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Sedimenting-particle redistribution
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Flow between axially rotating concentric cylinders is well known to exhibit rich dynamics.
Hence, Taylor instabilities have been studied, both experimentally and theoretically, for
many years. Although usually studied in the abstract, such geometries arise in a range of
practical situations including drilling, when a drilling fluid flow enters a well via a pipe
that is the centre body and returns via the annulus between the pipe and the borehole
wall. In drilling, the centre body rotates and the annular flow contains rock cuttings.
Here, we report the development of an Eulerian-Eulerian solver, based on OpenFOAM,
that solves for this cuttings transport problem in the presence of both gravity and Taylor
vortices. To check the reliability of the solver, we conduct a set of experiments spanning
a wide range of complex flow regimes. We show that the model successfully predicts, in
all regimes, the observed complex redistribution of particulates. However, for suspension
flows under viscously dominated conditions, high particle concentrations and in rectilinear
flow, particle pressure and normal stress differences are sufficient to capture particle
migration. Results show that in more complex flows exemplified by the Taylor–Couette
flow studied here, more realistic predictions of non-Brownian particle migration require
inclusion of forces arising through the relative velocity of the two phases including lift
forces originating both from inertia and particle rotation.

Key words: Taylor–Couette flow, particle/fluid flows

1. Introduction

In the last two decades, horizontal drilling and extended-reach horizontal drilling have
become ubiquitous. In oil and gas production, horizontal drilling allows several advantages
including much greater access to the reservoir and hence higher production rates.
Extended-reach horizontal wells have been drilled to more than 15 km. More recently,
engineered geothermal systems have been proposed where parallel horizontal wells are
drilled and connected to construct an aerial closed heat exchanger. Carbon capture and
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sequestration (CCS) also requires drilling operations. In all horizontal or high-angle
drilling, although there are benefits, one of the continuing technical challenges is complete
removal of the drilled rock cuttings to the surface.

In a drilling operation, drilling fluid is pumped down the drill pipe to the drill where
it exits through nozzles in the drill bit. Here there are number of functions required of
the fluid, but a key task is to carry the rock cuttings away from the bit, along the annulus
between the drill pipe and the rock formation, all the way to the surface. At the surface,
the cuttings are separated from the drilling fluid, which is then recirculated to the drill
bit. In a long horizontal or near-horizontal section, despite the fluid flow, the cuttings will
sediment to form a bed on the lower side of the wellbore, and this bed then moves slowly
via saltation. Formation of such a bed impedes the drilling process through friction with
the drill pipe and through constriction of the flow path. If allowed to further build, when the
drill bit is pulled out of the well, it can become stuck (IADC 2015). Hence, understanding
the removal of the cuttings bed and/or ensuring no buildup of material in the well, either
through choice of process or through control of drilling-fluid properties, has received and
continues to receive considerable attention both experimentally and theoretically (Philip,
Sharma & Chenevert 1998; Ozbayoglu et al. 2008; Chin & Zhuang 2011; Erge & van Oort
2020; Huque et al. 2020, 2021; Pandya, Ahmed & Shah 2020). One aspect of the process
known to considerably improve cuttings transport is application of drill pipe rotation
(Ozbayoglu et al. 2008), and several rules-of-thumb exist. Whereas considerable progress
in understanding cuttings transport has been made, there is still much to learn.

For the length of a well, the cuttings flow is along the annulus between the drill pipe
and the rock formation or between the drill pipe and liner. In both cases, the outer wall
is fixed and the inner wall (the drill pipe) can, and typically does, rotate. Recommended
rotation rates for cuttings transport (IADC 2015) (hole cleaning) depend on the size of the
drill pipe and wellbore as well as the superficial flow velocity. An example best practice
would be that for a hole size of 15.24 cm (6 inch) at the furthest reaches of the well, a
rotation rate of >100 rpm should be maintained. For this configuration, making reasonable
assumptions for the fluid viscosity and density, this equates to a Taylor number (i.e. the
ratio of the centrifugal force to the viscous force) Ta > 100. The drilling configuration is
thus a Taylor–Couette flow with superimposed axial flow. Here we wish to gain physical
insight, via detailed modelling, into the balance of material and process parameters that
cause particles to be mobilised into the flow such that the axial flow can carry them
forward.

Taylor–Couette flow and associated instabilities have been extensively studied in recent
decades due to the extremely rich instabilities both observed and understood. Indeed, the
flow has been referred to as ‘the hydrogen atom’ of fluid dynamics (Tagg 1994; Fardin,
Perge & Taberlet 2014). Pioneering work in this geometry, without instability, was carried
out by Couette (1888) and Mallock (1889), who derived an analytical solution for the flow
between concentric cylinders. Taylor (1923) showed that beyond a critical rotation speed,
by adding a small perturbation, a nonlinear distribution of the main flow field with pairs of
steady secondary flows replaces the previous rectilinear distribution. The new flow, called
Taylor–Couette flow, with the Taylor vortices present, is steady until the flow reaches a
large Taylor number, at which point the flow transitions to an unsteady ‘wavy vortex’ flow,
presumably indicating the presence of non-axisymmetric azimuthal instabilities. In a later
study, Gollub & Swinney (1975) investigated the onset of turbulence in a rotating fluid.
Here it was observed that, as the rotation rate increases, the flow field oscillates and twists
and finally becomes turbulent.

For our practical situation described above, it should be expected that such high rotation
speeds will mean that the inertial force along with the curvature of streamlines will lead
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to the presence of Taylor vortices (Taylor 1923) and that this could potentially play an
important role for the cuttings transport problem. In such flow conditions, transport could
be affected via both inter-vortex and intra-vortex mixing process, as has been previously
studied by Dusting & Balabani (2009). More recently, attention has been focussed on the
interaction of particles with the base flow (Majji & Morris 2018; Baroudi, Majji & Morris
2020; Gillissen et al. 2020). In the work by Majji & Morris (2018), the inertial migration
of dilute, neutrally buoyant particles with a volume fraction of φavg = 0.1 % in different
flow regimes was investigated (including circular Couette flow (CCF), Taylor vortex flow
(TVF) and wavy vortex flow (WVF)). The work by Baroudi et al. (2020) extended the
experimental analysis to study the influence of inertia on migration of neutrally buoyant
particles with a higher particle volume fraction of φavg = 10 % in circulate Couette flow
and in the presence of Taylor vortices. In their experiments, it was shown that migration
leads to particles decorating Taylor vortices in a ring-like structure. The resulting structure
was explained as a competition between interaction with the walls and drift in the complex
shear gradient, due to Taylor vortices, finally resulting in a limit cycle for position.
Furthermore, more recent studies (Majji, Banerjee & Morris 2018; Baroudi et al. 2023)
have shown that particles significantly impact the qualitative nature of the Taylor–Couette
flow dynamical system.

In simple flow conditions, an effective driving force for particle migration may be
introduced: the particle pressure. This scalar quantity, which is analogous to the osmotic
pressure in a solution, appears in Morris’ formulation for a suspension of non-Brownian
spheres (Yurkovetsky & Morris 2008; Deboeuf et al. 2009; Miller, Singh & Morris
2009). Singh et al. (2018) found numerically that particle pressure roughly scales with
N1−N2 (with N1, N2 the first and second normal stress differences, respectively). N1−N2
is proportional to the measured normal force in a parallel-plate geometry and hence
is experimentally accessible for rectilinear flow conditions. Although gradients in the
isotropic particle pressure may be a driving force for particle migration (Yurkovetsky &
Morris 2008; Deboeuf et al. 2009; Miller et al. 2009), they are not a true substitute for
material normal stress differences that may be observed for such mixtures (Guazzelli &
Pouliquen 2018; Maklad & Poole 2021). It is the latter that affect the mechanics in a
shear flow. Miller et al. (2009) extended the previous studies by introducing an anisotropic
formulation of the particle pressure that may be used to mimic the effect of true normal
stress differences. It is now understood that inclusion of isotropic or anisotropic particle
pressure (Miller et al. 2009) is sufficient to successfully capture some of the important
aspects of particle migration in rectilinear flows (Inkson et al. 2017). The numerical study
by Kang & Mirbod (2021) used an Eulerian suspension balance model (SBM), introduced
by Nott & Brady (1994) and later by Morris & Brady (1998), to investigate particle
transport. Within this construction, which included normal forces via the anisotropic
particle pressure definition, it was shown that for complex flows including Taylor vortices,
the particles migrated to the centre of the vortices, in contrast to observations by Majji &
Morris (2018).

In this study, we investigate the migration of particles in a complex flow field and
elucidate the role of various force contributions. We have chosen to model and measure
the flow within a horizontal Couette geometry exhibiting Taylor vortices in the presence of
dense, gravitationally settling particles. We will show that although the particle pressure
is required, the effect of lift forces play a critical role and without which the experimental
observations cannot be captured numerically. To capture these forces, we require the
relative velocity of the continuous and disperse phases, and so solve a separate momentum
equation for each. The lift forces arise due to the shear gradient of the base flow in the
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inertial regime (i.e. the Saffman lift force; Saffman 1965, 1968) and due to the rotation
of the particles, i.e. the Magnus force (Rubinow & Keller 1961). We describe a transient
Eulerian-Eulerian model formulation and test its reliability by comparing its predictions
with a series of experimental observations. Our experiments show, and our model captures:
(i) a redistribution of the particle bed with a distinctive twin-peaked trailing edge prior
to re-suspension; (ii) a mixing parameter describing the resuspension of particles; (iii)
particle decoration of the Taylor vortices in agreement with Majji & Morris (2018); (iv)
a delayed transition from Taylor vortices to wavy Taylor vortices; and, in contrast to the
neutrally buoyant case (Majji & Morris 2018), (v) persistence of the decoration of the
vortices into the wavy regime. In addition, we find a previously unreported novel period
doubling instability of the particle bed structure (Appendix A). Although our model hints
at reproducing this, the calculation requires excessive time to properly capture, so we have
not pursued the comparison here.

The remainder of this paper is organised as follows. In § 2, we describe our model
formulation and present the mathematical description of both the Saffman force and the
Magnus force within an Eulerian framework. In § 3, we describe our bespoke flow-loop
and X-ray shadowgraph system, and in § 4, we describe selected experimental results. In
§ 5, we present our numerical predictions and compare these with our experiments. Finally,
in § 6, we provide some discussion of our results and conclude.

2. An Eulerian-Eulerian solver: SCRFoam

Here we describe the mathematical detail of a two-phase, i.e. solid and fluid, flow solver
developed within OpenFOAM. There are a range of approaches that could have been
chosen to describe the interaction of solid cuttings with a fluid phase in such modelling.
Here, consistent with the application we have in mind, it is assumed that the ratio of the
average cuttings size to a reference length of the geometry is reasonably small, δ � 1,
so that a continuum approximation is valid for the solid phase. Within the drilling context
described above, there will be instances where this approximation will be invalid; however,
we exclude those conditions from our scope here.

Among Eulerian approaches to study suspension flows, there exist in the rheological
literature two constructs of particular interest. In the first, originally proposed by Miller
et al. (2009), the suspension is modelled as a mixture using complex fluid properties.
Here, to model the migration of particles relative to the bulk motion, a particle flux induced
by the variation of the particle normal stresses was suggested. Several representations of
the frame invariant forms of the model have been investigated, i.e. by either including
isotropic normal stresses (particle pressure) or by including normal stress differences. In
this model, the conservation of momentum is solved only for a mixture phase. Therefore,
both the fluid and solid phases move at the same velocity within a computational cell
(the mixture velocity), so that any forces arising through the relative velocity of the two
phases, including drag and lift forces, are by construction removed. In a second approach,
whilst retaining the mixture model, the relative velocity of the two phases is non-zero,
i.e. ‘slip’ is allowed between the two phases. Although using this approach makes the
investigation computationally more expensive (conservation of momentum is solved for
each phase separately), this would allow one to investigate the effect of other physics and
forces which were missing in the other technique (Nott & Brady 1994) arising through the
relative velocity of the two phases. Here, we choose to implement the second approach,
i.e. instead of viewing the problem as the average flow of a ‘mixture’ together with no-slip
between the phases, we will consider the phases separately so that the vectoral nature of
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Sedimenting-particle redistribution in a horizontal Couette

the relative velocity is captured. This allows us to include and investigate the importance
of specific forces, including drag, lift and gravity, on particle transport and migration.

2.1. The governing equations in the fluid phase
The fundamental Eulerian-Eulerian, or mixture model, approach has been widely used
(Drew 1983, 1993; Subia et al. 1998; Rao et al. 2002; Dbouk et al. 2013; Mirbod 2016;
Rebouças et al. 2016; Inkson et al. 2017). Here, we merely outline the governing equations,
and focus on our formulation differences and extensions. A two-phase continuum model is
implemented to simulate the transport of a continuous solid phase in a carrier Newtonian
fluid. As is common, we assume the particles to be non-Brownian, mono-disperse and
spherical. The relevant dimensionless parameters used in this study are

δ = d
H

, t = Ht∗

Riω
, u = u∗

Riω
, p = Hp∗

ηRiω
, σ = Hσ ∗

ηRiω
,

Re = ρ f RiωH
η

, Fr = Riω√
gd

, γ = ρs

ρ f , λ = λ
∗

H
, Ta = Re

√
H
Ri

,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

where d is the diameter of the spherical particles; H the gap size between the concentric
cylinders defined as H = Ro − Ri with Ri and Ro being the inner and outer cylinder
radii, respectively; ω the rotation speed of the inner cylinder; t∗ dimensional time; u∗ the
dimensional velocity vector; p∗ the dimensional pressure; η the viscosity of the Newtonian
fluid; σ ∗ the dimensional stress tensor; Re the Reynolds number measuring the ratio
between inertial and viscous forces; ρ f , ρs the fluid and solid densities; Fr a Froude
number characterising the ratio of inertial force to gravitational force; g gravitational
acceleration; γ the density ratio of the solid and fluid particles; and Ta the Taylor number
characterising the importance of centrifugal force, relative to viscous force. At the onset
of Taylor vortices, λ∗ is their dimensional axial period. Note, in this article, superscripts f

and s are used to refer to the fluid and solid phases, respectively, for each parameter.
Using the inertial force density ρ f (Riω)2/H as a reference, the dimensionless form of

the governing equations for the fluid phase are

∂(1 − φ)

∂t
+ ∇ · ((1 − φ)u f ) = 0, (2.2)(

∂((1 − φ)u f )

∂t
+ ∇ · ((1 − φ)u f u f )

)
= 1

δFr2 (1 − φ)
g
|g| + 1

Re
∇ · σ f − F , (2.3)

where (2.2) and (2.3) represent the conservation of mass and momentum, respectively.
In this analysis, φ is the particle volume fraction (i.e. φ = vs/vt, where vs = n 4

24πd3 is
the volume of spherical particles with n being the number of particles and vt is the total
volume of mixture), |g| = g is the magnitude of the gravitational force and the total fluid
stress σ f = −p f I + τ f , where τ f = (∇uf + ∇uf T

) is the Newtonian fluid phase stress.
Additionally, F is the interphase force exerted by the fluid on the particles and is discussed
in § 2.3.
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2.2. The governing equations in the solid phase
As with the fluid phase, the governing equations in the solid phase can be written in the
form of conservation of mass and momentum as follows:

∂φ

∂t
+ ∇ · (φup) = 0, (2.4)

γ

(
∂(φup)

∂t
+ ∇ · (φupup)

)
= γ

δFr2 φ
g
|g| + 1

Re
∇ · σ p + F . (2.5)

As with the fluid phase, we keep gravitational forces. Here, the particle stress tensor
σ p has been split into an isotropic part, particle pressure pp shown in (2.8) (Morris &
Boulay 1999) and a deviatoric part τ p as shown in (2.7) (Krieger 1972; Dbouk et al. 2013).
Following advances in suspension rheology, these combine to enable calculation of the
particle stress tensor σ p:

σ p = −ppI + τ p, (2.6)

τ p =
((

1 − φ

φm

)−2

− 1

)
γ̇ p, (2.7)

pp = 0.75
(

φ

φm

)2(
1 − φ

φm

)−2

|γ̇ |p, (2.8)

γ̇ p = ∇up + ∇upT
, (2.9)

with φm the maximum volume fraction (0.64 for random close-packed spheres) and γ̇ p

is the local bulk suspension rate of strain. One should note that some of the quantities
appearing in (2.2)–(2.5) are phase-averaged quantities.

To solve the governing equations presented in (2.2)−(2.9), a new in-house solver has
been developed within OpenFOAM (which we name ‘SCRFoam’). The coupling between
the pressure and velocities of the fluid and solid phases is obtained based on a revised
version of the PC-SIMPLE (Vasquez 2000) algorithm and the SIMPLE-C algorithm (Van
Doormaal & Raithby 1984) (hence, SCRFoam is Simple-C Revised Foam). The discussion
relating to this method goes beyond the scope of the current manuscript so the details will
be deferred for discussed in a separate article.

2.3. Interphase force
In this work, the force density F exerted by the liquid on the solid is split into a component
due to the Archimedes effect F A, and forces due to the relative velocity of the two phases
including drag F D, lift due to the shear gradient of the base flow in the inertial regime
F Saff and lift due to rotation of the particles F Mag as follows:

F = F A + F D + F Saff + F Mag. (2.10)

2.3.1. Archimedes force
Following Jackson (2000) and Chiodi, Claudin & Andreotti (2014), the dimensionless form
of the Archimedes force is

F A = 1
Re

φ∇ · σ f . (2.11)
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2.3.2. Drag force
Following the works by Chiodi et al. (2014) and Ferguson & Church (2004), the drag
force acting on the particles in a direction parallel to their motion relative to the liquid is
represented as

F D = 3
4
φCd(Rep)

|ur|ur

δ
, (2.12)

where ur = uf − up is the relative velocity between the fluid and particles. The particle
Reynolds number is defined as Rep = ρ f |ur|d/η. To capture the transition from viscous
to inertial drag, the drag coefficient is written as (Ferguson & Church 2004; Chiodi et al.
2014)

Cd(Rep) =
(√

C∞ + s√
f (φ)Rep

)2

. (2.13)

Both C∞ and s a priori depend on concentration φ of particles. However, for the
sake of simplicity, we neglect this dependence and use s = √

24, as in the dilute limit.
Similarly, we will take a constant asymptotic drag coefficient C∞ equal to 0.44 as
previously suggested by Derksen (2003). Here, f (φ) is a hindrance function, for example
the Richardson–Zaki expression (Richardson & Zaki 1997), and is defined as

f (φ) = (1 − φ)4.65. (2.14)

Note that in the limit Rep → 0, (2.14) recovers (hindered) Stokes drag as Cd(Rep) →
(1/f (φ))(24/Rep). The expression for Stokes drag can be recovered from the definition
of Cd, FD = 1

2ρ f |uf |uf CdA, where A is the particle surface area (assumed spherical).

2.3.3. Lift due to the Saffman force
Particle migration has been studied widely (Bretherton 1962; Goldsmith & Mason
1962; Segre & Silberberg 1962a,b). The pioneering theoretical work by Saffman (1965,
1968) showed that a single sphere moving with a relative velocity through an inertial
flow within a background uniform simple shear will experience a lift force where the
‘scalar’ magnitude of this force was calculated to be 6.46(η f ρ f )0.5|ur|(d/2)2|∇ × u f |0.5.
This force is induced by the vorticity of the background fluid across a particle, such
that the higher velocity on top of the particle contributes to decreasing the pressure,
whilst the higher pressure at the bottom of the particle (on the side of ‘smaller’ velocity)
drives the particle ‘upward’.

It is conventional to decompose the force exerted on a particle moving with a relative
velocity in a fluid into two orthogonal components: a component of the force parallel to the
relative flow direction known as the drag force (as discussed in § 2.3.2) and a component
that is perpendicular to the drag force known as lift. Since the relative velocity ur was used
to obtain the direction of the drag force in (2.12), we recognise that the lift forces should
appear in the (ur/|ur|) × (∇ × ur/|∇ × ur|) direction (i.e. in a direction perpendicular
to both the relative velocity direction and its vorticity direction. Note the normalisation to
define a unit vector). Now, using the definition of the particle volume fraction, the Saffman
lift force per unit volume obtained using the single particle calculation of Saffman (1965,
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1968) may be defined in our Eulerian-Eulerian representation as

F Saff = 3.076φ(Rep)
−0.5|∇ × u f |0.5

(
ur × ∇ × ur

|∇ × ur|
)

. (2.15)

In Eulerian-Lagrangian frameworks, the importance of lift has been widely recognised
(Rubinow & Keller 1961; Derksen 2003; Kosinski & Hoffmann 2007). In contrast, in
previous Eulerian-Eulerian studies, Saffman lift forces have generally been excluded (e.g.
Chiodi et al. 2014; Inkson et al. 2017; Kang & Mirbod 2021). Among studies where
the lift force has been included (Derksen 2003; ANSYS, Inc. 2009; Ibrahim & Meguid
2020), although the drag force was introduced in the direction of relative velocity, the lift
force was introduced in a direction perpendicular to the relative velocity direction and the
fluid vorticity (and not the relative velocity vorticity as was used in (2.15)). Using such a
definition, the Saffman lift force F∠

Saff in Eulerian-Eulerian framework would be defined
as (e.g. ANSYS, Inc. 2009)

F ∠
Saff = 3.076φ(Rep)

−0.5|∇ × u f |−0.5(ur × ∇ × uf ). (2.16)

We acknowledge that in simple flow conditions where the fluid and particle are moving
in the same direction, F Saff ((2.15)) and F∠

Saff ((2.16)) are in fact identical. In §§ 4–6, we
compare these two implementations of lift forces for our problem and discuss the observed
difference in more detail.

2.3.4. Lift due to Magnus force
The Magnus force is developed by a pressure differential on the surface of the particle
resulting from a velocity differential due to rotation of the particle. Similar to the Saffman
force, using the definition of the particle volume fraction, the Magnus lift force per unit
volume obtained for the single-particle calculation of Rubinow & Keller (1961) may be
defined within the Eulerian representation as

F Mag = 0.375φ|∇ × up|
( ∇ × ur

|∇ × ur| × ur

)
. (2.17)

To the best of the authors’ knowledge, although the Magnus force has been previously
formulated within Lagrangian-Eulerian models (Derksen 2003; Kosinski & Hoffmann
2007), it has not been previously formulated in any Eulerian-Eulerian framework as we
present here.

2.4. Numerical domain
A schematic of the Couette geometry used in our numerical simulation is shown in
figure 1. The geometry consists of two horizontal concentric cylinders. The inner cylinder
has cone-shaped ends, which will generate Eckman vortices (Pfister & Rehberg 1981;
Ahlers & Cannell 1983; Lücke, Mihelcic & Wingerath 1985). The Eckman vortices
provide a ‘soft’ boundary such that the flow field away from the cones can adjust to find
a ‘correct’ axial periodicity despite the constraints imposed by axial periodic boundary
conditions.

The inner cylinder is rotated with angular speed ω, and the outer cylinder is stationary.
Here it is assumed that the solid-phase velocity at the inner wall is subject to a no-slip
boundary condition, and hence moves with the fluid phase at the same rotation speed at the
wall. We acknowledge that although this may be an optimal choice among the available
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Figure 1. Schematic of the Taylor–Couette geometry used for the numerical simulation. Cyclic boundary
conditions are applied to the axial faces of the domain. The inner wall rotates and the outer is stationary.
(a) Elevation defining dimensions, (b) perspective of the 3-D domain.

boundary conditions for rotating walls within the OpenFOAM platform, due to the use
of a ‘smooth’ surface in our experiment, it might not physically match the experimental
condition for the solid phase. At the stationary outer cylinder wall, a zero-velocity no-slip
condition is assumed for both phases. The velocities of the fluid and solid phase at the inner
cylinder wall are simulated using a rotatingWallVelocity boundary condition type defined
in OpenFOAM. For pressure, a fixedFluxPressure type has been used, which guarantees a
correct flux for both fluid and particles in the presence of gravitational acceleration (i.e.
no flux through the walls). The zero-gradient boundary condition (i.e. zeroGradient type
in OpenFOAM) for the particle volume fraction at the wall boundaries is used. To ensure
the particles do not leave the geometry from the axial faces, a cyclic (i.e. cyclic type in
OpenFOAM) boundary condition has been used.

3. Experimental

3.1. Materials and flow-cell
Experiments were performed with either aqueous glycerol solutions or tap-water
(discussed in Appendices A and B). Although temperature was not specifically controlled,
the ambient laboratory temperature was maintained at approximately 22 °C. An aqueous
glycerol solution of 71.5 wt% (with corresponding density 1196 kg m−3) was chosen to
give a nominal viscosity of 20 mPa s; however, varying experimental conditions caused
slight variation about this value. Hence, for each experiment, the actual viscosity of the
solution in the experimental section was sampled and measured directly, and is reported
below. We chose for our systematic series of experiments glass ballotini beads with size
between 425 μm and 600 μm (Sigma Aldrich G9268-250G). Glass has a density of
2500 kg m−3. We examined both dry and wet packs of the material and found a maximal
packing fraction of 0.6 for a tapped pack of material either wet or dry. We weighed 10 ml
of ballotini beads as 14.94 g; hence, φmax = 0.597. This corresponds reasonably to random
loose packing for frictional spheres at 0.58. A slightly higher figure is to be expected from
polydispersity.

The concentric cylinder section of our flow loop consists of a smooth Perspex rod with
external diameter, 2Ri, of nominally 40 mm and a smooth Perspex pipe providing the
outer wall with a nominal internal diameter, 2Ro, of 49.5 mm; hence, H/Ri = 0.2375 and
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Figure 2. (a) Schematic layout of the flow loop for particle transport measurement with X-ray shadowgraphy.
(b) Schematic cross-section of particle loader B in particle load position, (c) cross-section of particle loader B
rotated to allow particles to fall into the Couette. Experiments are performed with the device in the position of
panel (b) so that the concentric cylinders are unimpeded.

the particle size relative to the annular gap is approximately 1/9.5. The centre body can
be rotated at between approximately 20 rpm and 650 rpm whilst the outer wall is fixed.
The internal Reynolds number, Re, is conventionally defined (Andereck, Liu & Swinney
2006) as shown in (2.1). Hence, given our accessible rotation rate, for our aqueous glycerol,
Re varies between approximately 11 and 380 with the corresponding Taylor number, Ta,
varying between approximately 6 and 190 which allows us to investigate the particle
transport problem in circular Couette, Taylor vortex and into wavy vortex regimes.

The rotating centre body is supported and driven from one end and is 270 mm in length
giving the ratio of gap height and axial length of the set-up as 0.0176. The cell has a
200 mm transparent section. Particles are loaded over a 140 mm length approximately
centred on the transparent section. A direct current motor is used to drive the centre
rotation via a gearbox. Speed is controlled by voltage set using a programmable power
supply. Actual rotation speed is measured using an optical encoder mounted on the Couette
shaft and pulse counting via a National Instruments multifunction device. Thus, a chosen
rotation sequence is set and measured under computer control.

3.2. Flow loop and imaging
Experiments were undertaken in a bespoke flow loop, figure 2. The pipework is
constructed from 30 mm solvent-welded PVC pipe. The design encompasses a simple drop
(particles load A) to allow introduction of a pack of wetted cuttings into the flow via gravity
and whilst flow is running, thereby convecting the particles to the experimental section.
There is a second load point along the Couette (particles load B) where an even distribution
of particles may be introduced. On exit from the experimental section, the flow passes to
a cyclone device, which separates the particles allowing them to fall to a collection point
to be recovered. Thus, in principle, particles can be introduced and removed from the flow
whilst maintaining the flow. For the experiments reported here, particles were loaded at
point B to form a near-uniform bed at zero rotation and zero superficial flow over a length
of the Couette.
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Figure 3. (a) X-ray imaging layout, (b) construction diagram to estimate X-ray absorption.

The total volume of the slot used for loading particles at B is calculated as 5.55 cm3.
The volume of the Couette for the 140 mm length of the slot is 92.6 cm3 so that a single
full slot will give a particle volume fraction in the Couette over the 140 mm section of
3.6 % assuming our measured maximal packing (φ = 0.6) of the spheres in the loader slot
and uniformly distributed particles in the Couette over the length of the loader. Thus, our
initial loading, φave, is quantised in multiples of 3.6 %. Of course, our particles sediment
so that the initial condition is a bed of particles at the lower side of the Couette.

Imaging is either optical (Basler acA1920-150uc), using a Nikon lens and simple mirror
arrangement, or X-ray shadowgraphy with a Rex-Cell 1X system (Flow Capture AS,
Norway). The X-ray source is aligned with the vertical centre of the flow-cell (figure 3a)
so that, apart from parallax considerations, the image is a direct shadow of the particle
distribution within the cell.

To provide a simple quantification of the particle distribution, we choose to define
a mixing parameter, Λ, to characterise the degree to which particles are mixed during
rotation. Here, Λ will vary between 0, all particles at the bottom of the cell, and 1,
particles distributed on average equally through the cell. Since X-ray adsorption at low
concentration is expected to follow Beer’s law, we may write

ln(I) = ln(I0) − kwxw1 − kf xf − kpxp − kwxw2, (3.1)

with I the measured intensity; I0 the incident intensity; kw, kf , kp extinction coefficients
for the wall material, the fluid and the particles, respectively; and xw1, xf , xp, xw2 the path
length of the first wall, the fluid, the particles and the second wall, respectively, and as
illustrated in figure 3(b) for a particular ray. Using the particle volume fraction, φ, and the
total distance through the particle-fluid composition, xcomp, xf = (1 −φ)xcomp and xp = φ

xcomp, and if we consider the image in comparison with an image of the fluid-filled Couette
without particles, Iempty, then for each pixel,

ln(I) − ln(Iempty) = −φ(kp − kf )xcomp, (3.2)

and we then form

2[ln(I) − ln(Iempty)]top

[ln(I) − ln(Iempty)]top + [ln(I) − ln(Iempty)]bottom
= 2φtop

φtop + φbottom
= Λ, (3.3)

with suffixes top and bottom denoting symmetrically disposed image regions at the top
and bottom of the cell. At zero or low rotation rates, the particles sediment to form a bank
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Figure 4. Measured mixing parameter for two average volume fractions (φave = 1.8 % and φave = 3.6 %) in
aqueous glycerol (viscosity 17.7 mPa s).

at the bottom of the cell and Λ= 0. At sufficiently high rotation rates, we would expect
the particles to be fully mixed so that there would be an equal volume fraction of particles
at the top and bottom of the cell so that Λ= 1.

4. Experimental results

We initially examine the particle distribution for a large concentration of particles in
aqueous glycerol. The measurement is started with the cell completely full of aqueous
glycerol, i.e. all bubbles are removed. We then add the particles for two different cases
of half and one (wetted) volumes of the loading slot (φave = 1.8 % and φave = 3.6 %,
respectively). Some further information at higher Ta (with lower viscosity) is presented
in Appendix A. The centre body is rotated by hand so that any particles resting on its
top surface are caused to fall and join the bed of particles at the lower wall of the cell.
From this initial condition we, stepwise, increase the angular velocity of the centre over
the desired range.

We quantify the degree to which the flow is capable of carrying the particles around
the annulus by measuring the mixing parameter, Λ, plotted in figure 4(a). At low rotation
rates, in the circular Couette flow regime, the particles all reside in a bed at the bottom of
the cell (Λ = 0), albeit once the flow field initiates Taylor vortices, some movement leading
to redistribution is observed. At higher rotation rates, once the Taylor vortices are strong
and well established, the drag and lift forces caused by the flow are sufficient to overcome
gravity, and the particles are caried around the annulus. For the aqueous glycerol solution,
the critical rotation rate is not dependent on the initial volume of particles, at least over the
range examined (1.8 % < φavg < 3.6 %).

The evolution of particle distribution in aqueous glycerol is further assessed by
generating a space-rotation plot from the X-ray image sequence. A line is taken from the
midpoint of the image of the annular gap at the top (red) and bottom (blue) as indicated in
figure 5(a). Ten images are averaged (10 × 10 ms exposure), and subsequent pixel lines
are stacked. In the experiment, the rotation rate was incremented in steps of 20 rpm
every 5 s. Hence, the horizontal axis is calibrated to rotation. The resulting plot of space
(y-axis) versus rotation rate (x-axis) for the lower gap is shown in figure 5(b) and for the
corresponding upper gap in figure 5(c). For this fluid, and in these images, particle bank
formation is first clearly seen above approximately 170 rpm (Ta = 58), which is close to
the expected onset of Taylor vortices and commensurate with the onset taking account
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Figure 5. Space-rotation diagram for the evolution of φave = 3.6 % particles in 17.75 mPa s aqueous glycerol.
(a) Location of lines used to generate space-rotation plots, (b) bottom, (c) top. Here initiation of the
redistribution of particles starts at approximately 170 rpm. Thereafter, the structure is remarkably stationary.
Equivalent Ta numbers are indicated at the lower edge of each plot.

of the narrower gap due to the particle bed. Thereafter, as speed is increased, the Taylor
vortices are strong enough to regularise the interaction between the Taylor vortices and
the particle bed along the axial direction, and this leads to a periodic distribution of solid
particles at the bottom of the geometry. In figure 5(c) (top of the cell), particles are first
seen at approximately 220 rpm (Ta = 75). Note that this value is slightly higher than that
observed in figure 4 or figure 6 demonstrating, as can be discerned in figure 6, that the
initial particles to pass around the annulus do not reach the upper centreline of the gap and
so are not seen in figure 5, whereas they are seen in the orthogonal plane (figure 6) and the
integration across the annulus (figure 4). In figure 5, the distribution away from the centre
(position = 0 mm) is affected by imaging parallax; however, at the centre, we can see that
the particles form a triplet of lines corresponding to the edges of two counter-rotating
vortices and with the larger gap aligned with the bank of particles at the lower side.
Initially, the particles are distributed as rings of diameter much less than the gap, but as
rotation rate increases, the rings expand so that by approximately 350 rpm (Ta = 119), the
observed lines are adjacent. In figure 6, the particle distribution projected onto a vertical
plane, i.e. the background corrected shadowgraph, is shown as speed is increased. Here
(and in figure 7), the mixing onset is at the same Ta as the lower concentrations and we
choose to use a higher concentration to provide higher contrast images.
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Figure 6. Still X-ray images obtained during the rotation rate sweep of φave = 10.8 % particles in aqueous
21.3 mPa s aqueous glycerol. Images are labelled with rotation rate in rpm and are averages of 10 frames.
White indicates the presence of particles. Inset table shows corresponding dimensionless numbers: Taylor (Ta),
Froude (Fr), Reynolds (Re) and revolution count (N). Panels (a) and (b) have brightness increased so that initial
particle mixing can be seen.

(a) (b)
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2Ro
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2s

Figure 7. Time-space diagrams of 2 s of video at 650 rpm (Ta = 187) for φave = 10.8 % particles in 21.3 mPa s
aqueous glycerol: (a) x−y space elevation; (b) y-time at the position of the vertical yellow line in panel (a);
(c) x-time at the position of the horizontal yellow line in panel (a). In panel (c), there can be seen a periodic
perturbation along the time axis suggesting wavy vortex flow.
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In figure 6(a), the redistribution of the bank at the bottom of the cell is clear. In addition,
bright spots can be seen at the top of the cell indicating just a few particles being carried
around the annulus. These though appear to be close to the inner Couette wall so are missed
in the line section used for figure 5(c). In figure 6(c), distinct pairs of patches of particles
are now seen at the top of the cell and are seen as a sharp onset in figure 5(c). As rotation is
increased, the patches of particles expand to pairs of counter-rotating rings. As rotation is
increased further, the rings expand and strengthen, and at 354 rpm (Ta = 120) (figure 6e),
rings are also observed between the banks at the bottom of the cell. These observations are
very similar to those reported by Majji et al. (2018), Majji & Morris (2018) for neutrally
buoyant particles. However, in their case, the observed rings disappeared at the onset of
wavy vortex flow (Ta > 56, which for our data would be figure 6(c) et seq. however, we
see wavy vortex behaviour onset at approximately Ta > 169), whereas in the present case,
the rings persist to the highest speeds we can measure at approximately Ta = 221. Figure 7
shows a time series of the images at 650 rpm (Ta = 187) where a clear periodic oscillation
of the position of the rings is seen, indicating that the underlying wavy vortex flow has a
periodic motion. The measured frequency is approximately 8.5 Hz.

5. Model comparisons

We now examine a series of numerical simulations using the fluid properties of
aqueous glycerol used in our experiments. For these simulations, a mesh consisting of
7 270 120 cells was used. The initial volume fraction of the particles was set to be
uniformly distributed at 3.6 % in the geometry away from the cone-shaped inner cylinder
(i.e. for −6H < x < 6H), while the volume fraction related to the rest of the geometry was
set to zero.

One should note that in using an Eulerian-Eulerian solver, such as the one developed
here, the ratio of the average particle size to a reference length of the geometry should
be reasonably small, δ � 1. In our experiments, we have chosen particles for which
0.085 ≤ δ ≤ 0.12. Below, we conduct a series of qualitative and quantitative analyses,
systematically comparing the numerical and experimental results obtained for the mixing
process and solids distribution. We examine different inertial regimes in a circular Couette,
i.e. both Taylor vortex and wavy vortex regimes.

5.1. Mixing behaviour
A primary behaviour of interest is the mixing parameter, defined in (3.3), with
experimental results shown in figure 4. To reproduce this dataset, we start with a uniform
distribution of particles at the desired volume fraction and run to steady state at the
Taylor number of interest. Thus, whereas in the experiment a rotation rate sweep is
performed so that each new rotation rate is initiated with the distribution at the previous
rotation rate, for the numerical calculation, each rotation rate is an independent calculation
with a uniform particle distribution initial state. For all simulations, we set the value
of δ = 0.102, γ = 2.09, and the ratio of Taylor number to Froud number is fixed at
Ta/Fr = 21.2 (i.e. the sweep is achieved by changing wall velocity). The numerical results
are plotted in figure 8 as mixing parameter Λ versus Taylor number and are overlaid
with the experimental results. The numerical results are seen to quantitatively match the
experimental results within experimental error.

At low Taylor numbers, the mixing parameter is zero, i.e. the particles are predominantly
at the bottom of the Couette. On increasing the Taylor number, the mixing transition away
from zero starts at a Taylor number of approximately 52 in our numerical simulation in
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Figure 8. Mixing parameter plotted as a function of Taylor number for Φave = 3.6 %. Experimental data
from figure 4.

good agreement with the experimental results of 53 as shown in figure 8. In the following
section, we investigate the solid distribution at the start point of the Taylor vortex flow
instability in more detail and its complex interaction with the Eckman vortices (Pfister &
Rehberg 1981; Lücke et al. 1985) due to end effects.

5.2. Evolution of bed structure

5.2.1. Observation of bed structure evolution
As the rotation rate is increased, even though mixing is seen, there is observed a
persistent particle bed with a clearly periodic structure above a critical Taylor number
(figure 5). This progression is reproduced in the numerical results. The numerically
derived bed distributions as a function of Taylor number, observed from the underside
of the geometry, are shown in figure 9. In figure 9(a), at Taylor numbers too small to
initiate the mixing process, the solid bed adopts a uniform distribution in the middle of
the geometry away from the cone-shaped ends of the inner wall. Near the cone-shaped
ends, a non-uniform distribution is seen due to the presence of Eckman vortices. As the
rotation rate increases, the initial rather uniform distribution is replaced by a more complex
distribution, figure 9(b). At higher Taylor numbers, the distribution becomes a simpler
periodic distribution (figure 9c) with a wavelength approximately equal to twice the gap
between the two cylinders, H.

5.2.2. Analysis of bed structure evolution
In figure 10, calculated secondary flow streamlines in the x–y plane at z = 0 are
superimposed on the calculated particle concentration. Below the critical Taylor number
for mixing, a single vortex driven by the flow near the cone wall appears. These end
vortices, which are considered as a base flow, i.e. not an inertial instability, are often
referred to as Eckman vortices (Pfister & Rehberg 1981; Ahlers & Cannell 1983; Lücke
et al. 1985). It can be seen in figure 10(a) that the drag force exerted on the particle bed
induced by the Eckman vortices is able to modify the bed distribution near the end walls,
while the simple curvilinear flow in the rest of the geometry and away from the cone ends
generates a uniformly distributed solid bed.

It is well known that, for a single-phase Newtonian fluid above a critical rotation speed,
the flow between two concentric cylinders undergoes an inertial instability leading to the
excitation of Taylor vortices. In such flows, there is a competition between a centrifugal
force that has a destabilising effect and a viscous force that has a stabilising effect.
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Figure 9. Projection of the numerical domain showing the solid bed distribution viewed from the underside
of the Couette at different Taylor numbers for: (a) before the start point of the Taylor instability and mixing
process at Ta = 7.5; (b) beginning of the Taylor vortex instability transition at Ta = 52 and (c) higher rotation
rate at Ta = 90 when Taylor instability is established.
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Figure 10. Solids distribution (greyscale) at sequential rotation speeds with superimposed streamlines of the
fluid flow: (a) before the start point of the Taylor instability and the mixing process at Ta = 7.5; (b) beginning
of the Taylor vortex instability transition at Ta = 52 and (c) higher rotation rate at Ta = 90, when the Taylor
instability is established, at the plane z = 0.

The instability onset is a function of curvature ratio, i.e. the ratio of the gap size to
the inner cylinder radius. According to Wendt (1933), Prandtl was the first person who
noted that for the stationary outer-cylinder case, Taylor’s critical condition for the onset
of instability can be approximated by a simple correlation as a multiplication of Reynolds
number by the square root of curvature ratio, i.e. the Taylor number. Note that in our
problem, due to the presence of gravity and the density difference between the solid
particles and the surrounding fluid, we may observe the appearance of a solid bed which,
correspondingly, may modify the ‘effective’ gap size between the two cylinders. Our
preliminary numerical simulation, in the absence of particles (single phase), suggests that
the critical Taylor number for transition to the Taylor vortex regime appears at a Taylor
number of 45, while in the presence of Φave = 3.6 % particles, this transition appears at
a much higher Taylor number of 52, which is consistent and in excellent agreement with
our experimental results of a Taylor number of 53. Here, the onset of Taylor–Couette flow
and the apparent stabilising effect of a particle bed at the bottom might be approximated
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Figure 11. Streamlines superimposed on (a) concentration distribution parameter and (b) drag force for
Ta = 90 in the presence of Taylor vortex. Note the panels are taken from the bottom section of the Couette cell.

to an eccentric Taylor–Couette flow problem and its stabilising effect, for which there
is a well-established literature both experimental and theoretical (see, for example, Vohr
1968; Oikawa, Karasudani & Funakoshi 1989; Shu et al. 2004). Our numerical simulations
reveal that at the onset of mixing, there is a complex interaction between the Eckman
vortices, the solid bed distribution and Taylor vortices which could make the problem
even more complex. The distribution of the solid bed (figures 9b and 10b) may locally
modify the Taylor vortices along the x direction by changing this effective gap size.
As shown, the presence of the Eckman vortices is able to locally change the solid bed
distribution in the vicinity of the cones (e.g. figure 9b) and this can seed the creation of
‘Taylor vortices’ locally.

The numerical results, supported by our experimental data, suggest that at higher
rotation rates, the inertial force is strong enough to regularise the interaction between
the Taylor vortices and the particle bed along the axial direction, and this leads to a
periodic distribution of solid particles at the bottom of the geometry (figure 9c). In fact,
the counter-rotating nature of neighbouring vortices (figure 11a) leads to a drag force
(figure 11b) that moves particles within the bed towards a converging stagnation point,
and hence a mound of particles is seen every second vortex. Hence, the wavelength of the
resulting periodic particle bed structure should be approximately 2H.

5.3. Formation of particle-decorated vortex structures

5.3.1. Ring-structure evolution
Once Taylor vortices have developed uniformly along the geometry, we begin to see mixing
and observe, both in experiment (figures 6 and 7) and model (figures 10 and 12), the
vortices decorated at their outer limit with particles. Note that the results presented in
the experimental section (figures 6 and 7) are in fact an integration of concentration due
to the nature of the X-ray shadowgraph technique. In figure 12, to better compare our
numerical results with experiments, the isovolumic particle concentration is set with an
opacity ranging from 0 (for φ = 0) to 1 (for φ = 0.6). Hence, the images in figure 12 are
effectively integrations of particle density across the Couette (into the page). The rings
begin to form at a Taylor number around 60 and by increasing the rotation rate of the inner
wall, the rings become larger, consistent with our experimental observation (figure 6). Our
numerical results suggest the presence of a sheet of particles proximal to the upper surface
of the inner cylinder connecting the rings (more obvious in figure 13), which is not seen
experimentally. One should note that once particles are in the vicinity of the wall, the flow
field around each particle must be altered by the presence of the wall, and hence inertial
effects should be expected to differ compared with an unbounded flow field. This effect
is not captured by Saffman’s calculation as he assumed an unbounded shear flow field
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Figure 12. Formation of ring structures in the presence of Taylor vortices at (a) Ta = 60, (b) Ta = 70,
(c) T = 90. Note here the isovolumetric concentration contours are set with different opacities to provide a
better comparison with experimental results.
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Figure 13. Formation of ring structures ((a–c) the top of the Couette and (d–f ) the bottom of the Couette) as
a function of rotation speed at (a,d) Ta = 60, (b,e) Ta = 70, (c, f ) Ta = 90. Plots are cross-sections in the x–y
plane at z = 0, −2 < x < 2 from (a–c) 4 < y < 5 and (d–f ) −4 < y < −5.

and hence is not captured in our simulation. Single-body inertial migration between walls
due to the proximity of the walls is complex. We refer interested readers to the work of
Vasseur & Cox (1976) that addresses the simple shear case for neutrally buoyant as well as
density-mismatched particles.

In figures 13(a–c), the images show the cross-sectional particle density in the x–y plane
at z = 0 for −2 < x < 2 and 4 < y < 5 showing the solids distribution on the top of
the geometry along the gap direction. In figure 13(d–f ), at z = 0 for −2 < x < 2 and
−4 < y < −5, the corresponding solids distributions at the bottom of the geometry are
shown. In figure 13(d–f ), the amount of the solid located at the bed is reduced as the
rotation rate increases. Taylor vortices appear to enhance the mixing process and thereby
enhance solid transport. One should note that a previous numerical study carried out in a
Taylor–Couette geometry (Kang & Mirbod 2021), which included normal forces arising
from an anisotropic particle pressure definition but not lift forces, predicted that within
complex flows including Taylor vortices, the particles migrate to the centre of the vortices,
in contrast to observations by Majji & Morris (2018), and both our experimental and
numerical results.

For suspension flow problems, such as studied here, the neutrally buoyant case provides
an important comparison which we now address. In the sedimenting case (Ta = 90 and
γ = 2.09), although the average volume fraction across the domain is Φave = 3.6 %, we
can see from the mixing parameter (figure 8) that a significant proportion of the particles
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Figure 14. Distributions of solid particles ((a) for sedimenting particles with γ = 2.09, correspondingly, and
(c) for neutrally buoyant cases with γ = 1) and Archimedes force ((b) for sedimenting particles with γ = 2.09
and (d) for neutrally buoyant cases with γ = 1, correspondingly) at Ta = 90 at the (i) top and (ii) bottom of the
Couette geometry.

reside in a bed at the bottom of the Couette. Hence, to match the volume fraction of
moving particles found in the sedimenting case to the same volume fraction of moving
particles in a neutrally buoyant case (i.e. without a bed of particles), we find that we need
to reduce the total average volume fraction to Φave = 0.5 %. In figure 14, we compare
particles distributions for the sedimenting case (Ta = 90 and γ = 2.09, figure 14a) to the
distribution in the neutrally buoyant case (Ta = 90 and γ = 1, figure 14c). We also compare
the distribution of Archimedes force for the two cases, respectively figures 14(b) and 14(d).
The top-bottom asymmetry is compared in rows (i) and (ii) of the figure.

Comparing figures 14(a-i) and 14(a-ii), there is no top-bottom symmetry. In this case,
gravity acts in opposition to the centrifugal force in the top of the cell, but cooperatively at
the bottom of the cell, hence breaking the axial symmetry and resulting in sedimentation
at the bottom of the cell. The corresponding asymmetric Archimedes force distribution
is shown in figures 14(b-i) and 14(b-ii). In the neutrally buoyant case, comparing
figures 14(c-i) and 14(c-ii), the gravitational force is absent so that the top-bottom
symmetry is not broken and we find a uniform particle ring distribution azimuthally,
as observed experimentally by Majji & Morris (2018), and hence an axisymmetric ring
pattern. The Archimedes force distribution (figures 14d-i and 14d-ii) is symmetric top to
bottom.

The variation of the mixing parameter with time for two Taylor numbers are plotted
in figure 15(a). Since our initial condition is a uniform particle distribution, the mixing
parameter starts from 1 in both cases. At Ta = 30, due to the absence of Taylor vortices,
the mixing parameter starts from one and goes to zero implying no mixing. At the
higher Taylor number, Ta = 200, the mixing parameter exhibits a time dependent periodic
variation due to the onset of wavy vortex behaviour (see inset), and hence a periodic
variation of material integrated within our fixed measurement region (the definition of
the lift parameter and the integration domains are provided in the Supplementary material
and movie). The frequency of the calculated periodic motion is approximately 10.5 Hz, in
reasonably good agreement with our experimental observation at approximately 8.5 Hz.
Our results produced by the model, supported by experiments, capture a delayed transition
from Taylor vortices to wavy Taylor vortices. Our numerical simulation in the absence of
particles (single phase) suggests that the critical Taylor number for transition to the wavy
vortex regime appears at a Taylor number of 103, while in the presence of Φave = 3.6 %
particles, this transition appears at the much higher Taylor number of 145, the latter of
which is in reasonable agreement with our experimental value of approximately 160.

In previous studies for neutrally buoyant particles (e.g. Majji & Morris 2018), as
the rotation speed was increased, the observed rings disappeared at the onset of wavy
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Figure 15. (a) Variation of the mixing parameter in time for Ta = 30 and Ta = 200. Inset shows an expanded
view of the long-time oscillatory behaviour for Ta = 200. (b) Particle distribution at Ta = 200 in the presence
of wavy vortex flows; the pattern is time dependent (Supplementary material and movie 2).

vortex flow, while in our problem, the rings persist in this flow regime (as shown
numerically in figure 15 and experimentally in figure 7). Video files from both experiment
(Supplementary material and movie 1 is available at https://doi.org/10.1017/jfm.2023.
1042) and numerical simulation (Supplementary material and movie 2) highlighting this
persistence have been provided. We postulate a possible explanation of this observation
by noting that due to sedimentation of particles, in our problem, there exist particle banks
(i.e. reservoirs of particles) on the lower side of the cell. The relatively fixed position of
these solid beds of particles (see figures 7, 12 and 13) may therefore act to fix a source
position for a stream of particles lifted from the bank and taken around the annulus. Our
well-defined rings of particles well into the wavy vortex regime could then be related to
these fixed points, rather than being fully randomised trajectories (after many revolutions)
for neutrally buoyant particles in the absence of solid beds.

5.3.2. Ring formation dependent on lift forces
We now focus on the detailed effect of lift forces and their formulation in distributing
particles. As discussed in the experimental section and also reported previously by Majji &
Morris (2018), Baroudi et al. (2020), the presence of spherical solid particles will decorate
the Taylor vortex flow. Figures 16(a) and 16(d) show the results of our full model at Ta =
90 exhibiting steady-state ring structures. Figures 16(c) and 16( f ) show the results of the
same model but with lift forces set to zero. In the absence of lift forces, the particles
dynamically swirl between the vortices, qualitatively resembling the process investigated
by Dusting & Balabani (2009) for mixing of a dye in the Taylor vortex flow regime.
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Figure 16. Solid distribution at Ta = 90. Plots are in x–y plane at z = 0, −2 < x < 2 from (a–c) 4 < y < 5 and
(d–f ) −4 < y <−5. (a) and (d) In the presence of lift forces FSaff and FMag as explained in (2.15) and (2.17),
(b) and (e) using lift forces F∠

Saff and FMag as formulated in (2.16) and (2.17), (c) and ( f ) in the absence of any
lift forces.

Model formulations, such as presented in (2.16), have been commonly used in both
Eulerian-Eulerian and Eulerian-Lagrangian formulations. In our simulations, using that
formulation instead of (2.15) leads to an unsteady flow field with particles moving between
secondary flow structures (figures 16b and 16e). It is therefore clear that it is not the
magnitude of lift force that needs to be corrected but its direction (see (2.15) and (2.16)).

We next analyse the relative contributions of lift forces and gravitational forces. Any
non-neutrally buoyant particle, moving within a carrier fluid, will be subject to a force
due to gravity and, in an inertial regime, a force due to a difference of acceleration (the
first terms in the left-hand side and the right-hand side of the conservation of momentum
for each of the fluid and solid phases in (2.3) and (2.5)). These forces are respectively
due to a density mismatch or flux difference, and cause the particle to move with a
velocity different to the fluid, i.e. a relative velocity. The distribution of relative secondary
motion in the vorticity direction and forces arising through the relative velocity of the two
phases, including drag and lift forces at the top of the Couette for both (i) gravitationally
sedimenting and (ii) neutrally buoyant cases are shown in figure 17. Note that for the
neutrally buoyant case, although the density of fluid and solid are identical and gravity
has no role in creating the ‘relative velocity’, the difference in the flux term of the inertial
force (the difference in the first terms in the left-hand side of conservation of momentum
for fluid and solid phases in (2.3) and (2.5)) would lead to a relative velocity between
the two phases. Note that difference in stress of solid and fluid phases (the difference
in second terms in the right-hand side of conservation of momentum for fluid and solid
phases in (2.3) and (2.5)) would also play a role in the appearance of the relative velocity.
The relative velocity appearing between solid and liquid phases are smaller in the neutrally
buoyant case, compared to the sedimenting particle case (figures 17-i and 17-ii). As a
consequence, this leads to larger values of the drag force. Interestingly, although the
relative velocity is reduced in the neutrally buoyant case, the strength of the lift forces
seems to be of the same order of magnitude as those in the sedimenting particle case,
which might seem to be counter-intuitive at first glance. Here, one should note that due to
the absence of any solid bed in the neutrally buoyant case, the vorticity strength would be
higher and this in turn could increase the strength of lift forces.

Our results suggest that capturing the correct migration of particles in complex flow
conditions requires inclusion of forces arising from the relative velocity of the two phases,
and there is a fine balance between lift forces and other balancing forces such as drag
in the secondary flow direction, as shown in figure 16. The results suggest that in the
case of a sedimenting particle, Saffman’s force seems to be larger than the Magnus force,
whereas in the neutrally buoyant case, the role of Magnus force becomes relatively more
important. We conclude that to obtain an accurate migration of particles (to capture the
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Figure 17. Variation of (a) relative velocity magnitude in vorticity direction, (b) Saffman lift force magnitude,
(c) Magnus lift force magnitude and (d) total drag force magnitude at Ta = 90 for (i) sedimenting particles
γ = 2.09 and (ii) neutrally buoyant particles γ = 1 plotted in the x–y plane at z = 0, −2 < x < 2 from (a–c)
4 < y < 5, i.e. the top of the geometry.

ring structure in this particular example) in different gravitational regimes, the presence of
both lift forces due to Magnus and Saffman are important.

6. Discussion

In our model formulation, the force coupling between the fluid and particles comprises
a sum of gravitational, Archimedes and drag forces together with Saffman and Magnus
lift forces. We find that to reproduce the experimental behaviours, even qualitatively,
we require all these forces. Despite this success, the functional forms chosen, although
appearing in the literature, are not well defined over all concentration regimes that exist
within our computational domain. Hence, it is difficult to be certain of the detailed balance
of forces at any point within the domain. Nevertheless, we find that without the lift forces,
it is impossible to reproduce the observed ring structure, which is a clear and strong
observational feature. We have demonstrated the effect of either neglecting the lift forces
or of ‘incorrectly’ formulating their direction in figure 16.

Hence, we conclude that to accurately capture the observed migration of particles in
the inertial regime, the presence of the lift forces is imperative. These lift forces have
been widely dismissed for Eulerian-Eulerian solvers previously reported in the literature
(Chiodi et al. 2014, Inkson et al. 2017). However, without lift forces, particles swirl
between the centre and outer edge and between pairs of vortices. This clearly contradicts
both our experimental observations (figures 6 and 7) for the dense particle case and those
reported by Majji et al. (2018), Majji & Morris (2018) for the neutral buoyancy case. We
also note that at the onset of particle mixing (experimentally figures 6a and 6b), when lift
forces are still comparatively weak, we see particles at the centre of the vortices. Only at
higher Taylor numbers (i.e. high inertia) do we see particles migrate to the periphery of
the vortices, further suggesting the association of lift forces with such movement.

Within a shear flow but close to a boundary, particles will experience a force away from
that boundary. This may be understood from simple Bernoulli consideration of flow either
side of the particle, i.e. the pressure on the wall side of the particle will be higher than on
the other side of the particle. Hence, in the annular gap and in the absence of other forces,
the particles will migrate to the approximate centre of the gap. To model this effect, the
position of the particle relative to walls together with the flow perturbation due to the
finite size of the particle are needed. Hence, within our Eulerian-Eulerian formulation,
since these factors are not captured, neither is the wall-induced migration.

In contrast to most previous work (e.g. Majji et al. 2018; Majji & Morris 2018), in our
calculation and experiments, the particles sediment. At all but the highest rotation rates,
this leads to the appearance of particle banks on the lower side of the cell. Particle transport
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around the annulus appears to proceed with each bank being a ‘source’ of particles and
a ‘sink’ of particles such that the trajectory around the annulus begins and ends on a
bank. The relatively fixed position of each bank of particles (see figure 5) therefore leads
to a fixed position as the source of particles so that at each rotation speed, the particle
trajectories have a fixed starting point. We see well-defined rings of particles well into the
wavy vortex regime in clear contrast to the neutrally buoyant case (Majji & Morris 2018),
and we postulate that this fixed point rather than fully randomised trajectories may be the
underlying explanation.

The observation of period doubling for particles in water (Appendix A) at moderate
rotation but high Taylor number (sufficiently high to have a turbulent vortex structure)
has not been previously reported. For the initially regular and consistently shaped banks
of particles, to evolve to two shapes interleaved, there must be, at these rotation speeds,
net asymmetric particle transport between the initially even banks. Whereas some initial
calculations suggest that our model can reproduce this effect, a full investigation and
explanation of this instability is beyond the scope of the present work.

7. Conclusion

We have constructed a mathematical platform for simulating two-phase flows of
non-Brownian particle suspensions within an Eulerian-Eulerian framework. A fully 3-D,
transient, numerical solver has been written using OpenFOAM, which we refer to as
SCRFoam. In this formulation, the conservation of mass and momentum in both phases
are solved, and consequently separate velocities of each of the fluid and solid phases
at each computational time step are obtained. This approach allows investigation of the
forces arising through the relative velocity of the two phases, including drag and lift
forces. To determine the validity of our approach and to motivate extensions to the
conventional model, we have conducted limited experiments with Newtonian fluids and
glass ballotini beads within a concentric cylinder geometry. We find that all key features
of the experiments are captured by our model, but note that without the lift terms, as
commonly neglected in previous Eulerian-Eulerian solvers, particles drift to the centre of
the Taylor vortices rather than to the periphery as experimentally observed. In particular,
our model captures the annularly asymmetric bed mounds at low rotation, onset of mixing
and, at high rotation, the formation of ring structures. The model also captures the
persistence of the ring structures beyond the transition to wavy vortices as we find in our
experiments.

Using rheometric techniques, a scalar quantity known as the particle pressure can be
obtained that may be sufficient to describe the particle migration for suspension flows
under viscously dominated conditions and high particle concentrations in rectilinear flows.
Here we have shown that in more complex flow conditions, such as those observed in
Taylor–Couette flows, the presence of the lift force is a key feature to capture inertial
non-Brownian particle migration. In our experiments, we observe the migration of
particles also due to wall repulsion which was not currently included in our modelling.

Supplemental material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.1042.
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Figure 18. (a) Schematic layout of optical camera for this sequence of optical images. In the lower part of
each image, we see the underside of the Couette, note the left-right asymmetry across the images created by
imaging parallax. (b) An initially uniform bed of particles is perturbed by the shear flow induced by rotating
the inner cylinder of the Couette (rotation speed in rpm indicated). (c) Approach to period doubling of particle
banks seen at 230 rpm, Ta = 1188 in panel (b). Here, φave = 10.8 % in water.
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Appendix A

To focus the discussion, the main text has been limited to experimental and numerical
results relevant to moderate Ta number and moderate volume fractions. Here we report,
without further analysis, a curious observation made with water as the background fluid.
For our particles in water, as the centre-body rotation speed is increased, we see a
reproducible redistribution of particle beds into a period doubled structure, figure 18. We
have not observed this for higher viscosity aqueous glycerol solutions.

In figure 18(a), the optical arrangement used to obtain the images in figure 18(b,c)
is shown where the mirror is placed sufficiently low that an oblique view is obtained
highlighting the outline of the particle distribution within the bed. Figure 18(b) shows
images at steady state for a sequence of rotation rates and figure 18(c) shows the detailed
approach to the observed rearrangement. As rotation speed is increased, as indicated in
each panel, the particle redistribution evolves as follows: (i) above a certain rotation speed,
movement of surface particles in the bed; (ii) movement of particles such that the beds
redistribute into periodic mounds roughly commensurate with the expected Taylor vortex
wavelength; (iii) at this point, a general circulation of particles over each mound can be
seen leading to a fore-aft asymmetry of the mound shape with a ‘shark-tooth’ appearance
(figure 19a); and (iv) further rotation rate increase then drags particles from the bed and
around the annulus of the cell. As particles are suspended in the flow now, the volume of
each mound decreases, and the shape evolves to a fore-aft symmetry, but now extended
further around the inner wall of the outer surface and narrower in the axial direction.
Note that above approximately 132 rpm (Ta = 682) for a single phase, but modified by the
presence of particles, we may expect turbulent vortices (Andereck et al. 2006). Although
the particle mounds are observed to align with the converging stagnation line at the outer
wall developed by the counter-rotating vortex structure, over a narrow rotation rate range
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Figure 19. (a) Optical image of two banks with indicated period, λB, showing shark-tooth appearance and
viewed from underneath the particle bed. The fluid (water) flow is directed up the page in this image, i.e. the
double end of the bank is in the direction of rotation of the Couette inner cylinder. (b) Measured periodicity of
the particle banks divided by gap as a function of rotation rate and Taylor number.

between approximately 225 rpm and 260 rpm (1160 < Ta < 1340 or 2380 < Re < 2750), we
see a remarkable period doubling where the particle mounds rearrange to be alternating
broad and narrow mounds. We have not been able to generate this feature with aqueous
glycerol solution, but with this higher viscosity fluid, we cannot access such high Ta
numbers. The period doubling takes a few minutes to evolve, but once formed is stable over
longer periods. At these rotation rates, particles can be seen to travel around the Couette
and thereby potentially have the opportunity to pass from one mound to another. The
measured axial periodicity of the mounds is plotted in figure 19(b). The periodicity is close
to that expected for a Taylor vortex wavelength, even into the turbulent vortex regime with
the particles decorating the converging node between the vortices. Figure 19(b) indicates
the observed period doubling over a narrow range of Taylor numbers.

Appendix B

Since viscous and inertial forces combine to lift a particle and gravity to bring it back to
the bottom of the cell, it is natural to consider plotting mixing data (figure 4) as a function
of either Shields number, θ , (viscous dominated process) or Froude number, Fr = Ta · θ ,
(inertia dominated process). In fact, neither collapses both the aqueous glycerol and water
data. Hence, in figure 20, we plot our mixing data (figure 4) together with mixing data for
water as a function of a combined scaled Froude number and Shields number, i.e. a ratio of
inertial plus viscous forces to gravitational forces, Σ = (Ta/n + 1)θ . Whilst suggestive,
there are insufficient data here to substantiate this postulated dependence. Nevertheless,
the suggested scaling implies that the critical rotation rate for initiation of mixing should
be proportional to the square root of particle size. Experiments with a smaller particle size
are indeed consistent with this.
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Figure 20. (a) Data from figure 4 plot together with mixing data for a volume fraction φave = 10.8 % of
particles in water. (b) Data plotted against a combined Froude–Shields number with n = 125 (see text).
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