization
of birational superrigidity.

Theorem 2.3 [CS08, Theorem 1.26]. Let X be a Fano variety. Then it is birationally superrigid
if and only if it has Q-factorial terminal singularities, Picard number one and, for every movable
boundary M ∼Q −KX on X, the pair (X,M) has canonical singularities.
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3. Proofs

In this section we prove the results stated in the introduction.

Proof of Theorem 1.2. The proof strategy is similar to those of [Fuj19c, Proposition 2.1]. By
assumption, we have lct(X;D) > 1

2 (respectively > 1
2) for every effective divisor D ∼Q −KX .

For simplicity we only prove the K-semistability, since the K-stability part is almost identical.
As such, we assume that lct(X;D) > 1

2 in the rest of the proof. Let F be a dreamy divisor over
X and let τ = τ(F ). Let π : Y → X be a projective birational morphism such that F is a prime
divisor on Y and let

b =
1

(−KX)n

∫ τ

0
volX(−KX − xF ) dx.

By Theorem 2.2, it suffices to show that b 6 A = AX(F ).
Suppose that this is not the case, i.e. b > A. As in the proof of [Fuj19c, Proposition 2.1], we

have ∫ τ

0
(x− b) · volY |F (−π∗KX − xF ) dx = 0, (1)

where volY |F denotes the restricted volume of a divisor to F (see [ELM09]). Since X has Picard
number one, every divisor on X is linearly equivalent to a multiple of −KX and hence by our
assumption that (X,M) is lc for every movable boundary M , we see that there exists at most
one irreducible divisor D ∼Q −KX such that ordF (D) > A. It follows that ordF (D) = τ by
the definition of τ(F ). Moreover if x > A and D′ ∼Q −KX is an effective divisor for which
ordF (D′) > x and we write D′ = aD + Γ, where D 6⊆ Supp (Γ), then ordF (Γ) 6 A. As

− π∗KX − xF =
τ − x
τ −A

(−π∗KX −AF ) +
x−A
τ −A

(−π∗KX − τF ),

we see that a> (x−A)/(τ −A) and, therefore, if in addition x ∈Q and m is sufficiently divisible,
then the natural inclusion

H0

(
Y,
τ − x
τ −A

(−mπ∗KX −mAF )

)
↪→ H0(Y,−mπ∗KX −mxF )

given by the multiplication of m · ((x−A)/(τ −A))(π∗D − τF ) is an isomorphism. By the
definition and the continuity of restricted volume, this implies (note that F is not in the support
of π∗D − τF ) that

volY |F (−π∗KX − xF ) =

(
τ − x
τ −A

)n−1
volY |F (−π∗KX −AF ) (2)

when A 6 x 6 τ . On the other hand, by the log-concavity of restricted volume [ELM09,
Theorem A], we have

volY |F (−π∗KX − xF ) >

(
x

A

)n−1
volY |F (−π∗KX −AF ) (3)

whenever x ∈ [0, A]. Since b > A, combining (1), (2) and (3), we get the inequality

0 6
∫ A

0
(x− b)

(
x

A

)n−1
dx+

∫ τ

A
(x− b)

(
τ − x
τ −A

)n−1
dx, (4)
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which is equivalent to
τ − 2A

n(n+ 1)
+
A− b
n

> 0. (5)

As b > A, we have ordF (D) = τ > 2A, which implies that lct(X;D) < 1
2 , contradicting our

assumption. 2

Remark 3.1. Let us also give a somewhat conceptual summary of the proof (for K-semistability).
In terms of the equation (1), it suffices to check that the center of mass of the interval [0, τ ] with
density function f(x) = (1/(−KX)n)volY |F (−π∗KX − xF ) is at most A. The assumption that

(X,M) is lc for every movable boundary M ∼Q −KX implies that g(x) = f(x)1/(n−1) is linear
when x > A and g(τ) = 0 if τ > A, while α(X) > 1

2 implies that the length of the interval is at
most 2A. Since g(x) is also concave, it is clear (by looking at the graph of g(x)) that the center
of mass is at most A.

It is not hard to characterize the equality case from the above proof.

Corollary 3.2. Let X be a Q-Fano variety of Picard number one. Assume that (X,M) is lc
for every movable boundary M ∼Q −KX , α(X) > 1

2 but X is not K-stable; then there exist
a dreamy prime divisor F over X, a movable boundary M ∼Q −KX and an effective divisor
D ∼Q −KX such that F is a log canonical place of (X,M) and (X, 12D). In particular, if X is
birationally superrigid and α(X) > 1

2 , then X is K-stable.

Proof. We keep the notation from the above proof. Let η = η(F ) be the movable threshold
of −KX with respect to F , i.e. the supremum of c > 0 such that there exists an effective
divisor D0 ∼Q −KX with ordF (D0) = c whose support does not contain D (see e.g. [Zhu18,
Definition 4.1]). Since F is dreamy, this is indeed a maximum and there exists D1 ∼Q −KX such
that ordF (D1) = η (one can simply take D1 to be the divisor corresponding to a generator of⊕

k,j∈Z>0
H0(Y,−krπ∗KX − jF ) with largest slope j/kr among those that do not vanish on D).

Suppose that X is not K-stable and choose F to be a dreamy divisor over X such that
β(F ) = 0; then we have b = A > η. In this case by the same proof as above the (in)equalities
(2), (3), (4) and (5) hold true with η in place of A and we have

τ − 2η

n(n+ 1)
+
η − b
n

> 0

or (τ − 2A) + (n − 1)(η − A) > 0 (note that b = A). But by assumption we have τ 6 2A and
η 6 A and hence this is only possible when η = A and τ = 2A. Taking M to be the linear system
generated by a sufficiently divisible multiple of D and D1 (and then rescale so that M ∼Q −KX)
finishes the proof. 2

Proof of Corollary 1.4. Let S ⊆ U be the set of regular hypersurfaces as defined in [Puk17,
§ 0.2]. By [Puk17, Theorem 2], S is non-empty and the complement of S has codimension at
least 1

2(n− 11)(n− 10)− 10. Therefore, it suffices to show that every hypersurface in the set S
is K-stable. Let X be such a hypersurface.

Let H be the hyperplane class and let D ∼Q H ∼Q −1
2KX be an effective divisor. By [Che01,

Lemma 3.1], (X,D) is lc and indeed by [Puk02, Proposition 5] we have multxD 6 1 for all but
finitely many x ∈ X; hence, by [Kol97, (3.14.1)], (X,D) has canonical singularities outside a
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finite number of points. It follows that every lc center of (X,D) is either a divisor on X or an
isolated point.

On the other hand, let M ∼Q −KX be a movable boundary; then, by the main result
of [Puk17], the only possible center of maximal singularities of (X,M) is a linear section of X
of codimension two. It follows that (X,M) is lc and every lc center of (X,M) is a linear section of
codimension two.

Hence, X is K-semistable by Theorem 1.2. Suppose that it is not K-stable; then by
Corollary 3.2 there exist a movable boundary M ∼Q −KX and an effective divisor D ∼Q H
such that (X,M) and (X,D) have a common lc center. But, by the previous analysis, this is
impossible as the lc centers of (X,M) and (X,D) always have different dimension. Therefore, X
is K-stable and the proof is complete. 2

Proof of Theorem 1.6. It suffices to show that lct(X;D) > 1/(n+ 1) for every D ∼Q −KX . We
may assume that D is irreducible. Since Cl(X) is generated by −KX , we have multηD 6 1, where
η is the generic point of D. It follows that (X,D) is lc in codimension one [Kol97, (3.14.1)] and
hence the multiplier ideal J (X, (1− ε)D) (where 0 < ε� 1) defines a subscheme of codimension
at least two. By Nadel vanishing,

H i(X,J (X, (1− ε)D)⊗OX(−rKX)) = 0

for every i > 0 and r > 0; therefore, by Castelnuovo–Mumford regularity (see e.g. [Laz04, § 1.8]),
the sheaf J (X, (1− ε)D)⊗OX(−nKX) is generated by its global sections and we get a movable
linear system

M = |J (X, (1− ε)D)⊗OX(−nKX)|.
Suppose that lct(X;D) < 1/(n+ 1), let E be an exceptional divisor over X that computes
it, let A = AX(E) and let π : Y → X be a projective birational morphism such that the
center of E on Y is a divisor; then A ∈ Z (since −KX is Cartier by assumption) and we have
d = ordE(D) > (n+1)A and J (X, (1−ε)D) ⊆ π∗OY ((A−1−b(1−ε)dc)E) ⊆ π∗OY (−(nA+1)E).
It follows that ordE(M) > nA+1 and hence for the movable boundary M = (1/n)M∼Q −KX we
have ordE(M) > A and (X,M) is not lc, violating our assumption. Thus, lct(X;D) > 1/(n+ 1)
and we are done. 2

Finally we prove the separatedness statement (Theorem 1.7). For this we recall the following
criterion.

Lemma 3.3. Let f : X → C, g : Y → C be flat families of Q-Fano varieties over a smooth
pointed curve 0 ∈ C with central fibers X0 and Y0. Assume that KX and KY are Q-Cartier and
let DX ∼Q −KX , DY ∼Q −KY be effective divisors not containing X0 or Y0. Assume that there
exists an isomorphism

ρ : (X,DX)×C C◦ ∼= (Y,DY )×C C◦

over C◦ = C\0, that (X0, DX |X0) is klt and that (Y0, DY |Y0) is lc. Then ρ extends to an
isomorphism (X,DX) ∼= (Y,DY ).

Proof. This follows from the exact same proof of [LWX19, Theorem 5.2] (see also [BX18,
Proposition 3.2]). 2

Proof of Theorem 1.7. Since birationally superrigid Fano varieties have terminal singularities,
KX and KY are Q-Cartier by [dFH11, Proposition 3.5]. Hence, the result follows from
Theorem 2.3 and the following more general statement. 2
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Lemma 3.4. Let f : X → C, g : Y → C be flat families of Q-Fano varieties over a smooth
pointed curve 0 ∈ C that are isomorphic over C◦ = C\0. Let X0 and Y0 be their central fibers.
Assume that:

(i) KX and KY are Q-Cartier;

(ii) for every movable boundary MX ∼Q −KX0 , (X0,MX) is klt;

(iii) for every movable boundary MY ∼Q −KY0 , (Y0,MY ) is lc.

Then X ∼= Y over C.

Proof. By assumption, X is birational to Y over C. Let m be a sufficiently large and divisible
integer and let D1 ∈ |−mKX0 |, D2 ∈ |−mKY0 | be general divisors in the corresponding linear
system. Choose effective divisors DX,1 ∼ −mKX , DY,2 ∼ −mKY not containing X0 or Y0 such
that DX,1|X0 = D1 and DY,2|Y0 = D2. Let DY,1 and DX,2 be their strict transforms to the
other family. Since X and Y are isomorphic over C◦, we have DY,1 ∼ −mKY +W , where W is
supported on Y0; but, as Y0 is irreducible, we have W = `Y0 = `g∗(0) for some integer `. Since
the question is local around 0 ∈ C, we may shrink C so that Y0 ∼ 0 and thus DY,1 ∼ −mKY .
Similarly, we also have DX,2 ∼ −mKX . Let D′1 = DY,1|Y0 and D′2 = DX,2|X0 . Let MX be the
linear system spanned by DX,1 and DX,2 and let MX = (1/m)MX ∼Q −KX . Similarly, we have
MY and MY ∼Q −KY . As D1 and D2 are general, D1 and D′2 have no common components;
hence, the restriction of MX to X0 is still a movable boundary and, therefore, by our second
assumption, (X0,MX |X0) is klt. Similarly, (Y0,MY |Y0) is lc and we conclude by Lemma 3.3. 2
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