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The present review investigates the role of sleep and its alteration in triggering metabolic
disorders. The reduction of the amount of time sleeping has become an endemic condition in
modern society and the current literature has found important associations between sleep loss and
alterations in nutritional and metabolic aspects. Studies suggest that individuals who sleep less
have a higher probability of becoming obese. It can be related to the increase of ghrelin and
decrease of leptin levels, generating an increase of appetite and hunger. Sleep loss has been closely
associated with problems in glucose metabolism and a higher risk for the development of insulin
resistance and diabetes, and this disturbance may reflect decreased efficacy of the negative-
feedback regulation of the hypothalamic–pituitary–adrenal axis. The period of sleep is also
associated with an increase of blood lipid concentrations, which can be intensified under
conditions of reduced sleep time, leading to disorders in fat metabolism. Based on a review of the
literature, we conclude that sleep loss represents an important risk factor for weight gain, insulin
resistance, type 2 diabetes and dyslipidaemia. Therefore, an adequate sleep pattern is fundamental
for the nutritional balance of the body and should be encouraged by professionals in the area.

Sleep loss: Food intake: Obesity: Appetite: Diabetes

Introduction

A reduction of sleep time has become common in recent
years, guided by the demands and opportunities of modern
society1. Over the last 40 years, self-reported sleep duration
has decreased by 1·5–2 h in the USA2,3. The proportion of
young adults with a period of sleep shorter than 7 h per d has
increased from 15·6 % in 1960 to 37·1 % in 2001–22,3.

Recent studies show that the alteration in sleep time can
influence various aspects associated with the nutritional
and metabolic balance of the body, such as the control of
body mass4 – 7 and the controls of food intake8 – 10,
glycaemic levels1,11,12 and of the levels of cholesterol
and TAG13 – 15.

Numerous studies have used different methodologies to

understand the effects of sleep loss. Sleep deprivation can be

total, when no sleep is allowed, or partial, when the retiring

time is delayed or the rising time is advanced. In addition,

deprivation can last for one or more nights. Results might

depend upon the exact nature of the deprivation that is used.

Some studies have used shift workers, for example, who

might sleep less than day workers, under 5 h on working
days16. These members of the population have been the
main focus of scientific work considering the relationship
between sleep and nutrition. Not only might such decreased
hours of sleep modify eating behaviour significantly14,17 – 22

but also it has been known for some time that the eating
habits of night workers during the night shift are altered23,24.

Individuals that sleep less, including shift workers, have
been associated in the longer term with a higher propensity
for the development of nutritional problems25,26, such as
obesity and altered metabolism of food14,17 – 22,24,27,
dyslipidaemias25,28 and diabetes12,29 – 31. In laboratory
studies of healthy young adults submitted to recurrent
partial sleep restriction, marked alterations in metabolism,
including decreased glucose tolerance and insulin sensi-
tivity32 and altered metabolism of food33, have been
demonstrated.

Given the need for a better understanding of the
nutritional problems resulting from alterations in sleep
patterns, the present article discusses the influence of sleep
on nutritional and metabolic parameters.

Abbreviations: GH, growth hormone; HPA, hypothalamic–pituitary–adrenal; LPL, lipoprotein lipase; REM, rapid eye movement; SWS,

slow-wave sleep; TSH, thyroid-stimulating hormone.

*Corresponding author: Professor Marco Túlio de Mello, fax þ55 11 5572 0177, email tmello@psicobio.epm.br

Nutrition Research Reviews (2007), 20, 195–212

q The Authors 2007

doi: 10.1017/S0954422407810651

https://doi.org/10.1017/S0954422407810651 Published online by Cambridge University Press

https://doi.org/10.1017/S0954422407810651


Obesity and sleep

Landmark studies by Rechtschaffen et al.34 reported that
rats submitted to total sleep deprivation (by the disk-over-
water method) markedly increased food intake but, never-
theless, lost weight. Many other studies have confirmed
these results35 – 40. Recently, however, Martins et al.41

introduced different procedures to allow accurate estimation
of food spillage before, during, and after 120 h of sleep
deprivation. Their main finding was that, once corrected for
spillage, food intake was not significantly increased during
sleep deprivation, even though weight loss did occur during
the sleep-deprivation period.

In human subjects, recent studies have pointed to a
possible involvement of changed sleep hours in altered
energy balance of the body and to alterations in the sleep
pattern as a contributory factor to increased obesity1,27,42.
Many recent studies correlate the short duration of sleep
with the increase in the BMI, in adults4,6,7,43 – 45,
children46 – 48 and adolescents49 – 51. In a prospective
single-age cohort study with 496 young adults, Hasler
et al.44 showed an association between short sleep duration
and obesity and a negative association between sleep
duration and BMI. These associations persisted after
controlling for a variety of potentially confounding
variables. Reilly et al.47 found, in 8234 children aged 7
years, that sleep duration in the children when aged 30
months was independently associated with the prevalence of
obesity at the age of 7 years. Children showing the lowest
two quartiles of sleep duration (,10·5 h and 10·5–10·9 h,
respectively) were more likely to be obese at age 7 than
children in the highest quartile (.12 h).

However, although data from prospective studies and
supporting this link are emerging, most of the studies
showing an association between short sleeps and obesity
have been cross-sectional and do not prove causality. In an
attempt to understand better the effect of sleep loss on food
intake in man, studies have used models of shift work or jet
lag (alterations resulting from rapid crossing of time zones),
both of which are situations that alter the sleep pattern and
are also associated with alterations in the pattern of food
intake14,17 – 22,52. Some studies have reported that obesity
tends to occur more frequently in association with shift
work than with daytime-only work14,18,53 – 56. During night
work24,57 and after a time-zone transition24,58, there might
be additional problems due to the lack of palatable food59.
Altered eating habits are a source of concern in night
workers, who tend to ‘nibble’ their way through crisps and
chocolate bars during the night shift rather than eat a healthy
and substantial meal in the middle of it60 – 62. Waterhouse
et al.63 analysed the transient changes in the pattern of food
intake following a simulated time-zone transition. Subjects
showed significant changes in their pattern of food intake.
The distribution of daytime meals was significantly affected
on the first post-shift day, with a redistribution of the times
that the main, hot meals were eaten.

Even though the mechanisms involved in changed eating

habits are not completely understood, it is known that

alterations in the sleep–wake schedule affect intracellular

circadian clocks – molecular mechanisms that enable the

cell, tissue or organism to anticipate diurnal variations in the

environment. The environment (of cells and tissues) may
include circulating levels of nutrients (for example, glucose,
fatty acids and TAG) and various hormones (for example,
insulin, leptin, ghrelin, glucocorticoids). As such, altera-
tions in the timing mechanism are likely to induce
nutritional changes that may potentiate disrupted metab-
olism64 and influence appetite, satiety and, therefore, food
intake33. It is believed also that problems in adjustment of
the biological clock, so impairing the duration and quality of
sleep, can also modify food intake25,58,65.

Therefore, we will approach more precisely the
mechanisms by which the sleep loss can lead to the increase
of food intake and obesity.

The role of leptin and ghrelin in the control of food intake
and sleep

Eating and sleeping are two kinds of behaviour that are
essential for the survival of man and higher animals.
Whereas it is obvious that these two processes cannot occur
at exactly the same time, there appear to be common
regulators of both phenomena66. With the identification of
ghrelin as the endogenous ligand of the growth hormone
(GH) secretagogue receptor67, a new endogenous regulator
of food intake and, possibly, also of sleep was found. Later,
Bodosi et al.68 described a relationship between sleep,
feeding and ghrelin and their antagonist in energy balance,
leptin.

From these findings, many studies have clearly indicated
that the reduction in total sleep time is associated with two
parallel endocrine behaviours that can significantly alter
food intake: the reduction of the anorexigenic hormone
leptin7,69 – 71 and the increase of the orexigenic hormone
ghrelin7,33,68. In individuals who sleep less, this combi-
nation of changes results in increased hunger and food
intake33. In an experiment carried out by Spiegel et al.33,
sleep deprivation in men was associated with an increase of
28 % in ghrelin levels, a reduction of 18 % in the
leptin levels and increases of 24 % in hunger and 23 % in
appetite (Fig. 1).

Leptin is a protein composed of 167 amino acids, and it is
produced mainly by the adipose tissue72. Leptin provides
the regulating centre in the brain with information about
energy balance, and its release is associated with the
promotion of satiety73 – 80. Elevated leptin levels at times of
metabolic excess activate an anorexigenic pathway, the
peptide precursor pro-opiomelanocortin (POMC) and
cocaine- and amphetamine-regulated transcript peptide
(CART), and reduce activity in orexigenic pathways,
neuropeptide Y (NPY) and agouti-related peptide (AgRP).
Low leptin levels, occurring at times of nutrient deficit,
result in a reduction of inhibitory influences on NPY/AgRP
neurons, a lack of activation of POMC/CART-containing
neurons and an overall increase in orexigenic signalling81,82

(see Fig. 2).
Recent studies with animals have suggested that leptin

might participate in the regulation of sleep, systematically
reducing rapid eye movement (REM) sleep and influencing
non-REM sleep83. Other work has postulated a direct
influence of leptin release on sleep, since the levels of this
hormone are higher during sleep than when awake84. Some
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evidence suggests that this nocturnal increase is partly
a response to the intake of food that took place during the
day85. It is believed, however, that sleep per se can affect
the regulation of leptin, since studies have shown that the
elevation observed during sleep persists in subjects
receiving continuous enteral nutrition, even when sleep
occurs during the daytime71,84.

Evidence from other laboratory studies has shown that
both chronic, partial sleep deprivation70 and acute sleep
deprivation69 might cause a reduction in the serum
concentration of leptin. Spiegel et al.71 evaluated the
pattern of leptin secretion in eleven male individuals
subjected to a shortened sleep time (4 h) for six nights. Mean
and maximum values of leptin were lower (by 19 and 26 %,
respectively) during sleep restriction, compared with
the same individuals when they had normal sleep (8 h),
suggesting that sleep plays an important role in leptin
secretion. Sleep restriction seems to change the capacity of
leptin to respond to the body’s energy balance and to
produce the satiety signal when the energy needs have been
adequately met71. Also, Taheri et al.7 observed, in a cross-
sectional study carried out with 1024 volunteers, that short
sleep was associated with low leptin levels, with a decrease
of 15·5 % predicted for habitual sleeps of 5 v. 8 h. Chaput
et al.86 found a cross-sectional association between short
sleep duration and leptin levels in a sample of 323 men and
417 women aged 21–64 years. When compared with adults
reporting 7–8 h of sleep per d, and after adjustment for age,
sex, and physical activity level, the adjusted OR for
overweight or obesity was 1·38 (95 % CI 0·89, 2·10) for
those with 9–10 h of sleep and 1·69 (95 % CI 1·15, 2·39)
for those with 5–6 h. However, all of these significant
differences disappeared after statistical adjustment for
plasma leptin levels.

Fig. 1. Effect of sleep duration on daytime leptin levels (A), ghrelin
levels (B), hunger (C) and appetite (D). (A) Daytime (09.00 to 21.00
hours) profiles of leptin after 2 d with 4 h in bed ( ) or 2 d with 10 h in
bed (—). Mean leptin levels were 18% lower when sleep was
restricted. (B) Daytime (09.00 to 21.00 hours) profiles of ghrelin from
nine of the twelve participants after 2 d with 4 h in bed or 2 d with 10 h in
bed. Mean ghrelin levels were 28% higher in the afternoon and early
evening (12.00 to 21.00 hours) when sleep was restricted. (C) Ratings
of hunger (0–10 cm visual analogue scale) and (D) overall appetite
(0–70 cmvisual analoguescale) after 2 dwith 4 h in bedor 2 dwith 10 h
in bed. When sleep was restricted, ratings of hunger and overall
appetite increased by 24 and 23%, respectively. Values are means,
with their standard errors represented by vertical bars. (From Spiegel
et al.71; used with permission from the Annals of Internal Medicine.)

Fig. 2. Central control of food intake. Leptin stimulates pro-
opiomelanocortin/cocaine- and amphetamine-regulated transcript
peptide (POMC/CART) neurons and inhibits neuropeptide Y (NPY)
and agouti-related peptide (AgRP) neurons. The result of these
opposing actions is the stimulation of food intake and energy
expenditure. (Adapted from Gale et al.229.)
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An impact of sleep duration on leptin levels could
involve several mechanisms. Considering that leptin
release is inhibited by the sympathetic nervous system87,
another possibility is that sleep restriction results in a
reduction in leptin levels due to increased sympathetic
activity71. Alterations in the regulation of cortisol and
sympatho – vagal balance, the two most important
neurobiological markers of stress, were clear when
individuals were studied for 6 d of sleep restriction71. A
negative association between changes in leptin levels and
cortisol during sleep restriction is well documented in
the literature, possibly indicating a suppressive effect of
leptin on the hypothalamic–pituitary–adrenal (HPA)
axis88 – 90.

A parallelism between the diurnal and pulsatile variations
in thyroid-stimulating hormone (TSH) and leptin levels has
been reported in healthy young adults91. Spiegel et al.71

observed a positive association between 24 h variations in
leptin and TSH after sleep restriction, which provides
compelling evidence for a role for leptin in the physiological
regulation of the thyrotropic axis. Evidence suggests that
TRH neurons may be regulated by leptin90, and a
stimulatory effect of leptin on TSH release has been
suggested in man91 – 93 and shown in rodents. In contrast,
many other studies have reported negative findings in the
role of physiological concentrations of thyroid hormones on
leptin regulation71,94,95.

It has been suggested that the reduction in leptin levels
after sleep restriction might be an adaptation to increased
energy needs, due to the increase in wake time71. Studies
involving accurate measurements of energy balance in
individuals submitted to chronic partial sleep loss are
necessary, to rule out the possibility that the state of sleep
restriction entails a significant increase in energy
expenditure.

A close relationship between leptin and ghrelin, another
hormone influenced by sleep, has been described. Ghrelin
is a peptide composed of twenty-eight amino acids,
produced mainly by the endocrine glands of the stomach67

and duodenum67, and by a number of brain structures96.
This hormone increases in periods of fasting97, triggering
the sensation of hunger97 – 99 in the arcuate nucleus100,
stimulating gastrointestinal motility101 and promoting the
deposition of lipids102. The arcuate nucleus is involved in
the central control of food intake103, and ghrelin is the
only substance that is found endogenously in mammals
and that increases hunger and appetite when administered
to human subjects104 – 109. This hormone contributes to
preprandial hunger110 and plasma concentrations of
ghrelin are inversely correlated with the amount of food
ingested68. Ghrelin is thought to be significantly involved
in the neuroendocrine network that regulates energy
balance in at least two ways. First, it acts as a peripheral
hormone from the stomach that, along with other signals
such as insulin or leptin, informs the central energy
balance control when energy stores diminish, and also
increases orexigenic drive and decreases energy expendi-
ture. Its second involvement is as a hypothalamic
neuropeptide, expressed in a previously unidentified
population of neurons adjacent to the third ventricle and
between the ventromedial hypothalamus, the dorsal

hypothalamus, the paraventricular nucleus, and the arcuate
nucleus. Efferents of ghrelin-expressing neurons project to
key circuits involved in the regulation of central energy
balance and may offset the activity of orexigenic
neuropeptide Y/Agouti-related protein with anorectic
pro-opiomelanocortin neurons and so modulate the output
of the efferent pathway97.

Current evidence indicates that ghrelin is also a sleep-
promoting factor111, inducing slow-wave sleep (SWS) and
the nocturnal secretion of GH112. It is well documented that
there is an increase in the levels of ghrelin during sleep,
followed by a decrease in the morning, some hours before
breakfast. The cause of this profile remains to be clarified,
since it is anomalous that the levels of a hormone that
stimulates hunger are increased during sleep. It has been
suggested that ghrelin might produce other metabolic and
endocrine functions that remain to be ascertained112.

As in the case of leptin, sleep seems to influence the
pattern of ghrelin secretion, since high levels of this
hormone follow the curtailment of sleep in human
subjects33. Spiegel et al.33 showed that the curtailment of
sleep (to 4 h) in twelve healthy men for a period of 2 d was
associated with an increase of almost 28 % in the diurnal
levels of ghrelin. Bodosi et al.68, in a study with rats,
analysed plasma and hypothalamic concentrations of
ghrelin before and after sleep deprivation. They observed
that levels of hypothalamic ghrelin changed during and after
sleep deprivation, increasing during sleep deprivation and
decreasing afterwards to levels below baseline. Plasma
ghrelin, on the other hand, showed increased levels both
during71 and after sleep deprivation111. Based on this
evidence, it has been postulated that high levels of ghrelin in
response to sleep deprivation might be a normal response of
the body to a greater need for energy intake, as a result of the
longer time the individual has remained awake. This
hypothesis requires further investigation33. Therefore, high
ghrelin levels can contribute to an increase of hunger and
food intake during sleep loss.

These differences in leptin and ghrelin are likely to
increase appetite, possibly explaining the increased BMI
observed in individuals with short sleep duration7. The
current literature indicates that the decrease of leptin and
increase of ghrelin levels are considered to be the main
factors that trigger the increase of hunger when the sleep
pattern is altered33. Fig. 3 shows how sleep deprivation
might change the pattern of ghrelin and leptin and energy
balance.

Sleep deprivation seems to increase not only appetite but
also the preference for foods containing more energy7,113.
Spiegel et al.33 showed that the appetite for energy-rich
nutrients with high carbohydrate content, including sweets,
salty snacks and starchy foods, increased by 33–45 %; by
contrast, appetite for fruits, vegetables and high-protein
nutrients was less affected. Lennernas et al.114 observed a
great preference for the intake of ‘fast food’ and energy-rich
snacks during the nocturnal working hours in night workers.
The preference for such foods is a source of great concern
since, in addition to presenting a hormone pattern that
predisposes to an increased energy intake33, individuals
with sleep loss (common in night workers) tend to meet
this need with foods of low nutritional quality115 – 119.
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This altered food intake can result from inadequate eating
facilities during the night shift but, whatever its cause, it
increases the risks of obesity26, dyslipidaemias28 and
CVD115 – 119.

Sleep duration might represent a major risk factor for the
development of weight gain and one that can be modified
fairly easily. Unfortunately, most studies that describe
hormonal and behavioural changes capable of increasing
food intake have been acute interventions, and so it has not
been possible to establish what would be their long-term
effects. Indeed, there are many other neuropeptides that
have stronger effects on food intake, and which have not
been measured in sleep-loss studies. Even so, the new
studies should lead to a better understanding of the role of
sleep in the mechanisms that control hunger and satiety.
Also, it is suggested that new studies, to measure the effect
of sleep-promoting interventions on appetite and body
weight, are required. Even so, the current findings suggest
that changes in the levels of leptin and ghrelin, due to sleep
curtailment, cause changes in food intake. That is, sleep
duration can be added to the environmental factors that are
prevalent in our society and that contribute to weight gain
and obesity. It might be that a better night’s sleep will
become a goal in future attempts to combat obesity.

Sleep and energy expenditure

Sleep duration may alter the balance between energy intake
and energy expenditure. With regard to energy expenditure,
excessive daytime sleepiness and fatigue, resulting from
sleep loss (tiredness without increased sleep propensity),
have been associated with obesity and have a significant
impact on individual wellbeing and public safety120.

Taheri121 stated that excessive daytime fatigue and
sleepiness could contribute to reduced daytime physical
activity, which many believe is a major contributor to the
current obesity pandemic. Knutson50 found that about 40 %
of 12–16 year olds reported waking up tired; this could have
a serious adverse effect on daily physical activity.
Additionally, physical activity has a beneficial effect on
sleep, suggesting a negative synergy between poor sleep and
low physical activity.

Gupta et al.49 studied a tri-ethnic cross-section sample of
male and female adolescents, aged 11–16 years (Heartfelt
Study). Data obtained from 24 h wrist actigraphy showed
that obese adolescents experienced less sleep than non-
obese adolescents (P , 0·01). For each hour of lost sleep,
the odds of obesity increased by 80 %. Sleep disturbance
was not directly related to obesity in the sample, but
influenced physical activity levels (P , 0·01). Daytime
physical activity diminished by 3 % for every hour increase
in sleep disturbance. Other studies, measuring energy
expenditure in both sexes, at different ages and following
sleep loss, are needed to understand better these
relationships71,87.

Influence of sleep on glucose metabolism

In man, the homeostatic control of plasma glucose results in
a strictly controlled balance between the distribution of
glucose (originating in the liver in the post-absorptive state
or from the intestine in the postprandial state) and the use of
glucose by the tissues such as muscles, adipose tissue and
the brain. This control prevents the development of
hypoglycaemia or hyperglycaemia1,122.

Fig. 3. Changes in the pattern of ghrelin and leptin release and energy balance produced by sleep deprivation.
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In order to investigate differences in glucose control
during sleep and waking periods, a number of recent studies
have measured glucose levels of individuals in both
states123. In normal subjects during an overnight sleep,
blood levels of glucose remain stable or fall only minimally
despite the extended fast122. By comparison, in subjects
awake and fasting in a recumbent position during the
daytime period, and in the absence of any physical activity,
glucose levels fall by an average of 0·5–1·0 mM (i.e. 100–
200 mg/l) over a 12 h period122. Thus, a number of
mechanisms must operate during nocturnal sleep to
maintain stable glucose levels during the fasting period1.

Glucose homeostasis is critically dependent on the ability
of pancreatic b-cells to release insulin both acutely (i.e. the
acute insulin response to glucose, b-cell responsiveness)
and in a sustained fashion, and on the ability of insulin to
inhibit hepatic glucose production and promote glucose
disposal by peripheral tissues (i.e. insulin sensitivity).
Reduced insulin sensitivity, or insulin resistance, occurs
when higher levels of insulin are needed to reduce blood
glucose levels after the administration of a given amount of
exogenous glucose1. Insulin resistance can lead to a marked
decrease in glucose tolerance (reflected in higher plasma
glucose levels). It is well established that insulin sensitivity,
insulin resistance and glucose tolerance vary across the 24 h
cycle and can be influenced by a lack of sleep122.

Recent studies have described a significant impairment in
glucose control in individuals who have alterations in their
sleep pattern1,32,124; these subjects are more susceptible to
the onset of insulin resistance1,32 and type 2 diabetes1,32,125.
Therefore, it is appropriate to address the mechanisms
involved in the impaired glucose metabolism by disruption
of the sleep–wake rhythm.

Glucose metabolism during sleep

Studies of nocturnal glucose tolerance during sleep –
determined by the balance of insulin secretion and insulin
action – have used intravenous glucose infusion at a
constant rate, or continuous enteral nutrition, and have
sampled glucose and insulin without waking the sub-
jects126 – 128.

Van Cauter et al.11 evaluated glucose and insulin
secretion rates in a group of eight normal young men
(aged 20–27 years) during constant glucose infusion,
including an 8 h period of nocturnal sleep. During nocturnal
sleep, levels of glucose and insulin secretion increased by
31 ^ 5 and 60 ^ 11 %, respectively, and returned to
baseline in the morning. During the first half of the sleep
period, the increase in plasma glucose was followed by a
50 % increase in insulin secretion. Under these experimental
conditions, the major underlying cause of the glucose
increase is decreased glucose utilisation11. The profiles of
peripheral glucose and insulin concentrations observed in
this study confirmed and extended the findings of previous
studies, which had shown decreased glucose tolerance in the
evening as compared with the morning129 – 133.

It is estimated that about two-thirds of the fall in glucose
utilisation during early sleep is due to a decrease in brain
glucose metabolism134, which is related to the predomi-
nance of SWS and associated with a 30–40 % reduction in

cerebral glucose metabolism relative to waking values. The
remainder of the fall in glucose uptake is thought to reflect
decreased peripheral utilisation. Diminished muscle tone
during sleep and rapid anti-insulin-like effects of the sleep-
onset GH pulse135 are both likely to contribute to this
decrease in peripheral glucose uptake. During the latter part
of the night, glucose tolerance begins to improve, and
glucose levels progressively decrease toward morning
values, reflecting an increase in glucose uptake. This
increase in glucose uptake is partially due to the increases in
wakefulness and REM stages136. Indeed, glucose utilisation
during REM sleep and waking is higher than during non-
REM sleep134,137 – 140. Finally, the latter part of the night
appears also to be associated with increased insulin
sensitivity11,141.

Glucose metabolism during sleep loss

Some evidence has indicated that diabetes is more likely to
occur in individuals who experience sleep loss. In a
longitudinal study over a 10-year period, Suwazono et al.142

investigated the effect of alternating shifts on the onset of
diabetes mellitus in Japanese workers (n 3203) compared
with day-shift workers (n 2426). The OR for the
development of diabetes mellitus in the alternating-shift
group compared with the day-shift group was 1·35 (95 % CI
1·05, 1·75), indicating that alternating shifts are an
independent risk factor for the onset of diabetes mellitus.
Morikawa et al.143 analysed the risk of diabetes mellitus in
2860 men in a factory in Japan over the course of 8 years.
They found a significantly increased risk of diabetes
mellitus for the two-shift, but not three-shift, system, using
white-collar workers as a reference group. More specific
studies have examined the relationship between sleep
duration and diabetes. Trenell et al.144 found the same
U-shaped relationship between sleep duration and the
incidence of type 2 diabetes29,145, independent of con-
founding variables. Analysis of cross-section data from the
Sleep Heart Health Study also revealed that reduced sleep
duration was associated with an increased prevalence of
type 2 diabetes and insulin resistance, after controlling for
sleep-disordered breathing12, a condition that may also
independently influence glucose control146,147.

Several studies have shown major changes in glucose
tolerance under conditions of sleep restriction or depri-
vation1,32,122,148 – 150. In a laboratory study, Spiegel et al.32

analysed the glucose tolerance (measured by an intravenous
bolus of glucose; 300 mg/kg body mass) in eleven young
men after time in bed had been restricted to 4 h per night for
six nights. The authors compared the sleep-debt condition
with measurements taken at the end of a sleep-recovery
period (fully rested condition) when participants had been
allowed 12 h in bed per night for six nights. They observed
that glucose tolerance was lower in the sleep-loss condition
than in the fully rested condition. Sookoian et al.151 studied
877 day workers and 474 rotating-shift workers.
In comparison with day workers, rotating-shift workers
had elevated fasting insulin and an increased homeostasis
index, which is a measure of insulin resistance.

To define the roles of circadian rhythmicity (intrinsic
effects of time of day, independent of the sleep or wake
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condition) and sleep (intrinsic effects of the sleep
condition, irrespective of the time of day) on the 24 h
variation in glucose tolerance, Van Cauter et al.11

evaluated glucose and insulin secretion rates during a
53 h period 28 h of nocturnal sleep, followed by 28 h of
sleep deprivation including a period of nocturnal sleep
deprivation, and then 8 h of daytime recovery sleep.
During sleep deprivation, glucose levels and insulin
secretion rose to reach a maximum at a time correspond-
ing to the beginning of the habitual sleep period. The
magnitude of the rise above morning levels averaged 17
(SD 5) % for glucose and 49 (SD 8) % for calculated
insulin secretion. Serum insulin levels did not parallel the
circadian variation in insulin secretion, indicating the
existence of an approximate 40 % increase in insulin
clearance during the night. Daytime sleep was associated
with a 16 (SD 3) % rise in glucose levels, a 55 (SD 7) %
rise in insulin secretion and a 39 (SD 5) % rise in serum
insulin. The profiles observed under these conditions
indicate unequivocally that both circadian rhythmicity and
sleep modulate glucose regulation11 (Fig. 4).

Further studies are necessary to evaluate whether there is
a difference in glucose metabolism following intravenous
infusion or oral intake of glucose or other kinds of
carbohydrates under conditions of sleep deprivation. It is
also important that the impact of chronic sleep debt be
clarified1. Mander et al.124 observed that healthy individuals
of both sexes, whose sleep had been curtailed (to less than
6·5 h per night) for a minimum period of 6 months, had a
response to intravenous glucose similar to that of individuals

who had slept longer (7·5–8·5 h), but at the cost of having
markedly higher insulin secretion. This finding suggests that
there might be a mechanism of metabolic adaptation when
sleep debt becomes chronic. If this is the case, the initial
impairment to glucose tolerance and to the responsiveness
of b-cells might foster the subsequent development of
insulin resistance1.

There are other explanations for the changes in glucose
metabolism during conditions of sleep loss. Cortisol, whose
24 h rhythm is noteworthy for its robustness and persistence
under a large variety of pathological conditions, is a
hormone that plays an important role in glucose
metabolism. A modest elevation in cortisol levels during
the night was present in elderly and adult individuals who
had been sleep deprived152 – 155. In both groups, the
nocturnal elevation of cortisol could reflect an impairment
of feedback inhibition on the HPA axis156.

Spiegel et al.32 observed, in eleven young men after time
in bed had been restricted to 4 h per night for six nights
(sleep-debt condition), that the evening cortisol concen-
trations were raised (P ¼ 0·0001) and the activity of the
sympathetic nervous system was increased (P , 0·02). The
sleep-debt condition, compared with the sleep-recovery
condition (12 h in bed per night for six nights), was
associated with alterations in the 24 h profile of plasma
cortisol, including a shorter quiescent period and raised
concentrations in the afternoon and early evening
(P ¼ 0·0001). This latter disturbance may reflect
decreased efficacy of the negative-feedback regulation of
the HPA axis.

Fig. 4. Profiles of glucose (A) and insulin secretion rates (ISR) (B) in a group of eight normal young men (aged 20–27 years) studied during a 53 h
period including 8 h of nocturnal sleep (B), followed by 28 h of sleep deprivation including a period of nocturnal sleep deprivation ( ) and 8 h of
daytime recovery sleep ( ). Data were obtained at 20min intervals under continuous glucose infusion. Values are means, with their standard
errors represented by vertical bars. (Adapted from Van Cauter et al.11; cited by Spiegel et al.1; used with permission from the Journal of Applied
Physiology.)
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Cortisol has an immediate effect on the secretion of
insulin, producing an inhibition in the absence of changes in
glucose concentration141. This effect has been demonstrated
in both in vitro157 – 162 and in vivo studies163 – 166.

One of the slower effects of a rise in cortisol levels is the
onset of insulin resistance 4–6 h afterwards156. Therefore,
the normal nocturnal elevation of cortisol levels might
adversely affect glucose regulation during the night and the
following day. In the long term, it might contribute to age-
related reductions in glucose tolerance and insulin
sensitivity. The hypothesis also suggests that the normal
elevation of plasma cortisol at night, when the HPA axis is
normally inhibited, would result in deleterious metabolic
effects that are stronger than those that take place due to a
similar elevation during the morning, when the HPA axis is
fully activated156. A slow reduction of cortisol concentration
in the afternoon is consistent with altered hippocampal
mechanisms that control the negative feedback upon the
HPA axis32. On the other hand, some studies rule out the
possibility that the circadian variations in cortisol
concentrations contribute to the diurnal variation in glucose
tolerance, since this tolerance is higher in the morning
(when cortisol levels are high) and lower in the first half of
the night (when cortisol levels are low)130,165. The
coincidences of increased insulin sensitivity with high
cortisol levels in the morning, and of decreased insulin
sensitivity with low cortisol levels in the evening, appear to
contradict the well-known adverse effects of glucocorticoids
on insulin sensitivity. However, this interpretation is based
on the assumption that alterations of insulin resistance are
an immediate consequence of changes in cortisol concen-
trations122.

Disorders in the profile of GH secretion might also
contribute to the alterations in glucose regulation observed
during sleep loss. GH is secreted in a series of pulses
throughout the whole 24 h cycle, with greater changes in
concentration, due to more frequent and larger secretory
pulses, taking place during sleep167. In normal adults,
peak plasma concentrations of GH take place during the
first half of sleep, in association with the time of most
SWS167 – 170. The amount of GH secreted during the first
episode of SWS is quantitatively related to the
duration171,172 and the intensity173 of the SWS. The
rapid anti-insulin-like effects of the GH pulse135 are
responsible for reducing glucose uptake by the peripheral
tissues1.

Considering the importance and the multiplicity of the
metabolic actions of GH, even when there are only minor
changes in the secretion profile over the course of the
24 h, these could be associated with significant peripheral
effects174. Plat et al.156 showed that sleep restriction was
associated with a longer elevation of GH and an increase
in cortisol levels during the night. Sleep-onset GH
secretion is thought to facilitate the maintenance of stable
overnight glucose levels despite the prolonged fasting
condition122. Indeed, studies that have used intravenous
administrations of a low dose of synthetic GH to mimic
physiological pulsatile release have shown that a primary
effect is a rapid decrease in muscular glucose
uptake135,175. Spiegel et al.174 evaluated a semi-chronic
partial sleep loss (sixteen consecutive nights in the clinical

research centre, including three nights with 8 h bedtime
from 23.00 to 07.00 hours, six nights with bedtime limited
to a 4 h period from 01.00 to 05.00 hours, and seven
nights with 12 h bedtime from 21.00 to 09.00 hours) on
the 24 h GH profile. Eleven young men were studied after
six nights of restricted bedtimes (01.00 to 05.00 hours)
and after seven nights of extended bedtimes (21.00 to
09.00 hours, the fully rested condition). After 1 week of
sleep restriction, the biphasic nature of nocturnal GH
release resulted in an extended period of elevated GH
concentration compared with fully rested conditions. This
extended exposure of peripheral tissues to higher GH
levels may have adversely affected glucose regulation156.

All these mechanisms suggest an important impairment
in glucose metabolism during sleep, especially in individ-
uals submitted to sleep restriction or deprivation32. With
humans spending a significant proportion of their lives
asleep, it is not surprising that the body compensates for
these periods of enforced fasting by manifesting a degree of
peripheral insulin resistance, thereby maintaining circulat-
ing glucose levels. Likewise, there appears to be value in
maintaining levels of circulating glucose during periods of
perceived stress, in order to sustain cognitive and metabolic
function144.

These results highlight the fact that dietary care is
fundamental in those individuals who are more susceptible
to glucose metabolic disorders such as diabetes and
insulin resistance. Accordingly, the intake of carbo-
hydrates near bedtime should be minimal, since the little
evidence that does exist suggests that intake at 22.00
hours entails a considerably stronger insulin and glucose
response compared with the same intake at 10.00
hours176. This response is compatible with the consider-
able insulin resistance observed during the night177. In
addition, it has been suggested that the intake of large
amounts of food at night, during the circadian phase when
there is lowest insulin sensitivity, might generate effects
that predispose individuals to the onset of other metabolic
disorders177.

Fat metabolism during sleep

Recent studies have shown that night workers, with chronic
sleep loss, are more predisposed to fat metabolism
disorders9,14,15,28,54,55,178,179. These individuals present
higher serum levels of TAG9,14,28,54,55,179 and choles-
terol14,15,178 compared with day workers (Table 1).

It is widely recognised that environmental factors,
especially feeding, are critical for the development of
those problems, and night workers have inadequate eating
habits that might contribute to these problems28,115 – 118.
Nevertheless, another body of evidence suggests that the
problems might be triggered by metabolic disorders that do
not depend on food intake28; rather, they are a pathogenic
effect induced by a mismatch between circadian rhythms,
environmental factors and social stress180. In other words,
the difficulties might arise from a clash between the body
clock and the environment181. Therefore, we shall now
consider alterations of fat metabolism that are triggered by
disruption of the sleep–wake rhythm.
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Table 1. Lipid profile disturbances in shift workers

Study Sample Design Results

Ghiasvand et al. (2006)15 Shift and day workers
(n 158 and n 266 respectively)

Epidemiological study High total- cholesterol levels: þ72·2% in shift workers
and þ50·8% in day workers

High LDL-cholesterol levels: þ37·3% in shift workers and
þ25·4% in day workers

Van Amelsvoort et al.
(2004)228

Shift and day workers (n 239 and
n 157 respectively)

Cohort Decreased LDL:HDL-cholesterol ratio: 20·13mmol/l
in day workers and 20·33mmol/l in shift workers

Karlsson et al. (2003)14 Day workers and three-shift workers
in two plants (n 665 and n 659 respectively)

Cross-sectional data High TAG levels: þ32·5% in shift workers
and þ25·1% in day workers

Low HDL-cholesterol levels: þ7·6% in shift workers
and þ3·9% in day workers

Karlsson et al. (2001)18 Shift and day workers (n 7909 and
n 19 576 respectively)

Cross-sectional data High TAG levels: þ31·5% in shift workers
and þ28·5% in men day workers aged 40 years; þ13·7%
in shift workers and þ9·6% in women day workers
aged 40 years; þ30% in shift workers and þ25·5%
in women day workers aged 60 years

Low HDL-cholesterol levels: þ26·7% in shift workers
and þ17·9% in men day workers aged 30 years; þ27·8%
in shift workers and þ20·6% in men day workers aged 60
years; þ18·3% in shift workers and þ8·6% in women day
workers aged 30 years; þ14·7% in shift workers and þ10·8%
in women day workers aged 50 years

Nakamura et al. (1997)9 Three-shift workers, two-shift workers
and day workers used as a control
group (n 33, n 27 and n 239 respectively)

Cross-sectional study for an industrial
male, blue-collar population

High mean total cholesterol levels: 5·70 (SD 1·19) mmol/l
in three-shift workers, 4·81 (SD 1·01) mmol/l in two-shift
workers and 4·98 (SD 0·95) mmol/l in day workers

Romon et al. (1992)28 Shift workers and day workers used as
control (n 73 and n 73 respectively)

Cross-sectional survey High TAG levels: 1·26mmol/l in shift workers
and 1·03mmol/l in day workers

Cholesterol and HDL-cholesterol levels: similar for both groups
Nagaya et al. (2002)56 Day- and shift workers (n 2824 and

n 826 respectively)
Cross-sectional study High TAG levels:levels: þ28·7% in day workers

and þ31·2% in shift workers
Knutsson et al. (1988)55 Shift- and day workers (n 361 and

n 240 respectively)
Cross-sectional study High TAG levels: 1·61mmol/l in shift workers

and 1·43mmol/l in day workers
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Circadian control of fat metabolism

The supply of TAG from the adipocytes results from a
balance between the uptake and release of NEFA. These
fatty acids are formed by the hydrolysis of circulating TAG
by the lipoprotein lipase (LPL) enzyme182 and by the
lipolysis of TAG into NEFA and glycerol by hormone-
sensitive lipase183. These processes are reciprocally
regulated, suggesting an inverse relationship between the
activities of LPL and hormone-sensitive lipase184.

Dramatic diurnal variations in adipocyte lipolysis and
lipogenesis occur in mammals. When an animal sleeps, rates
of lipolysis increase, resulting in increased release of NEFA
into the circulation. In contrast, when an animal is awake,
rates of lipolysis decrease, with a concomitant increase in
lipogenesis. Diurnal variations in adipose TAG turnover
have been explained primarily in terms of reciprocal
changes in neurohumoral influences promoting lipolysis and
lipogenesis64. According to the ‘lipogenic–lipolytic’ theory
of Armstrong115, daytime food intake is associated with
glucose metabolism and fat deposition, and nocturnal
fasting with fat metabolism. It follows that fat metabolism
will be more active during the night and fat oxidation takes
place mainly at this time167,185.

Hormones that acutely affect lipolysis in human
adipocytes are catecholamines (adrenaline and noradrena-
line) and insulin186. Circulating GH also plays a
fundamental role in the regulation of fat metabolism187,188,
generally increasing energy flow in the lipid transportation
system by stimulation of lipolysis in adipose tissue189,190.
Some authors suggest that GH is the main hormone in the
control of lipolysis. Interestingly, peak production of this
hormone occurs during the night, suggesting that this might
be the pathway through which lipolysis is stimulated during
sleep191. In addition to increases in GH concentration,
adrenocorticotropin192 and prolactin193 also rise and then
fall during the night, and have also been implicated in the
regulation of lipolysis194,195. These results support the view
that the circadian variations of several endocrines modulate
both fat deposition and utilisation during a 24 h period.

Circadian rhythm of lipid tolerance and cholesterol
biosynthesis

TAG concentrations in the blood show a circadian variation,
with maximum values around 03.00 to 04.00 hours and
minimum values at noon196. Morgan et al.197 observed a
marked increase of plasma TAG during the night and its
dissociation into two significant components. The first was
related to the internal body clock, and the second to the time
after waking. This increase in TAG is possibly due to an
impairment in lipid tolerance during the night – that is, an
impaired postprandial TAG clearance198 – in turn due to
insufficient insulin activity at this time196,197,199; the result
will be a reduction in the activity of LPL and decreased
hydrolysis of plasma TAG200. Consequently, concentrations
of TAG in the blood will be high during the night14,200.

Other possible causes of nocturnal lipid intolerance are
that the clearance of TAG from the circulation, or the
suppression of hepatic synthesis and/or secretion of TAG, is
impaired198. Lemberger et al.201 state that the a-sub-type

hepatic PPAR indirectly influences TAG hydrolysis, and so
affects the levels of circulating TAG, via regulation of the
synthesis of apo CIII (a lipoprotein fraction that is an
inhibitor of LPL).

Studies involving the hepatic lipase enzyme suggest that
its activity is positively related to serum concentrations of
TAG202 and that hypertriacylglycerolaemia is a character-
istic of hepatic lipase deficiency203. Moreover, this enzyme
has been implicated in impairment of the postprandial
clearance of lipoproteins204. Consequently, it is possible that
reduced levels of hepatic lipase at night might also
contribute to nocturnal lipid intolerance198.

Advances of the sleep–wake cycle205 and simulated shift
work206 have both revealed an increase in the postprandial
response of TAG in the night. It is known that factors such as
the rate of gastric emptying, TAG hydrolysis in the intestine,
and intestinal motility might influence the rate of TAG flow
into the circulation207, and insulin resistance has also been
suggested to be a factor contributing to this increase in
postprandial TAG208. Since LPL has a reduced activity at
night and plays an important role in the regulation of
postprandial TAG clearance209, higher levels of TAG are
observed after food intake at night compared with the
daytime199.

The decrease of lipid tolerance in the night-time can
cause high levels of TAG in the circulation, especially in
association with food intake. Traditionally, fasting plasma
TAG concentrations have not been recognised as an
independent risk factor affecting the pathogenesis and
progression of CHD210. However, more recent epidemiolo-
gical evidence suggests that the relative importance of TAG
as a risk factor for CHD may have been underestimated. A
large meta-analysis of seventeen population-based prospec-
tive studies showed that plasma TAG concentration was an
independent risk factor for CHD211. This analysis also
showed that plasma TAG concentrations were particularly
important in relation to CHD risk in women; an increase in
plasma TAG concentration increased cardiovascular risk by
76 % in women compared with 32 % in men211.

Current evidence185,212 indicates that the rates of
endogenous cholesterol biosynthesis in man are subject to
large changes over the course of the day185,212 – 214 and
increase at night. The concentration of HDL-cholesterol
also shows a circadian variation, which is phased opposite to
that of TAG, with minimum values at around 04.00 hours
and maximum values around noon196. Miettinen213

observed an increase in the cholesterol precursors squalene
and lanosterol, with maximum values found between
midnight and 04.00 hours. Parker et al.185 observed a
nocturnal increase in plasma levels of mevalonate, a
precursor of cholesterol biosynthesis whose production is
controlled by hydroxymethylglutaryl-CoA reductase215,
and these were correlated with the rate of cholesterol
production216 – 218.

The behaviour of cholesterol metabolism in human
subjects during sleep deprivation219 and rotating-shift
systems53 has led to the suggestion that changes in the
sleep–wake and/or light–dark cycles might be involved. On
the other hand, Cella et al.220 observed that, with alterations
in the sleep–wake and/or light–dark cycles but with no
changes to meal times, the diurnal pattern of cholesterol
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synthesis was unaltered; this result shows that the rhythm is
more strongly regulated by meal times rather than by the
sleep–wake and light–dark cycles. However, in other
studies carried out upon animals, both the circadian rhythm
and meal times played important roles in the regulation of
the diurnal variation of cholesterol synthesis205. It has also
been found that eating at night leads to an increase in the
LDL:HDL ratio25.

The increase of GH in SWS might be associated with the
increase in cholesterol synthesis during the night167,185.
Takahashi et al.167 and Parker et al.185 have suggested that
GH might have a direct regulating effect on cholesterol
synthesis due to the strong temporal association between the
increases of GH and mevalonate in the night. The hypothesis
is that b-oxidation, which also is increased during the night,
might be the pathway for the oxidation of the NEFA to
supply the two carbon fragments necessary to condense and
form hydroxymethylglutaryl-CoA, the immediate precursor
of mevalonate167,185. However, Boyle et al.221 and Cella
et al.220 observed that an abrupt change in sleep time, with
the resulting change in release of GH, was not associated
with detectable changes in cholesterol synthesis.

Cella et al.220 showed that TSH, normally inhibited by
nocturnal sleep, had a peak coinciding with the maximum
rate of cholesterol synthesis on days with normal amounts of
sleep at night; by contrast, a twofold increase in the
amplitude of the TSH rhythm was observed during sleep
deprivation222 – 224. This major alteration in the profile of
TSH concentration was associated with a modest elevation
in the peak of the rhythm of cholesterol synthesis, and these
simultaneous changes were reflected in an increase in the
cross-correlation between them220. These observations
support the view that TSH might exert an effect on
cholesterol synthesis, mainly during sleep deprivation220.
Under normal sleep–wake conditions, the diurnal variation
in secretion of thyroid hormone has a low amplitude and its
circadian rhythm might go undetected224,225. During sleep
deprivation, by contrast, a nocturnal increase in this
hormone parallels an increase of TSH225. Since the activity
of the hydroxymethylglutaryl-CoA reductase enzyme is
influenced by this thyroid hormone226,227, it is conceivable
that the activation of the pituitary–thyroid axis during sleep
deprivation exerts a modest influence on cholesterol
synthesis220.

Therefore, it is possible that the normal increases in levels
of TAG and cholesterol at night is accentuated by sleep loss
and abnormal nocturnal food intake, thus contributing to the
risk of CVD. Many studies show that physiological events
that control lipid metabolism are strongly influenced by the
sleep–wake cycle. Thus, it is reasonable to suppose that
interruption of the sleep–wake cycle, resulting in a
decreased sleep time, can impair lipid metabolism. This
impairment is demonstrated in studies that show that shift
workers, who sleep less than 5 h on their working days16,
have a greater frequency of disorders of lipid metabolism.

The role of sleep loss in fat metabolism is an exciting new
field of study, and is believed to result in an increased
incidence of dyslipidaemias. Elucidation of the mechanisms
involved might have profound implications for an under-
standing of these disorders. In the future, it will be necessary
to investigate whether these processes have an impact on

both susceptibility to dyslipidaemias and on susceptibility
to the development of the potentially debilitating co-
morbidities associated with disorders of fat metabolism.
Nevertheless, it might prove difficult to show unequivocally
that there is a causal relationship between sleeps of short
duration and problems with lipid metabolism.

Conclusion

We conclude that sleep affects the body’s nutritional control,
and that alterations to an individual’s sleep pattern might
stimulate food intake and so contribute to the onset of
disorders of glucose and fat metabolism. Sleep loss also
contributes to the onset of insulin resistance, type 2 diabetes
and obesity, as direct consequences of the influence of sleep
on glucose metabolism and of an alteration in feeding
behaviour generated by appetite dysregulation. It is also
important to acknowledge that the laboratory analyses do
not prove causality between sleeps of short sleep duration
and diabetes. However, the current experimental literature
involves only very small numbers of participants who are
nearly all men and young. Experimental evidence from
older individuals and from women of all ages is required to
confirm that sleep loss causes metabolic problems in the
population as a whole. The increase in blood lipids during
the night, associated with altered eating patterns, seems to
contribute to the onset of dyslipidaemias. Indeed, not only
adequate sleep time but also balanced eating habits are of
fundamental importance for the maintenance of health, and
both should be encouraged by health professionals. In
particular, individuals with chronic sleep loss, such as night
workers, deserve specific nutritional advice. Further studies
are required so that the detailed needs of these individuals
can be better understood.
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