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Abstract. We investigate the radial behavior of holomorphic functions in the unit
ball B of �n. In particular, we prove the existence of universal holomorphic functions
f in the following sense : given any measurable function ϕ on ∂B, there is a sequence
(rn)n≥1, 0 < rn < 1, that converges to 1, such that f (rnξ ) converges to ϕ(ξ ) for almost
every ξ ∈ ∂B.
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1. Introduction. Bagemihl and Seidel [1] have proved in 1954 the following result:
given ϕ a measurable function on the unit circle �, there exists a holomorphic function f
in the unit disk � such that, for almost every ξ of �, f (rξ ) → ϕ(ξ ) as r → 1. Generally,
such a function cannot be bounded, but Kahane and Katznelson [10] have proved
that we may control its growth to the boundary : precisely, given any growth rate
ω : [0, 1[→]0,+∞[ (i.e. ω is increasing and unbounded), it is possible to take f such
that | f (z)| ≤ ω(|z|) for any z ∈ �.

The generalization of these statements for the unit ball B of �n has been done by
Hakim and Sibony [7] (without the growth rate condition) and by Iordan [8] (with this
growth rate condition). We mention that their proofs are constructive.

On the other hand, it is well known that there exist holomorphic functions that
have universal properties. This fact was first noticed by Birkhoff [4] in 1929 who
proved the existence of a holomorphic function f such that its translates [z �→ f (z + n)]
are a dense set in O(�), the set of holomorphic functions on the whole complex plane
endowed with the compact-open topology. The study of universal properties of analytic
functions has recently received an increasing interest. One of the most striking results
in this direction is the following Theorem of Nestoridis [11].

There exists a function f analytic in � such that, given any compact set K with �\K
connected and K ∩ � = ∅, given any function g continuous on K and analytic inside K,
there exists a subsequence of the partial sums of the Taylor series of f that converges
uniformly to g on K.

For more information on universal series, we refer to the surveys [6] and [9].
Connecting together these two points of view, an intriguing question arises: does

there exist a holomorphic function which is universal with respect to radial limits?
Precisely, does there exist a single holomorphic function f such that, for any measurable
function ϕ on ∂B, there exists a sequence (rn)n≥1, 0 < rn < 1, that converges to 1, such
that f (rnξ ) converges to ϕ(ξ ) for almost every ξ ∈ ∂B? In this paper, we solve positively
this problem, by stating Theorem 1 below. The proof is done by using a category

https://doi.org/10.1017/S0017089505002478 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002478


262 FRÉDÉRIC BAYART

argument. Hence, it is technically rather easier than that made in [7] or in [8] for a
prescribed limit. This also means that quasi-all holomorphic functions in O(B) (in the
sense of categories) solve this problem. Moreover, it is also possible to control the
growth near the boundary, and to obtain universal radial limits with respect to every
center.

The paper is organized as follows. Section 2 contains the notations and preliminary
results. In Section 3, we prove our main Theorem. Finally, in Section 4, we explain
how recent results on approximation of holomorphic functions by Dirichlet series can
be used to investigate radial limits of such series.

2. Preliminaries. In the following, let us denote by B the open unit ball of �n, by
Br the open ball of radius r, and by m the normalized Lebesgue measure on S = ∂B
such that m(S) = 1. For L a compact subset of �n, ‖.‖L denotes the supremum norm
on L, and C(L) the set of continuous functions on L endowed with this norm. If E
is a subset of S, E∗

L will stand for E∗
L = {r(ξ − z0) + z0; ξ ∈ E, z0 ∈ L, 0 ≤ r ≤ 1}. O(B)

is the set of holomorphic functions on B, equipped with the topology of uniform
convergence on compact subsets of B. Of course, for this topology, O(B) is a Baire
space. Let ω be any growth rate, and set v = 1

ω
. To produce universal functions whose

growth near the boundary is restricted, one has to introduce the following Banach
space

Hv0(B) =
{

f ∈ O(B); sup
z∈B

| f (z)|v(|z|) < ∞ and lim
r→1

max
|z|=r

| f (z)|v(|z|) = 0
}

endowed with the norm ‖ f ‖Hv0 = supz∈B | f (z)|v(|z|). This Banach space has been
studied for instance in [3]. In particular, it is proved in [3, Theorem 1.5] that the
polynomials are dense in Hv0(B).

The proof of the Bagemihl-Seidel Theorem in � depends in an essential way on
Mergelyan’s Theorem for appropriate compact subsets of �. Mergelyan’s Theorem is
not fully available in �n. Nevertheless, a weak extension has been proved by Hakim
and Sibony in [7]. Using this result, Iordan [8, Lemma 3] has deduced a Lemma of
approximation near the boundary for functions with restricted growth. To prove the
universality of radial limits with respect to every center, we will need a slightly different
version of this Lemma. It is convenient to recall first some basic facts about K-limits
of functions defined in B (all details can be found in [12]). For ξ ∈ S and α > 1, the
Korányi region Dα(ξ ) is defined by

Dα(ξ ) =
{

z ∈ �n; |1 − 〈z, ξ 〉| <
α

2
(1 − |z|2)

}
⊂ B.

A continuous function F : B → � has K-limit λ at ξ if the following is true: for every
α > 1 and every sequence (zi) in Dα(ξ ) that converges to ξ , F(zi) → λ as i → +∞.
If L denotes a compact subset of B, one may observe that there exists α > 1 and
0 < r < 1 such that {z0 + ρ(ξ − z0); 0 < ρ < r, z0 ∈ L} ⊂ Dα(ξ ). Therefore, one gets
the following result.

LEMMA 1. Let L be a compact subset of B and h a continuous function on B such
that h has K-limit almost everywhere on S. For every 0 < ε < 1, there exists a subset E
of S and an extension h̃ of h to B ∪ E such that m(E) ≥ 1 − ε and h̃ is continuous on E∗

L.
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Proof. The proof is like the proof of Egorov’s Theorem. For the sake of
completeness, we sketch it. Consider

S(n, k) = {ξ ∈ S; ∀z0 ∈ L, ∀ρ, ρ ′ with 1 − 1/n < ρ, ρ ′ < 1,

|h(z0 + ρ(ξ − z0)) − h(z0 + ρ ′(ξ − z0))| < 1/k}.
Because of the remark before the Lemma, for any k,

⋃
n S(n, k) has full measure.

Therefore, there exists a sequence (nk) such that m(S(nk, k)) ≥ 1 − ε/2k for any k. If
we define E by E = ⋂

k≥1 S(nk, k) and if we extend h to E by setting h̃(ξ ) = K − limξ h,
then it is easy to check that h̃ is continuous on E∗

L, as well as m(E) ≥ 1 − ε. �
We are now able to state the promised Lemma.

LEMMA 2. Let ω be a growth rate, ϕ a continuous function on B and L a compact
subset of B. For every ε > 0, there exists a compact subset E of S and a holomorphic
function f in B, continuous on E∗

L, such that
(i) m(E) > 1 − ε,

(ii) ‖ϕ − f ‖E < ε,
(iii) | f (z)| ≤ ω(|z|) for every z ∈ B.

Proof. The proof is exactly the same as Lemma 3 in [8], replacing Lemma 2 of [8]
by our Lemma 1, and using the fact that a bounded holomorphic function in B has
K-limit almost everywhere on S. �

3. Radial limits in the Unit Ball. The aim of this section is to prove our main
Theorem.

THEOREM 1. The set of functions f ∈ Hv0(B) such that, given any measurable
function ϕ on S, there exists an increasing sequence (rj), 0 < rj < 1, limj→∞ rj = 1,
with

∀z0 ∈ B, lim
j→+∞

f (rj(ξ − z0) + z0) = ϕ(ξ ) for almost every ξ ∈ S,

is residual in Hv0(B).

Proof. The proof is split into three steps:

Step 1. A useful lemma. In order to produce a universal function by a Category
argument, we need to approximate simultaneously any holomorphic function in
Hv0(B) (for the denseness when we apply Baire’s Theorem), and any continuous
function on S (for the universality). This is the content of the following Lemma.

LEMMA 3. Let ϕ be a continous function on S, g ∈ Hv0(B), ε > 0 and L a compact
subset of B. There exists a compact subset E of S and a function f holomorphic in B,
continuous on E∗

L, such that
(i) m(E) > 1 − ε,

(ii) ‖ f − ϕ‖E < ε,
(iii) ‖ f − g‖Hv0(B) < ε.

Proof. First, we approximate g in Hv0(B) by a polynomial P, so that
‖g − P‖Hv0(B) < ε/2. Then, apply Lemma 2 to the continuous function ϕ − P and
to the growth rate (ε/2)ω to produce a compact subset E of S and a function f
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holomorphic in B and continuous on E∗
L such that m(E) > 1 − ε, ‖ f − (ϕ − P)‖E < ε

and ‖ f ‖Hv0(B) < ε/2. The function f̃ = f + P solves the problem. �
Step 2. A set of strange functions. Let us fix:
• (ϕj) a dense sequence in C(S),
• (rl) an increasing sequence of [0, 1[, with rl → 1,
• (Ls) an increasing sequence of compact subsets of B such that

⋃
s≥1 Ls = B.

We then set, for j, k, l, s ≥ 1 :

U( j, k, l, s) = {
f ∈ Hv0(B); there exists ρ ≥ rl, ρ < 1,

there exists E a compact subset of S
with m(E) ≥ 1 − 1/2k such that,
for any ξ ∈ E, for any z0 ∈ Ls,
| f (ρ(ξ − z0) + z0) − ϕj(ξ )| < 1

2k

}
.

We claim that each U( j, k, l, s) is an open dense subset of Hv0(B). Indeed, if f ∈
U( j, k, l, s), there exist ρ and E which are associated to f . Set K = {ρ(ξ − z0) + z0; z0 ∈
Ls, ξ ∈ E}. By compactness of K , there exists η > 0 such that:

∀ξ ∈ E, ∀z0 ∈ Ls, | f (ρ(ξ − z0) + z0) − ϕj(ξ )| <
1
2k

− η.

If g ∈ Hv0(B) is sufficiently close to f , one has ‖ f − g‖K < η. Hence, g belongs to
U( j, k, l, s), which proves that this last set is open for the topology of Hv0(B).

On the other hand, take any g ∈ Hv0(B) and any η > 0. Applying Lemma 3 to
ϕj, g, ε = min(η, 1

2k ) and Ls, one obtains a compact subset E of S and f a function
holomorphic in B and continuous on E∗

Ls
with m(E) > 1 − 1/2k, ‖ f − g‖Hv0(B) < η

and ‖ f − ϕj‖E < 1/2k. By uniform continuity of f on E∗
Ls

, there exists ρ ≥ rl, ρ < 1,
such that, ∀ξ ∈ E, ∀z0 ∈ Ls,

| f (ρ(ξ − z0) + z0) − ϕj(ξ )| <
1
2k

.

Therefore, f belongs to U( j, k, l, s), and is close enough to g : this proves that
U( j, k, l, s) is dense in Hv0(B).

Now, by Baire’s Theorem,
⋂

j,k,l,s U( j, k, l, s) is a dense Gδ subset of Hv0(B). In
particular, it is non-empty. Hence Theorem 1 follows immediately from the result of
our last step.

Step 3. Each function f in
⋂

j,k,l,s U( j, k, l, s) is a solution.
Pick ϕ any measurable function on S. By induction on k, we should build an

increasing sequence (ρk), 0 < ρk < 1, lim ρk = 1, and a measurable subset Ek of S such
that:

1. m(Ek) ≥ 1 − 1/2k,
2. ∀ξ ∈ Ek, ∀z0 ∈ Lk, | f (ρk(ξ − z0) + z0) − ϕ(ξ )| < 1

2k .

Suppose that this has been done. Then we can define FN = ⋂
k≥N Ek and E = ⋃

N≥1 FN .
It is easy to check that m(E) = 1. Let us consider any ξ ∈ E and any z0 ∈ B; there exists
N0 ∈ � such that k ≥ N0 ⇒ ξ ∈ Ek and z0 ∈ Lk. Hence, one has

| f (ρk(ξ − z0) + z0) − ϕ(ξ )| <
1
2k

.

Therefore, f (ρk(ξ − z0) + z0) → ϕ(ξ ) if k → +∞.
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It remains to construct ρk and Ek. Suppose that the construction has been carried
out until step k − 1 (it is trivial for k = 0). Fix l ≥ 1 such that rl ≥ ρk−1. By Lusin’s
Theorem, there exists Gk ⊂ S, m(Gk) ≥ 1 − 1/2k+1 and jk ∈ � such that

‖ϕjk − ϕ‖Gk <
1

2k+1
.

Now, since f belongs to U( jk, k + 1, l, k), there exists ρk > ρk−1 and E with m(E) ≥
1 − 1/2k+1 such that

∀ξ ∈ E, ∀z0 ∈ Lk, | f (ρk(ξ − z0) + z0) − ϕjk (ξ )| <
1

2k+1
.

It is now sufficient to set Ek = E ∩ Gk. �

REMARKS. If we are not interested by the growth near the boundary, we keep the
residuality in O(B) of holomorphic functions with universal radial limits. The proof
remains the same, except that we replace Lemma 3 by the following result.

LEMMA 4. Let ϕ be a continuous function on S, g ∈ O(B), ε > 0 and 0 < r < 1.
There exists a compact subset E of S and a holomorphic polynomial f such that

(i) m(E) > 1 − ε,
(ii) ‖ f − ϕ‖E < ε,

(iii) ‖ f − g‖Br
< ε.

Proof. We apply Lemma 3 of [7] to produce a compact subset G of B with interior
V such that Br ⊂ V ⊂ Bρ (ρ is any positive number satisfying r < ρ < 1), E = G ∩ S
has measure m(E) > 1 − ε, and Mergelyan’s Theorem is true on G. Let ϕ̃ be a
continuous extension of ϕ to B, with ϕ̃ = 0 on Bρ . ϕ̃ is continuous on G and
holomorphic in V . Hence, one can find a polynomial Q such that ‖Q − ϕ̃‖G < ε

2 .

We also approximate g by a holomorphic polynomial R such that ‖g − R‖Br
< ε/2.

Let θ be a continuous function on B with θ = 0 on S and θ = 1 on Bρ . Applying
Lemma 3 of [7] again, one obtains a holomorphic polynomial which approximates θ on
G. In particular, for η = ε

2‖Q‖B+2‖R‖B
, one can find such a polynomial h with ‖h‖E < η

and ‖h − 1‖Br
< η.

We finally set f = Q(1 − h) + hR. Observe that if z belongs to E, then one has

| f (z) − ϕ(z)| ≤ |Q(z) − ϕ(z)| + |h(z)|(|Q(z)| + |R(z)|) < ε.

On the other hand, if z belongs to Br, one obtains

| f (z) − g(z)| ≤ |R(z) − g(z)| + |1 − h(z)|(|Q(z)| + |R(z)|) < ε.

This completes the proof of Lemma 4. �

Note added in proof. After this work was completed, Y. Dupain informed us that
part of the result of our Theorem 1 could also be deduced from the main Theorem
of his paper [5]. We mention that the work of Dupain implies neither the existence
of holomorphic functions with respect to every center nor the residuality of such
functions. The proofs used here (a category argument) and in his paper (a clever
construction) are totally different.
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4. Radial limits of Dirichlet series. Let f (s) = ∑
n≥1 ann−s be a Dirichlet series,

and σa(f ) its abscissa of absolute convergence:

σa(f ) = inf

{
σ ∈ �;

∑
n≥1

|an|n−σ converges

}
.

We are interested in radial limits of Dirichlet series in Da(�+), the space of all Dirichlet
series which are absolutely convergent in the right half-plane �+. Da(�+) is a Fréchet
space, endowed with the topology given by the family of semi-norms∥∥∥∥∥

∑
n≥1

ann−s

∥∥∥∥∥
σ

=
∑
n≥1

|an|n−σ , defined for σ > 0.

This space is analogous to O(B), but for Dirichlet series. Although there are very few
Dirichlet series among holomorphic functions, it was proved in [2] that one can find
a universal Dirichlet series “à la Nestoridis”. The key point of the proof is a weak
version of Mergelyan’s Theorem for Dirichlet series. Since Mergelyan’s Theorem is the
heart of the argument of the previous section, the following result is not surprising.

THEOREM 2. The set of Dirichlet series f ∈ Da(�+) such that, given any measurable
function ϕ on i�, there exists a decreasing sequence (σj), σj → 0, with the property that
limj→+∞ f (σj + it) = ϕ(it) for almost every t ∈ �, is a dense Gδ subset of Da(�+).

Proof. First of all, we recall the following result from [2].

LEMMA 5. Let K ⊂ {s ∈ �; −1/2 < �(s) ≤ 0} be a compact set such that �\K is
connected. Given any f ∈ Da(�+), any g ∈ C(K) ∩ O(K), and any σ, ε > 0, there exists
a Dirichlet polynomial P(s) = ∑N

n=1 ann−s such that:

{‖P − g‖C(K) < ε,

‖P − f ‖σ < ε.

If we now endow � with the measure dm = 1
π

dt
1+t2 , it is easy to deduce from this Lemma

the same result as stated in Lemma 4, but for Dirichlet series. The rest of the proof
follows, mutatis mutandis, that of Theorem 1. �
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