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Flexible canopy flows are often encountered in natural scenarios, e.g. when crops sway in
the wind or when submerged kelp forests are agitated by marine currents. Here, we provide
a detailed characterisation of the turbulent flow developed above and between the flexible
filaments of a fully submerged dense canopy and we describe their dynamical response to
the turbulent forcing. We investigate a wide range of flexibilities, encompassing the case
in which the filaments are completely rigid and standing upright as well as that where
they are fully compliant to the flow and deflected in the streamwise direction. We are
thus able to isolate the effect of the canopy flexibility on the drag and on the inner–outer
flow interactions, as well as the two flapping regimes of the filaments already identified
for a single fibre. Furthermore, we offer a detailed description of the Reynolds stresses
throughout the wall-normal direction resorting to the Lumley triangle formalism, and we
show the multi-layer nature of turbulence inside and above the canopy. The relevance of
our investigation is thus twofold: the fundamental physical understanding developed here
paves the way towards the investigation of more complex and realistic scenarios, while we
also provide a thorough characterisation of the turbulent state that can prove useful in the
development of accurate turbulence models for RANS and LES.
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1. Introduction

Canopy flows often occur in nature, when a wall-bounded flow interacts with a multitude
of slender objects protruding from a supporting surface. In the atmospheric boundary
layer, various types of obstacles arranged in different patterns (e.g. trees in forests, plants
in cultivated fields, wind turbines in wind farms) are exposed to surface winds and
significantly alter its dynamics. As outlined by Belcher, Harman & Finnigan (2012),
forests play a fundamental role in promoting turbulence and enhancing mixing. They
also shade the surface of the Earth and favour the vertical transport of multiple species
through the lower layers of the atmosphere, affecting the surface ozone levels (Makar
et al. 2017). Noticeably, the complex updraft generated by the canopy promotes seeds
dispersal (Qin et al. 2022), thus regulating the distribution of vegetation. In water, marine
currents frequently interact with seagrass meadows (Mossa et al. 2017) and different
animal furs are associated to different swimming performances (Bushnell & Moore 1991).
Furthermore, from an anatomical perspective, mucus is transported by ciliated surfaces
in the bronchial epithelium (Loiseau et al. 2020), intestinal villi are responsible for the
absorption of nutrients in the body and cells or small invertebrates often employ cilia
to propel themselves (Dauptain, Favier & Bottaro 2008). The study of canopy flows is
therefore motivated by their ubiquity and by the number of nodal functions they absolve
to. While in this work we tackle the problem from a fundamental perspective, the way
to multiple engineering applications is being paved. For example, Wang et al. (2022b)
show how meta-surfaces covered in cilia can be employed for microfluidics manipulation,
while Zhu et al. (2022) consider the use of submerged canopies for the purpose of costal
protection, based on their ability to affect the movement of sediments (Nepf 2012b; Zhao
& Nepf 2021). As noted by Luhar, Rominger & Nepf (2008), dense meadows can promote
sediment retention, stabilising the bed and promoting their own persistence. Conversely,
a reduction in canopy density leads to increased flow and stress near the bed, which can
lead to further canopy deterioration. Unravelling the complex dynamics of the flow and
of the canopy elements can therefore not only offer relevant insight on multiple natural
phenomena, but also provide solid grounds for innovative engineering solutions.

The chaotic motion of air in and above plant canopies has been systematically
investigated and modelled from the second half of the 20th century. In their seminal review,
Raupach & Thom (1981) laid solid foundations for the study of turbulence and transport
in canopy flows, providing a first characterisation of those phenomena and reviewing the
most successful approaches for the prediction of the mean flow and turbulence intensity.
An exhaustive description of the mean flow features and a detailed characterisation of
the key turbulent quantities was later offered by Finnigan (2000). Finnigan (2000) also
introduced a phenomenological model for the sustainment of turbulence, reliant on the
inviscid instability of the shear layer generated by the drag discontinuity at the tip of
a dense submerged canopy. The relevance of such a shear layer was first observed by
Raupach, Finnigan & Brunei (1996), while its peculiar nature was successively highlighted
by Ghisalberti & Nepf (2004), who noted that it does not grow continuously downstream
as a free shear layer, but rather reaches a finite thickness set by the rate of momentum
exchange between the flow and the solid structures. Notwithstanding this noticeable
difference, it is yet passible of a Kelvin–Helmholtz-like instability that induces the
formation of elongated spanwise vortices (‘rollers’) controlling the exchange of mass and
momentum between the canopy and the outer flow (Nepf 2012a; Chowdhuri, Ghannam &
Banerjee 2022). The further instability of those rollers is held responsible for the formation
of secondary vortices (Finnigan, Shaw & Patton 2009), organised in trains of head-up
and head-down hairpins aligned with the flow, causing intense sweeps often observed to
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penetrate the canopy. The slow fluid drawn from inside the canopy in between the legs
of the hairpins, instead, gives rise to elongated regions of low streamwise velocity close
to the canopy tip. The rollers, hairpins and velocity streaks generated by the shear layer
instability dictate the structure of turbulence throughout the flow, as happens also in highly
permeable porous media (Manes, Poggi & Ridolfi 2011).

Alongside the theoretical approach, there has been a flourishing of models to predict
various quantities of interest based on experimental measurements. In particular, the
canopy drag coefficient is relevant in most engineering applications and exhibits a direct
dependence from the Reynolds and the Froude numbers, as demonstrated by Liu & Zeng
(2016), Mossa et al. (2021) and Rubol, Ling & Battiato (2018), who further investigated
its dependence from the canopy permeability. Additional models for other flow quantities
are summarised by Brunet (2020), who offers a physical overview and presents a historical
summary of the evolution of the field. Recently, Vieira, Allshouse & Mahadevan (2023)
have introduced a simplified model of the unidirectional flow over a canopy capable of
accounting for the shear layer instability above its tip, while Conde-Frias et al. (2023) have
developed an experimentally validated approach to predict the boundary layer thickness at
the seafloor based upon its negative correlation with the turbulent kinetic energy (TKE)
within the layer.

A radical distinction can be made between canopies constituted by practically rigid
elements and flexible ones. The study of the flow within an array of rigid pillars is in fact
a purely fluid-dynamical problem, while the flow over and between the flexible filaments
of a hairy surface is characterised by the complex interaction between the fluid and the
structure. Historically, experiments have been able to tackle both cases from the very
beginning of the field, while simulations have mainly focused on rigid canopies. The first
computations accounting for the fully coupled dynamics of a turbulent flow with an array
of flexible elements have only recently made their appearance due to their outstanding
computational cost (Tschisgale et al. 2021; He, Liu & Shen 2022; Wang et al. 2022a;
Löhrer & Fröhlich 2023; Monti, Olivieri & Rosti 2023).

In the case of rigid slender elements (either clamped or freely dispersed in a turbulent
flow), the most immediate effect is a modification of the classical energy cascade.
Olivieri et al. (2020) observed in homogeneous isotropic turbulence how the fibres remove
energy from the largest eddies and divert it towards finer ones via a ‘spectral short cut’
mechanism, first proposed by Finnigan (2000). Large-scale mixing is therefore depleted
in favour of the small-scale one. On top of this mechanism, the flow is modified by the
canopy according to the ‘tightness of its packing’ (i.e. the solidity, Luhar et al. 2008;
Monti et al. 2022; Nicholas et al. 2023), ranging from the sparse to the dense regime.
However, the solidity constitutes a non-exhaustive parameter for the characterisation
of a turbulent canopy flow, as it does not account for the orientation of the filaments
(which can significantly affect the resulting flow) and outer quantities would provide
a better alternative (Monti et al. 2022). Nevertheless, we stick to it for the time being
due to historical reasons. Sharma & García-Mayoral (2018) investigated the flow over a
sparse rigid canopy by means of direct numerical simulations (DNS). They noted that
a sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes
its rescaling to an intensity consistent with a lower friction velocity within the canopy:
an effect similar to that of k-type roughness. They also found evidence of the formation
of Kelvin–Helmholtz-like instabilities at the canopy tip. The large eddy simulations
performed by Monti, Omidyeganeh & Pinelli (2019) in the marginally dense regime
confirmed the existence of spanwise rollers generated by the shear layer at the canopy
tip and highlighted how those are modulated by outer streamwise vortices penetrating
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the canopy. The effects of the spacing between the elements and their height were
assessed by Monti et al. (2020) and Sharma & García-Mayoral (2020) for a dense canopy,
where drag sets the shape of the mean velocity profile and is held responsible for the
inviscid shear layer instability at the tip. The intense Kelvin–Helmholtz-like instability
also dominates within the canopy, projecting its footprint, while the outer flow resembles
those attained on top of rough walls and densely packed porous media, extensively
discussed in the literature (Jiménez 2004; Wood, He & Apte 2020). Remarkably,
notwithstanding the strong anisotropy of the medium, the experiments of Shnapp et al.
(2020) highlighted how short-time Lagrangian statistics remain quasi-homogeneous due
to the intense dissipation associated to the turbulent fluctuations. The last regime to be
tackled numerically and, arguably, the most challenging was the transitional one, where
physical characteristics unique to the sparse and dense scenarios coexist (Monti et al. 2020;
Nicholas, Omidyeganeh & Pinelli 2022).

The picture becomes more complex in the case of flexible slender elements, as their
structural dynamics needs to be accounted for, and a significant portion of the TKE
is generated by the ‘waving contribution’ originated from the correlation between the
hydrodynamic drag and the waving motion of the stems (He et al. 2022). Jin, Ji &
Chamorro (2016) laid the foundations for understanding the dynamical response of flexible
and slender elements forced by a turbulent flow. On top of that, Rosti et al. (2018a)
developed a phenomenological theory to describe the dynamics of free flexible fibres
in homogeneous isotropic turbulence and validated it numerically. They identified two
regimes of motion: one in which the fibres are slaved to the turbulent fluctuations of
the flow and one in which they exhibit their natural response; Olivieri, Mazzino & Rosti
(2021) later supported the result with a wider set of numerical simulations. We confirmed
the existence of these two regimes also in the case of a clamped flexible fibre in wall
turbulence (Foggi Rota et al. 2024), nevertheless noticing a significant difference in the
dominant oscillation frequency for the turbulence-dominated regime. In this case, in fact,
the flapping state of the fibre non-trivially relates to the largest scale of the flow and
not to the turbulent eddies of comparable size, as found by Olivieri et al. (2021). In the
case of a flexible canopy, the individual dynamics of the elements is altered (Fu et al.
2023) and a collective dynamics (honami/monami) emerges on top of that, as measured
experimentally by Py, De Langre & Moulia (2006) in the case of a crop field driven
by the wind. State-of-the-art DNS performed by Monti et al. (2023) shed light on the
topic, highlighting how such collective motion is decoupled from the structural natural
response of the filaments and independent from their rigidity, being driven by the turbulent
fluctuations of the flow only. Such causal dependence is coherent with the previous results
of the large eddy simulations from Tschisgale et al. (2021) and Wang et al. (2022a).

In this work we investigate the turbulent motion of the fluid and the dynamics of the
flexible filaments constituting a dense submerged canopy. We build on top of an extended
version of the DNS database generated by Monti et al. (2023), where each filament is
modelled individually by means of an immersed boundary method (IBM, first introduced
by Goldstein, Handler & Sirovich 1993) in the Lagrangian formulation described by Yu
(2005) and Huang, Shin & Sung (2007). Consistently with such an approach, the filaments
are therefore modelled as inextensible beams. We provide a detailed characterisation of the
flow above and within the canopy, as well as describing the interaction between the two and
comparing them to experimental measurements. We also assess the consequences on the
flow of a variation in the filament density and analyse the effects induced by their motion.
From a structural standpoint, we characterise the individual motion of the filaments in
the canopy and reconcile it with the picture we previously described for single isolated
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filaments (Foggi Rota et al. 2024). The remaining part of this paper is organised as follows.
In § 2 we describe the set-up of our simulations and the numerical methods employed. The
dynamics of the flow is characterised in § 3 where, after reporting relevant mean quantities
(§ 3.1) and comparing them to available experimental results (§ 3.2), we investigate the
energy spectra (§ 3.3) and the Lumley triangle (§ 3.4) throughout the whole domain. We
further explore the interaction between the inner and the outer flow by carrying out a
quadrant analysis (§ 3.5) at the canopy tip. The consequences on the flow of a variation in
the density of the filaments are also assessed (§ 3.6) and the effects of their flapping motion
are explored by ‘freezing’ them in their instantaneous deflected configuration (§ 3.7). In
§ 4 we characterise the structural dynamics of the filaments by analysing their individual
motion (§ 4.1) and describing their flapping state (§ 4.2). Finally, in § 5 we summarise the
main outcomes of our investigation and critically discuss their implications, with a few
remarks on future developments.

2. Set-up and methods

Our simulations are carried out in an open channel described by means of a right-handed
Cartesian reference frame with the x axis oriented along the streamwise direction and
the y axis perpendicular to the bottom wall. The computational domain is therefore a
box of volume Lx × Ly × Lz = 2πH × H × 1.5πH, where we enforce the no-slip and
no-penetration boundary conditions at the bottom face; no-penetration and stress-free
conditions are instead imposed at the top face in the same fashion of Calmet & Magnaudet
(2003), while the wall-parallel directions are treated as periodic. The stems of the flexible
filaments constituting the canopy are vertically clamped to the bottom wall and protrude
upward into the flow as in figure 1. To discretise the fluid flow, we adopt an Eulerian grid
made of Nx × Ny × Nz = 1152 × 384 × 864 points homogeneously distributed along the
periodic directions, while a non-homogeneous stretched distribution is adopted along the
y axis in order to correctly capture the sharp variation of the velocity at the canopy tip. In
particular, we employ a finer and locally uniform resolution in the region containing the
canopy, achieving a constant wall-normal spacing Δy/H = 0.002 for y/H ∈ [0.0, 0.3],
and smoothly transition to a wider wall-normal spacing above that, attaining Δy/H =
0.004 at y/H = 1.

We consider the motion of an incompressible Newtonian fluid, described by the mass
(2.1) and momentum (2.2) balances. Denoting with u(x, t) and p(x, t) the velocity and
pressure fields, function of the spatial coordinates x and time t, with ρf the volumetric
fluid density and with ν the kinematic viscosity, the governing equations are

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) = − 1
ρf

∇p + ν∇2u + f fib + f for, (2.2)

where two forcing terms have been introduced: f fib, better defined in the following, is the
force field acting on the fluid computed with a Lagrangian IBM (Peskin 2002; Huang et al.
2007; Banaei, Rosti & Brandt 2020; Olivieri et al. 2020) to account for the presence of
the filaments in the fluid, while f for is the homogeneous force field equally applied to all
grid points to attain at every time instant the desired flow rate in the streamwise direction.
Averaging the streamwise velocity over the domain volume V , we define the mean velocity
Û = (1/V)

∫∫∫
V u dV . In order to attain the desired value of the mean velocity Ub, here

set to unity for simplicity, the term f for is computed as f for = [(Ub − Û)/dt]êx, where dt

989 A11-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.481


G. Foggi Rota, A. Monti, S. Olivieri and M.E. Rosti

y
x

z

Figure 1. Representation of our computational domain, with the empty region occupied by the fluid and the
flexible filaments constituting the canopy coloured in shades of green, varying from dark to light with the
elevation. The mean flow is aligned with the x axis, while the y axis corresponds to the wall-normal direction.

is the time step of the simulation and êx is the versor denoting the streamwise direction.
This kind of forcing is customary in the DNS of turbulent channel flows, as discussed in
the literature (Hasegawa, Quadrio & Frohnapfel 2014). The value of the bulk Reynolds
number Reb = UbH/ν is thus constant and imposed by an appropriate choice of the
kinematic viscosity of the fluid ν. Here, we set Reb = 5000 in order to ensure a fully
developed turbulent flow above the canopy. The balance equations, along with the set of
boundary conditions highlighted above, constitute a well-posed problem that we tackle
numerically by means of our in-house solver, Fujin (https://groups.oist.jp/cffu/code). We
adopt second-order central finite differences to discretise the velocity and the pressure
on a staggered Cartesian grid, resorting to a second-order Adams–Bashforth scheme for
time stepping within a projection-correction approach (Kim & Moin 1985). The Poisson
equation is efficiently solved with a fast Fourier transform based algorithm (Dorr 1970)
and the whole code is parallelised using the message passing interface and the 2decomp
library.

The canopy is constituted by 15552 filaments of length h = 0.25H and diameter d ≈
2 × 10−2H, placed in a semi-random arrangement to avoid preferential flow channeling
effects. This value of d yields a local Reynolds number Red = Umcd/ν ≈ 10 based on
the mean velocity scale Umc below the canopy tip ( yout), Umc = (1/yout)

∫ yout
0 〈u〉 dy, with

〈u〉 the mean streamwise velocity profile. To arrange the filaments, we divide the bottom
wall of the channel into a grid of nx × nz = 144 × 108 rectangular tiles of area ΔS2 =
(Lx/nx) × (Lz/nz), and randomly place each of them within each tile sampling a uniform
distribution. This tiling is not the numerical grid, and it is employed only to achieve the
desired distribution of the filaments while maintaining control over the canopy parameters.
We thus ensure a nominal solidity value of λ = hd/ΔS2 ≈ 1.43, laying well within the
dense canopy regime (Monti et al. 2020). Different canopies are produced on varying
the Cauchy number, Ca = (ρf dh3U2

b)/(2γ ) (representing the ratio between the deforming
force exerted by the fluid and the elastic restoring force opposed by the filaments) and the
volume density ratio between the filaments and the fluid, ρs/ρf . Here, γ is the bending
rigidity of the filaments, given by the product of the bending modulus with the moment of
inertia of the filament cross-section. Our study considers seven canopies characterised by
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ρs/ρf = 1.0 + 1.46 × 10−3 and spanning Ca ∈ {0, 1, 10, 25, 50, 100, 500}. Nonetheless,
Ca = 500 is only referred to when investigating the dynamics of the filaments (§ 4), as
the dynamics of the fluid (§ 3) shows minimal changes compared with Ca = 100. For a
few specific purposes discussed in § 3.6, we also consider two additional canopies with a
different density ratio, ρs/ρf ∈ {1.0 + 1.46 × 10−1, 1.0 + 1.46 × 10−2} at Ca = 25.

The filaments are represented as mono-dimensional entities, discretised into a line of
Lagrangian points, that obey a generalisation of the Euler–Bernoulli beam model allowing
for finite deflections, but retaining the inextensibility constraint. In the rigid canopy case
(i.e. Ca = 0) each filament is made of nL = 81 Lagrangian points, attaining a spatial
resolution Δs = h/(nL − 1) comparable to the Eulerian grid spacing in the wall-normal
direction. In the flexible canopy cases, such spatial resolution would impose a too strict
constraint on the time step and we therefore reduce nL to 32: this proves acceptable as
the flexibility makes the filaments more compliant to the flow and the velocity difference
between the two phases is therefore reduced. Different discretisations were tested by Monti
et al. (2023) and Foggi Rota et al. (2024), without significant variations in the filament
dynamics for the parameters considered here. We use the same approach by Banaei et al.
(2020) to model the dynamics of flexible and inextensible filaments. It consists of an
extended version of the distributed-Lagrange-multiplier/fictitious-domain formulation of
the continuum equations introduced by Yu (2005). Denoting with X (s, t) the position of
a point on the neutral axis of a filament as a function of the curvilinear abscissa s and
time t, and introducing the linear density difference between the filament and the fluid
Δρ̃ = (ρs − ρf )πd2/4, its structural dynamics is described by

Δρ̃
∂2X
∂t2

= ∂

∂s

(
T

∂X
∂s

)
− γ

∂4X
∂s4 − F , (2.3)

∂X
∂s

· ∂X
∂s

= 1, (2.4)

where T is the tension enforcing the inextensibility and F is the force acting on the
filaments computed by the Lagrangian IBM to couple them with the fluid, as described
later. We complement (2.3) and (2.4) with an appropriate set of boundary conditions,
imposing X |s=0 = X0 along with ∂X/∂s|s=0 = (0, 1, 0) at the clamp and ∂3X/∂s3|s=h =
∂2X/∂s2|s=h = 0 along with T|s=h = 0 at the free end, and solve them following the
approach of Huang et al. (2007). Nevertheless, here, the bending term is treated implicitly
as in Banaei et al. (2020) to allow for a larger time step. The set of Lagrangian equations
introduced above, in the absence of any external forcing, is passible of a normal mode
analysis yielding the natural frequency fnat = (β1/(2πh2))

√
γ /ρ̃s, related to the natural

pulsation ω1 by fnat = ω1/(2π). Here ρ̃s is the filament density per unit length, while β1
is a coefficient approximately equal to 3.516, determined through the analysis. Writing
ρ̃s = ρsπd2/4, where ρs is the filament density per unit volume, there follows fnat ≈
(3.516/(dh2))

√
γ /(ρsπ3). As noticed by Foggi Rota et al. (2024), fnat plays a significant

role in determining the dynamical response of the filaments to the fluid. As in most cases,
the filaments are flexible and swaying in the flow, they might collide with the wall and
with other filaments. We have thus implemented filament-to-filament and filament-to-wall
collision models to prevent the stems from crossing each other or the wall while deforming
(Snook, Guazzelli & Butler 2012). Nevertheless, after the extensive testing of different
collision models and of their calibration parameters conducted in previous investigations
(Monti et al. 2023), the influence of the filament-to-filament collision term on both the
filament and the fluid dynamics was found to be very weak, whereas the filament-to-wall
interaction model turned out to be necessary only to correctly describe the dynamics of
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the most flexible filaments, at large values of Ca. We thus resort to an inelastic collision
model, applying a repulsive force to all the filament points approaching the wall within a
range of four grid points.

The coupling between the fluid and the structure is attained by spreading over the
Eulerian grid points the force distribution computed by means of the Lagrangian IBM,
ensuring the no-slip condition ∂X/∂t = u[X (s, t), t] at the Lagrangian points representing
the filaments. The intensity of the force F exerted by the fluid on the structure is
proportional to the difference among the velocity of the structure and that of the fluid
interpolated at the structure points, uIBM . We therefore write F = β(uIBM − ∂X/∂t),
where β is a properly tuned coefficient here set equal to 10. Finally, F is spread
to the nearby grid points in order to compute the back reaction on the fluid, f fib =∫
Γ

F IBM (s, t)δ(x − X (s, t)) ds, with Γ the support of the IBM. The interface between
the fluid and the filaments is therefore not sharply captured, but spread over the support of
the IBM through the action of a window function, which determines the diameter of the
filaments.

The ability of our numerical set-up and methods to correctly describe the dynamics
of a whole submerged canopy made of flexible filaments, without introducing spurious
effects due to the finite size of the domain or the grid, is extensively assessed in Monti
et al. (2023). The length of the domain along the homogeneous directions is sufficient
to contain the largest turbulent flow structures (Bailey & Stoll 2013). The vertical size
of the domain, instead, is most likely affecting the results. Our simulations, in fact, aim
at investigating a submerged canopy rather than a canopy exposed to a boundary layer,
for which a significantly higher domain would be needed. In the numerical simulation of
submerged canopies, instead, it is customary not to simulate the fluid interface far above
their tip, but rather to approximate it as a free-slip surface (Sharma & García-Mayoral
2018; Tschisgale et al. 2021; He et al. 2022; Wang et al. 2022a; Löhrer & Fröhlich 2023);
its distance from the bottom wall thus becomes a parameter of the simulations. In this
work, we follow such a practice.

Canopy flows have been investigated experimentally since the origins of the field,
and a broad range of measurements is now available (e.g. Gao, Shaw & Paw U 1989;
Okamoto & Nezu 2009; Nicolai et al. 2020). Nevertheless, the comparison to simulation
results is often hindered by the inevitable differences between numerical and experimental
set-ups, especially in the canopy arrangement and flow parameters. Experiments are
often performed at significantly higher Reynolds numbers than simulations, and they are
frequently characterised by the presence of secondary flows. Despite these difficulties, we
found that our set-up compares well to that adopted by Shimizu et al. (1992), where a
rigid canopy of height h = 0.65H and solidity λ = 0.41 is exposed to a turbulent channel
flow at Reb = 7070. Therefore, after purposely simulating the flow within and over a rigid
canopy matching the same parameters (further details in the supplementary information of
Monti et al. 2023), we contrast the computed mean flow profile and Reynolds shear stress
with their measurements in figure 2. This comparison confirms the ability of our code to
correctly describe the back reaction of the structure on the fluid.

3. Dynamics of the fluid

3.1. Mean flow quantities
To investigate the flow above and within the canopy for different values of Ca, we start
looking at the mean profiles of the velocity and of the Reynolds stresses, along with
relevant derived quantities. In the following, averaging in time and along the homogeneous

989 A11-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.481


Dynamics & FSI in turbulent flows over flexible canopies

1.0

0.8

0.6

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

0.01 0.02 0.03 0.0400.5 1.0 1.5

y/H

DNS

Shimizu et al. (1992)

–〈u′v′〉/U2
b〈u〉/Ub

(a) (b)

Figure 2. Mean streamwise velocity profile (a) and Reynolds shear stress (b) in and above a rigid canopy with
h = 0.65H and λ = 0.41, at Reb = 7070. Red stars denote the experimental measurements of Shimizu et al.
(1992), while black lines are the outcome of a DNS matching the experimental parameters, performed with our
code.
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Figure 3. Mean profiles of the streamwise velocity (a) for different values of Ca and associated relevant points
(inset and (b)). In (b) we show the position of the relevant points for different values of Ca, maintaining the
vertical scale unchanged with respect to that of (a).

directions is denoted with angle brackets, while fluctuations with respect to such a mean
are marked with an apostrophe. Our analysis is based on 100 flow fields for each value
of Ca, regularly collected over 50 bulk time units. The flow statistics do not show any
appreciable variation upon computation with half of the fields, thus confirming that they
are converged.

The mean profiles of the streamwise velocity u, shown in figure 3(a), exhibit two
distinct inflection points: an outer inflection point (yout, square symbol) generated by
the drag discontinuity at the average canopy tip position and an inner inflection point
(yin, triangle symbol) closer to the wall, where the inflected velocity profile connects to
the wall boundary layer. Below the outer inflection point the inner flow is reminiscent
of that attained in an anisotropic porous medium (Rosti, Brandt & Pinelli 2018b), while
immediately above that the outer flow is similar to a turbulent mixing layer (Raupach
et al. 1996). Yet, canopy flows can also be considered instances of obstructing substrates
for the assessment of outer-layer similarity (Chen & García-Mayoral 2023). Fitting a
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Figure 4. Plot (a) reports the first five computed points of the mean velocity profiles, made dimensionless upon
the friction velocity at the wall, uin

τ , against the wall distance. Plot (b), instead, reports the mean velocity profiles
made dimensionless upon the friction velocity at the virtual origin, uout

τ , against the wall distance shifted by yvo,
within the region where the scaling holds. In (b), for each case, we also report the logarithmic profile computed
with (3.1) as a dash-dotted grey line. The inner scaling yields good overlapping of the different profiles with a
quasi-linear trend over the first grid points off the wall while, with the outer scaling, the profiles collapse on
the analytical predictions. Finally, in (c) we show the exponential trend of the friction function Δu+

out appearing
in (3.1) with respect to the driving pressure gradient, dP/dx, and compare it with the numerical data of Monti
et al. (2022), who studied rigid canopies with different inclinations.

logarithmic profile to the mean velocity well above the canopy is in fact a convenient
numerical expedient to simplify its parametrisation for modelling purposes, even though it
does not satisfactorily represent the physical features of the flow. We therefore compute the
virtual origin of the outer flow, yvo, imposing the matching with a canonical logarithmic
profile and notice that, for all the cases of interest, it lays well between the two inflection
points (figure 3b), thus confirming that we are in a dense canopy regime (Monti et al.
2020, 2022). The canopy becomes more compliant to the flow as Ca increases, hence, the
mean position of its tip as well as all the other relevant points are monotonously shifted
downward, maintaining their relative order; the mean streamwise velocity at those points,
instead, exhibits a non-monotonous trend. At the canopy tip, in particular, it first undergoes
a slight increase due to the reduction of the filaments drag, later decreasing again as the
effect of the downward shift becomes dominant. The positions of all points reach a plateau
for high values of Ca, where the vertical stacking of the deflected filaments poses a lower
bound to the thickness of the inner flow region.

As expected, on scaling the velocity profile of the inner flow with the friction velocity
computed at the wall, uin

τ = √
τw/ρf = √

ν∂〈u〉/∂y|0, the typical trend 〈u〉/uin
τ = yuin

τ /ν

is recovered close to the bottom wall (figure 4a). Instead, on scaling the velocity
profile of the outer flow with the friction velocity computed at the virtual origin,
uout
τ = √

ν∂〈u〉/∂y|yvo − 〈u′v′〉|yvo , we confirm good agreement with a logarithmic profile
(figure 4b) of the form

〈u〉
uout
τ

= 1
κ

log
(

( y − yvo)uout
τ

ν

)
+ B − Δu+

out, (3.1)

where κ = 0.41 and B = 5.2, while Δu+
out denotes the friction function accounting for the

mean velocity shift in the outer flow due to the presence of the canopy (or wall roughness,
as in Jiménez 2004). As noted by Monti et al. (2022), to whom we compare our results,
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Figure 5. Fluctuations of the wall-normal (a) and spanwise (b) velocity components for different values of Ca.
The positions of the canopy tip (identified with the outer inflection point) are denoted by vertical dashed lines.
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Figure 6. Fluctuations of the streamwise velocity component (a) and shear stress balance (b) for different
values of Ca. In (a) the positions of the canopy tip (identified with the outer inflection point) are denoted by
vertical dashed lines. In (b) the total shear stress (black line) normalised by the wall shear stress is given by the
sum of the turbulent shear stress (continuous lines), the viscous shear stress (dash-dotted lines) and the canopy
drag (dashed lines), as described in the main text.

Δu+
out exhibits an exponential trend with the driving pressure gradient dP/dx (figure 4c),

once made dimensionless upon the height of the channel above the virtual origin. We
acknowledge a minor deviation from their data, that we impute to the different shape of
our filaments and to their movement. Differently from ours, in fact, the study of Monti
et al. (2022) only concerned rigid canopies: in particular, at a chosen value of the Reynolds
number (Reb = 6000, higher than ours), they varied the canopy solidity λ by changing the
inclination of the filaments.

The diagonal components of the Reynolds stress tensor (in figures 5 and 6a) increase
monotonously moving away from the wall in the canopy region, and peak at a position
variable with Ca. They therefore decrease towards the centre of the channel until the
no-penetration condition becomes relevant and damps the fluctuations of the wall-normal
velocity, enhancing those of the wall-parallel components because of continuity. All
the peaks move towards the wall as Ca increases and the filaments get more deflected
by the action of the fluid, but the effect appears to saturate for the highest values of
Ca. The fluctuations of the wall-normal and spanwise velocity components, shown in
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Figure 7. Decomposition of the driving streamwise pressure gradient dP/dx into the contributions of the
viscous and turbulent shear stresses along with the canopy drag, integrated across the wall-normal direction,
for different values of Ca.

figure 5, always reach their peak value above the canopy, highlighting the intense turbulent
activity caused by the unstable shear layer at the drag discontinuity. The maximum in
the fluctuations of the streamwise velocity (reported in figure 6a), instead, lays close to
the canopy tip for the lowest values of Ca and moves slightly above that for the highest
values. This picture is compatible with the existence of high and low streamwise velocity
regions at the canopy tip, induced by the overlying Kelvin–Helmholtz-like instability.
Those velocity structures alternatively deflect the filaments and penetrate the upper region
of the canopy; nevertheless, for the most flexible cases, the filaments are significantly bent
forward and, therefore, shield the inner flow, causing a slight shift up of those structures
with respect to the canopy tip. The streamwise mean momentum equation imposes

dτ/dy = dP/dx, (3.2)

where the total shear stress writes τ = ρν d〈u〉/dy − ρ〈u′v′〉 + Dc, where Dc is the canopy
drag. Denoting with τw the total shear stress at the wall, the sum of the three components
constituting τ is therefore constrained by τ( y) = τw(1 − y/H). Observing the separate
contributions to τ normalised by τw, in figure 6(b) we note that the viscous shear stress
(ρν d〈u〉/dy, plotted with dash-dotted lines) has two local maxima, one at the wall and one
at the canopy tip, while it is negligible elsewhere. Inside the canopy, the stress is dominated
by the drag contribution Dc (plotted with dashed lines), which vanishes when moving out
of it, giving way to the turbulent shear stress (−ρ〈u′v′〉, plotted with continuous lines),
which dominates the outer region as in conventional turbulent channel flows. We once
again notice how the transition from the inner to the outer regions occurs closer to the wall
for growing values of Ca due to the deflection of the filaments; nevertheless, the variation
of their flexibility affects also the intensity of the shear layer above them. The viscous
shear stress exhibits a sharp peak at the canopy tip for the lowest values of Ca, while for
the highest values, the peak is less pronounced and spans a wider vertical span. Indeed
in this case, the shear layer is less definite and penetrates more into the canopy due to the
filaments motion. Integrating (3.2) in the wall-normal direction, we note that the sum of the
different integral components of the shear stress decreases as Ca increases and plateaus for
the most flexible cases (as in figure 7), always matching the streamwise pressure gradient
needed to drive the flow at a constant value of Reb = 5000. The component coming from
the viscous shear remains small and practically constant across all the cases, while those
induced by the turbulent shear and by the canopy drag significantly decrease. We impute
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Figure 8. Canopy drag measurements. We show (a) the mean value of Cda from our simulations, compared
with that measured experimentally by Ghisalberti & Nepf (2006). We also report (b) the value of the canopy
drag, Cd , throughout our simulations.

the depletion of the former to a lower level of turbulent activity, associated to a weaker
shear layer, while the latter is mainly reduced by the compliant nature of the filaments and
the consequent reduction of the frontal canopy area.

3.2. Canopy drag
Here we focus on the measurement of the canopy drag coefficient, Cd. First, in close
analogy to Ghisalberti & Nepf (2006), we define

Cda( y) =

∂〈u′v′〉
∂y

∣∣∣∣
yout<y<H

− ∂〈u′v′〉
∂y

( y)

1
2
〈u〉2( y)

, (3.3)

where a is the frontal canopy area per unit volume, and the first term in the numerator
denotes the mean vertical gradient of the Reynolds’ shear stress above the canopy tip, yout.
We thus compute the mean value of Cda, denoted with angle brackets, between the inner
and the outer inflection points for different values of Ca. This approach circumvents the
complexity of the computation of a (Ghisalberti & Nepf 2006), but yields a dimensional
quantity that we thus make dimensionless upon multiplication with the channel height. The
outcome is compared with the experimental measurements of Ghisalberti & Nepf (2006)
in figure 8(a), highlighting a good correspondence between the two for the most flexible
cases considered in our investigation. The data appear to tend towards 〈Cda〉H ∼ Ca−1/4

at large values of Ca.
In order to decouple the value of Cd from a, we consider the integral form of the

streamwise momentum balance

− H
dP
dx

= τw +
∫ yout

0
Dc( y) dy, (3.4)

where the streamwise pressure gradient dP/dx equates the sum of the mean shear stress at
the wall, τw, and of the canopy drag, Dc( y), integrated across the canopy height. Thus, Cd
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can be computed through such balance, referring it to the frontal canopy area,

Cd = LxLz

HLz

∫ yout

0
Dc( y) dy

1
2
ρU2

b

= −Lx

H

H
dP
dx

+ τw

1
2
ρU2

b

. (3.5)

The outcome of this approach in our simulations is reported in figure 8(b). The value of
Cd in the rigid case is compatible with what is reported in the literature for canopies with
similar properties (Raupach & Thom 1981; Shimizu et al. 1992; Finnigan 2000; Ghisalberti
& Nepf 2006; Nepf 2012a), where Cd ≈ 0.5–1.5, and quickly decreases reducing the
rigidity of the filaments, reaching a plateau for Ca � 50. Overall, the drag measurements
reported here are in good agreement with the experimental measurements and shed light
on the trend of Cd with Ca.

3.3. Energy spectra
The amount of kinetic energy retained by the turbulent fluctuations of the flow is quantified
by the mean TKE, defined as K( y) = 0.5(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉). Nevertheless, the
space averaging operation cancels any information about the distribution of the kinetic
energy across the different scales of motion. To this purpose, we therefore resort to the
spatial spectrum of the TKE, E(kx, kz; y) = Fx(Fz(0.5(u′u′ + v′v′ + w′w′))), where F
denotes the Fourier transform operator across either of the homogeneous directions and
the overbar indicates averaging in time. Integration along the spanwise wavenumbers
kz = 2πi/Lz (with i ∈ N; i = 1, . . . , nz) yields the streamwise spectrum Ex(kx; y) as a
function of the streamwise wavenumber kx and the wall-normal coordinate; with a similar
procedure we also attain the spanwise spectrum Ez(kz; y). In figure 9(a,b) we inspect the
profiles of Ex and Ez, respectively, for different values of Ca at the inner inflection point,
y = yin, at the outer inflection point, y = ytip, and above the canopy, at y = H/2. We also
report the typical −5/3 slope for comparison. Within the canopy, both spectra exhibit a
non-monotonous behaviour characterised by a first peak at the wavenumber associated to
the channel height and a second, sharper one, associated to the mean separation of the
filaments. In between the two, the spectra approach a −5/3 slope when Ca increases. The
filaments absorb energy in the shear production range, close to the largest scales of motion,
and re-inject it in the flow through their wakes and their waving motion, in close agreement
to the spectral short cut process described by Finnigan (2000) and Olivieri et al. (2020).
A variation in the Ca is observed to affect both the spectral short cut and the amplitude
of the spectra. In fact, the spectral short cut is more intense in the case of rigid filaments,
where the spectra almost approach a plateau before their second peak, while it appears
less accentuated in the cases at higher Ca, consistent with the observations of Olivieri,
Cannon & Rosti (2022a). A more regular decay of the spectra is recovered moving up to the
drag discontinuity at the canopy tip. In particular, while Ex decreases monotonously from
the largest scales of motion, Ez peaks at kz ∼ O(10): this behaviour, which is also found
in the outer flow at y = H/2, appears compatible with the presence of large structures
dominating the outer flow above the canopy (Monti et al. 2023). Conventional full spectra
are observed in the outer flow, denoting the persistence of a fully developed turbulent state
there. Interestingly, the amplitude of the spectra within the canopy appears to increase
with Ca, while an opposite trend is observed outside. An increase in the flexibility of the
filaments is in fact associated to more intense velocity fluctuations at the inner inflection
point, located deep in the canopy and marginally affected from the outer flow turbulence,
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Figure 9. (a) Streamwise and (b) spanwise one-dimensional spectra of the TKE, integrated along the
remaining homogeneous direction, for different values of Ca. The spectra are sampled (left) at the inner
inflection point, (centre) at the canopy tip and (right) in the outer flow.

due to the increased motion of the filaments. At and above the canopy tip, instead, more
flexible filaments are associated to the generation of a weaker shear layer with respect to
the rigid case due to the lower drag discontinuity at their tip.

3.4. Lumley triangle
The DNS of turbulent canopy flows is a challenging task that might provide an excessive
level of detail for most engineering applications, where an accurate model of the principal
phenomena governing the fluid motion can instead prove sufficient. Turbulence models
often rely on a detailed description of the Reynolds stress anisotropy tensor b, which
we therefore thoroughly characterise in this section resorting to the Lumley triangle
formalism. As outlined by Pope (2000), the turbulent stress state can be described with
only two scalar variables, ξ and η, with the latter quantifying the anisotropy of the
stress state. Adopting the index notation and implying Einstein’s summation over repeated
indices (i, j ∈ N; i, j = 1, 2, 3) we can write

bij =
〈u′

iu
′
j〉

〈u′
ku′

k〉
− 1

3
δij, (3.6)

where δij represents the second-order tensor identity. Therefore, ξ and η are defined as

6η2 = bijbji, 6ξ3 = bijbjkbki. (3.7a,b)
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Figure 10. Characterisation of the turbulence state (a) inside and (b) outside the canopy for different values of
Ca, according to the Lumley triangle formalism. Data for the reference open channel case are reported across
the whole channel height in both panels and relevant points within the canopy are denoted with distinctive
symbols. In the two main plots, each dot corresponds to a grid point along the wall-normal direction, with the
first one close to the wall coloured in blue and the last one at the centreline coloured in grey; note how the first
grid point of the open channel lays in the right half of the triangle, while those of all the canopy cases lay in
the left one. The smaller plots at the bottom report the trends of ξ and η (a) inside and (b) outside the canopy,
scaled in the viscous units of the inner and outer flow introduced in § 3.1, respectively.

The so-called Lumley triangle is attained delimiting in the ξ–η plane the set of
realisable states of the Reynolds stress tensor, hence, those associated to real and positive
eigenvalues.

To set a starting reference, we first report in all panels of figure 10 the states attained at
each wall-normal grid point of a turbulent open channel flow simulation carried out in the
same set-up detailed in § 2 at Reb = 5000, without the filaments. The first grid point close
to the wall is marked in blue, while the one at the centreline is coloured in grey. Turbulence
at the wall is two component (2C) due to the no-penetration condition and the anisotropy
peaks moving upward, at about yuin

τ /ν ≈ 7. An axisymmetric state with ξ > 0 is achieved
towards the log layer (the Reynolds stress ellipsoid therefore resembles a prolate spheroid);
such a condition is nevertheless lost approaching the centreline, in contrast to what is
observed for a full channel, as the no-penetration condition forces again a 2C state, which
this time is approached for ξ < 0 (the Reynolds stress ellipsoid therefore resembles an
oblate spheroid). We impute the difference in the sign of ξ attained at the wall and at the
free-slip surface to the effect of the no-slip condition. Next, we plot the trends of ξ and η

for the different canopy cases: (a) refers to the flow within the canopy and the evolution of
the variables is therefore truncated at the canopy tip, highlighting the relevant points with
distinctive symbols; (b), instead, refers to the outer flow and reports the evolution of the
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Dynamics & FSI in turbulent flows over flexible canopies

variables from the canopy tip upward. Since any information concerning the wall-normal
coordinate is lost in the triangles, we complement them with two additional panels each,
showing the trends of ξ and η with y scaled in inner (a) and outer (b) viscous units, as
introduced in § 3.1. As a matter of consistency, for the open channel case, we set uin

τ =
uout
τ = √

τw/ρf and yvo = 0.
Turbulence close to the bottom of the canopy lays in a 2C axisymmetric state with

ξ < 0 (opposite to the 2C state at ξ > 0 found in the open channel), arguably, due to
the shielding effect of the filaments on the wall and the consequent attenuation of sweep
events (u′ > 0, v′ < 0) reaching the bottom layer. The anisotropy reduces moving upward
and reaches a minimum between the inner inflection point and the virtual origin, where
turbulence becomes almost isotropic for the most rigid canopy cases. At the same time,
starting close to the inner inflection point, ξ begins to grow more rapidly and shifts to
positive values, leading to an axisymmetric state with ξ > 0 characteristic of both the
virtual origin and the outer inflection point, where η has a local maximum. Moving out of
the canopy, above the shear layer at the outer inflection point, the anisotropy is depleted
and approaches an almost linear trend that is maintained far into the outer flow for all
cases. For the most rigid canopies, ξ settles on a constant value and the stress state is
reminiscent of that attained in the log-law region of the open channel. Nevertheless, for
the most flexible canopies, ξ exhibits an irregular decrease and soon switches sign again.
Finally, approaching the free-slip wall, a 2C axisymmetric state with ξ < 0 is forced by
the boundary condition; ξ therefore undergoes a sudden fall, as η sharply increases.

Our analysis supports a multi-layer approach to the modelling of canopy flow turbulence
like in Poggi et al. (2004), based on the collection of different turbulence states along
the wall-normal direction. Turbulence in the inner flow exhibits a peculiar structure close
to the bottom wall, tending towards a more isotropic condition immediately above and
further transitioning smoothly towards a state similar to that attained in the log-law
region of turbulent wall flows. This picture is also supported by the visualisations of the
instantaneous, local anisotropy of the flow reported in the Appendix. The profiles of ξ

and η in figure 10 show a reasonable collapse in both the most rigid (Ca = 0, 1, 10) and
most flexible cases (Ca = 50, 100), once scaled in inner viscous units, with the case at
Ca = 25 laying in between the two. Turbulence immediately above the canopy is more
isotropic than over the no-slip wall of the open channel (η is smaller), consistent with
the observations of Kuwata & Suga (2016) for an isotropic porous medium. Instead, the
portion of the outer flow from the log-law region up to where the upper free-slip wall is
felt appears analogous to a turbulent wall flow, thus suggesting outer similarity arguments.
There, the anisotropy settles on an almost linear trend common to all Ca.

3.5. Inner/outer flow interaction
Multiple authors have proposed layered descriptions of canopy flows, identifying regions
with specific dynamical properties while moving along the wall-normal direction. Despite
the differences between the various approaches proposed (Belcher, Jerram & Hunt 2003;
Poggi et al. 2004; Okamoto & Nezu 2009) there is consensus in separating the flow in the
canopy from that outside, and in isolating the thin shear layer region at the canopy tip.
In the previous subsection we characterised the inner and the outer flow separately; here,
instead, we aim at elucidating how they interact with each other. As extensively discussed
in the literature, the flows over plant canopies (Finnigan 2000) along with those above
permeable (Breugem & Boersma 2005) and elastic (Rosti & Brandt 2017) walls are often
characterised by the presence of large-scale vortical structures elongated in the spanwise
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(a) (b) (c)

(d ) (e) ( f )

Figure 11. Instantaneous sweep and ejection events in a rigid (a–c) and a flexible (d–f ) canopy flow with
Ca = 100, at y = H/2 (a,d), at the canopy tip (b,e) and at the virtual origin (c, f ). The flow is sampled on
wall-parallel planes with the mean velocity aligned to the vertical direction, going from bottom to top. Regions
where the events are occurring are delimited with black lines, while their magnitude is quantified as |uw|/U2

b
and visualised with a linear colourmap ranging from white to orange (ejections) or violet (sweeps) in [0,0.4].

direction (rollers), generated by a Kelvin–Helmholtz-like instability. We provide evidence
of the presence of these structures in our set-up in the Appendix. These structures are
likely to dominate the momentum exchange between the inner and the outer flow, but
they are not the only process active close to the shear layer: also high/low-speed streaks
(Monti et al. 2023) and quasi-streamwise vortices might affect the interaction. The flow
dynamics close to the canopy tip is in fact a highly non-trivial phenomenon, which can not
be exhaustively described only accounting for the presence of the rollers. Furthermore, as
noted by Nicholas et al. (2023), drag model-based simulations provide reasonable results
in capturing the flow behaviour near the canopy, but they fall short in providing a detailed
characterisation of the flow within the canopy layer and at the interface with the outer flow.
A better understanding is therefore crucial for the development of more accurate models.

Thus, in figure 11 we observe the sweep (u′ > 0, v′ < 0) and ejection (u′ < 0, v′ > 0)
events taking place at three locations distinctive of the three regions mentioned above:
at y = H/2, at the canopy tip, corresponding to the outer inflection point yout and at
the virtual origin yvo. (The continuous evolution of sweeps and ejections along the
wall-normal direction can be found in Poggi et al. (2004), for a rigid canopy.) We consider
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Figure 12. Isolines of the J-PDF (normalised to a unitary integral over the domain) associated to the
streamwise and wall-normal velocity fluctuations at the mean position of the canopy tip, for different values of
Ca. Levels are evenly distributed between 0.4 and 6 with 0.4 increments, while the locations of the peaks are
denoted by black dots.

the rigid canopy case (a–c) as well as a flexible one (Ca = 100, (d–f )). The most intense
sweeps and ejections occur at the canopy tip (b,e), while they attenuate and become more
coherent moving in the outer flow (a,d). Consistent with the observations of Gao et al.
(1989), sweep and ejections are of about equal strength at approximately twice the canopy
height. At the virtual origin (c, f ), instead, only the most intense sweep events are able to
penetrate and they occupy small, well-defined regions; ejections there are less frequent.
Overall, the turbulent state is more strongly driven in the rigid canopy case, where it
is characterised by more coherent events compared with the flexible one. Sweep events
reach the virtual origin of the flexible canopy flow more frequently, but with diminished
intensity.

In order to provide a more quantitative description of the momentum transfer between
the inner and outer flows, we compute the joint probability density function (J-PDF) of the
streamwise and wall-normal velocity fluctuations at the canopy tip for different values of
Ca. As visible in figure 12, the peaks always lay in the second quadrant (u′ < 0, v′ > 0)
denoting the dominance of ejections over sweeps, as well documented in the literature
(Gao et al. 1989; Finnigan 2000). The downward motion of high-speed fluid is mitigated
by the presence of the canopy, which instead opposes little resistance to the uplift of
low-speed fluid from its interior. Such observation is consistent with the experiment of
Chowdhuri et al. (2022), who noted that long-lasting ejection events are more relevant
than short-lived sweep events close to the canopy tip. Furthermore, the shape of the J-PDFs
closely resembles that reported by Manes et al. (2011) in the case of a highly permeable
porous medium. Notwithstanding this similarity, our J-PDFs differ from one another due
to the effect of canopy flexibility. In the most rigid cases the J-PDFs elongate in the fourth
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quadrant (u′ > 0, v′ < 0), remarking the occurrence of rare and intense sweep events that
are attenuated increasing the flexibility. In the most flexible cases, in fact, the filaments
are deflected by the mean flow and shield the inner region of the canopy from downward
interactions. Furthermore, at Ca = 0 and Ca = 1, the J-PDFs exhibit a secondary peak in
the third quadrant (u′ < 0, v′ < 0) associated with the deflection of the streamlines around
the filament tip. As seen in Monti et al. (2020) and in figure 16 of Nicholas et al. (2023),
immediately after the tip the flow decelerates and plunges.

Our analysis appears to support a scenario where turbulence inside the canopy is
sustained by intense events induced by the outer flow. Nevertheless, while the sweeps are
hindered by the presence of the filaments, the canopy opposes little resistance to ejections.
The filaments, in fact, regulate the vertical exchange of streamwise momentum allowing
for the transpiration of the canopy and shielding the inner flow from all but the most
intense downward interactions (likely associated to the secondary instability of the rollers,
Nepf 2012a). Such intense sweeps induce a significant local deflection of the filaments
and a large-amplitude flapping motion. Turbulence inside the canopy is therefore driven
by frequent ejections and rare intense sweep events (Nepf 2012a), along with the flapping
motion of the filaments in the flexible cases.

3.6. Filament density variation
In order to investigate the effects of a variation in the inertial properties of the filaments,
we consider two additional values of the density ratio {1.0 + 1.46 × 10−2, 1.0 + 1.46 ×
10−1} starting from the case at Ca = 25 and ρs/ρf = 1.0 + 1.46 × 10−3.

The first macroscopic effect of an increase in the density of the filaments is their
reduced compliance to the flow and the consequent upshift of the canopy tip. A taller
canopy is associated to a higher blockage effect: the streamwise velocity profiles close to
the bottom wall are therefore depleted (figure 13a), while higher velocities are attained
far above the canopy tip due to the imposition of a constant flow rate. The positions of
the inner inflection point and of the virtual origin remain essentially unchanged (inset
of figure 13a), while the upward shift of the canopy tip is associated to an increase
in the mean streamwise velocity there. Moving to the shear stress balance reported in
figure 13(b), we observe how the peak in the viscous shear stress becomes more definite in
the case of denser filaments, denoting the presence of a sharp shear layer above their tip.
Nevertheless, their limited flapping motion yields less intense turbulent fluctuations there.
Equivalently, the shear layer is blurred for lower density ratios and the filaments undergo
a more pronounced motion, responsible for the higher Reynolds shear stress. As the most
significant effects of a variation in the filament density are appreciated at the canopy tip,
we are motivated to better investigate the events taking place there observing the J-PDFs of
the streamwise and wall-normal velocity fluctuations reported in figure 14. While a clear
peak is always observed in correspondence of ejection events, sweep events penetrating the
canopy become more frequent for higher density ratios due to the diminished shielding
of the inner flow exerted by the filaments. The J-PDFs therefore elongate in the fourth
quadrant, as the ejection peak becomes less pronounced. A deviation towards negative
values of u′ close to v′ = 0 can also be appreciated, due to the augmented inertia of the
filaments and the consequently increased intensity of impact interactions with high-speed
fluid.

For the dynamics of the fluid considered so far, an increase in the density of the
filaments yields effects similar to those of an increase in their rigidity from one of the
most flexible cases. Such effects can be appreciated comparing the case with lowest
density ratio (belonging to the bulk of our investigation) to the others. Nevertheless, the
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Figure 13. (a) Mean profiles of the streamwise velocity for different values of ρs/ρf at Ca = 25 and associated
relevant points (inset). In (b) the total shear stress (black line) for the same cases, normalised by the wall shear
stress, is given by the sum of the turbulent shear stress (continuous lines), the viscous shear stress (dash-dotted
lines) and the canopy drag (dashed lines).
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Figure 14. Isolines of the u′/v′ J-PDF at the canopy tip for different values of ρs/ρf at Ca = 25. Levels are
distributed between 0.4 and 6 with 0.4 increments, while peaks are denoted by black dots.

differences between the two cases at higher ρs/ρf are marginal and denote the attainment
of a saturation for ρs/ρf − 1 = O(10−1), from which most of our investigation remains far
from.

3.7. The effect of the filaments’ flexibility
In a flexible canopy the motion of the filaments is tightly coupled to the large-scale
coherent fluctuations of the turbulent flow (Monti et al. 2023); in turn, the flow is
affected by the flapping motion of the filaments along with their wakes at significantly
smaller scales, due to the spectral short cut mechanism highlighted in § 3.3. To assess
the consequences of this complex fluid–structure interaction, we inhibit it, by ‘freezing’
the flexible canopy in one of its instantaneous configurations, and we compare the flow
attained above such a peculiar rigid canopy to the flow developed above its flexible
counterpart. We repeat the comparison for all the non-zero values of Ca in this study.
The independence of our observations from the specific canopy configuration considered
is assessed comparing the pressure gradient needed to impose the same flow rate above two
different frozen canopies originated from the same simulation at Ca = 100: no significant
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Figure 15. Different contributions to the shear stress balance, integrated across the wall-normal direction,
for the frozen canopy cases at different initial values of Ca. Results for the corresponding flexible cases are
reported, for reference, as thinner bars with a red hatched fill.
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Figure 16. Shearing component of the Reynolds stress tensor for different values of Ca. Data from the frozen
canopy cases are denoted with continuous lines and data from the corresponding flexible cases are shown with
dashed lines.

variation is observed between the two, thus confirming the adequacy of our numerical test.
In particular, the canopy proves large enough to accommodate multiple configurations of
the filaments in spite of their large-scale coherent motion and, therefore, retains almost
constant space-averaged characteristics across time.

The first macroscopic effect of freezing the flexible canopy in its instantaneous
configuration, despite the increased average velocity difference between the filaments and
the fluid, is a reduction of its total drag (which nevertheless remains higher then in an
open channel at Reb = 5000 without the canopy). As visible in figure 15, the driving
pressure gradient dP/dx is reduced with respect to all the flexible canopy cases, reported
for reference as thinner vertical bars highlighted with a red hatched fill. The viscous
shear contribution remains small and constant, while the canopy drag is slightly depleted.
Nevertheless, the most significant reduction is undergone by the turbulent shear, which is
therefore almost completely responsible for the drag reduction effect. Indeed, the depletion
of the driving pressure gradient is accompanied by a reduction of all the components in
the Reynolds stress tensor across the whole half-channel height. Such an effect is shown
for the shearing contribution only in figure 16, where data from the frozen canopy cases
are denoted with continuous lines and data from the flexible cases are shown with dashed
lines. No significant variation can be appreciated in the location of the maxima of 〈u′v′〉
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Figure 17. Isolines of the u′/v′ J-PDF at the tip of the frozen canopies for different initial values of Ca. Levels
are distributed between 0.4 and 6 with 0.8 increments, while peaks are denoted by black dots. The same isolines
from the corresponding flexible cases are reported, for reference, as dashed red lines.

between the flexible and frozen canopy cases, suggesting that the position of the shear
layer above the canopy remains essentially unchanged. To clarify how the nature of the
turbulent fluctuations relates to the (now prevented) motion of the filaments, we once again
observe the J-PDFs of the streamwise and wall-normal velocity fluctuations at the canopy
tip. In figure 17 the same levels are shown for both the frozen and flexible canopy cases,
respectively denoted with red dashed lines and black continuous lines, for different values
of Ca. The deviation from the flexible cases is understandably enhanced increasing the
initial Ca, as we compare canopies of increasing flexibility to rigid ones. For the frozen
cases, intense events of the wall-normal velocity become less relevant in both the positive
and negative quadrants, leading to sharper peaks in the second quadrant (u′ > 0, v′ < 0).
Intense sweep and ejection events are therefore diminished: the frozen canopy behaves
as a less permeable porous medium compared with the flexible one, thus justifying its
decreased drag (Manes et al. 2009).

The drag reduction observed freezing a flexible canopy in its instantaneous configuration
can therefore be imputed to an overall reduction of the turbulent activity with respect
to the flexible case. We identify two phenomena contributing to such an effect: first,
upon freezing the filaments, no more energy is pumped into the small-scale turbulent
fluctuations of the flow by their flapping motion. This is consistent with the maximum
drag reduction being attained in the intermediate regime (Ca = 25 ∼ 50), where the
large-amplitude flapping of the filaments is most regular. As further discussed in the
following section, in fact, at intermediate values of Ca the natural response of the filaments
resonates with a characteristic frequency of the turbulent forcing. Second, the frozen
canopies are more effective then the flexible ones at preventing intense vertical interactions
between the inner and outer flows, thus yielding a weakly driven turbulent state within the
canopy and depleting the turbulent fluctuations close to the shear layer.
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Figure 18. (a) Lagrangian velocity of the filament tips in the spanwise direction. We report the signal from one
selected filament per value of Ca over ten bulk time units and (b) the energy spectrum of the signal, ensemble
averaged over all the filaments at a given Ca. The colour scale is the same between the two panels.

4. Dynamics of the filaments

4.1. Characterisation of motion
Multiple quantities can be observed in order to characterise the motion of the flexible
filaments constituting the canopy. Here, we focus on the spanwise velocity of the
Lagrangian points at the tip of the filaments: we prefer the measurement of a velocity
to that of a displacement since it is more directly related to the turbulent fluctuations
of the flow, and we favour the spanwise direction as it is the one less affected by the
constraints of the problem. The streamwise and vertical dynamics of the filaments are the
most influenced by the constraints, i.e. the inextensibility and the presence of the wall. We
therefore collect the Lagrangian velocity signal in the spanwise direction at the tip of all
the filaments throughout all the values of Ca considered in this study, and highlight its
features both in the time and frequency domains. For the purpose of visualisation, we also
choose one canopy filament per value of Ca and show in figure 18(a) the velocity signal
over ten bulk time units extracted after the attainment of a fully developed flow state. Here
we also discuss the results of the simulation at Ca = 500 to encompass the case in which
the filaments are fully compliant to the flow.

We immediately observe that the amplitude of the fluctuations increases with the
flexibility of the filaments up to Ca = 25 ∼ 50, where it appears to saturate. Furthermore,
the small-amplitude fluctuations of the most rigid case (Ca = 1) are characterised by a
nearly sinusoidal shape, modulated in amplitude by slower dynamics. Such a behaviour
contrasts with the motion of the most flexible filaments (Ca = 100 ∼ 500), which instead
exhibit fluctuations with a less definite shape and period. In these cases it is also possible
to appreciate abrupt and fast small-scale fluctuations on top of the slower dynamics: those
arise from the collisions of the filament with the wall, and indeed are not observed for the
lowest values of Ca as the filament never gets sufficiently deflected. In between these two
behaviours (Ca = 50), the large-amplitude fluctuations are almost sinusoidal in shape and
exhibit a more definite period; they therefore appear compatible with a resonance between
the natural structural response of the filaments (responsible for the nearly sinusoidal
oscillations of the most rigid cases) and the turbulent fluctuations of the flow (dominating
the motion of the filaments in the most flexible cases).
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To confirm the picture above, we investigate the energy spectrum of the signal,
Etip

z = 1
2F(wtip)F∗(wtip), where F is the temporal Fourier’s transform operator, ∗ is

the conjugate of an arbitrary complex number and the double overbar denotes ensemble
averaging on all the filaments of each case. After computing Etip

z over a sufficiently
long-time span cleaned of any initial transient, we report it in figure 18(b) for the different
values of Ca considered. We also mark with vertical dashed lines the natural frequencies
associated to the first structural mode of the different filaments, fnat, computed as described
in § 2. For the lowest values of Ca (1 to 50), the spectrum peaks in correspondence of
the natural frequency (and higher harmonics), thus confirming that the structural natural
response dominates the dynamics of the most rigid filaments. The value of fnat decreases
with γ , hence, it gets shifted towards the left for increasing values of Ca. The peak of the
spectrum also obeys this shift in frequency up to Ca = 50, while beyond that its position
does not to change significantly with the Ca. Such behaviour suggests that the most flexible
filaments adjust to a motion no more dictated by their structural properties, but presumably
compliant to the turbulent fluctuations of the flow. The transition between the two distinct
regimes of motion occurs at Ca ≈ 50, and thus, we justify the large amplitude nearly
sinusoidal oscillations observed in that case with the resonance between the first structural
mode of the filaments and a characteristic frequency of the turbulent forcing to which they
are exposed.

The identification of two distinct regimes of motion is not unexpected: previous
investigations addressing the motion of flexible fibres in homogeneous isotropic turbulence
(Rosti et al. 2018a, 2020; Olivieri, Mazzino & Rosti 2022b) highlighted the existence of
a structure-dominated and a turbulence-dominated regime, partially similar to what was
found when studying vortex induced vibrations (Bearman 1984). We recently characterised
numerically the motion of a flexible fibre clamped in wall turbulence over a wide range
of structural parameters (Foggi Rota et al. 2024), also observing the emergence of the
two regimes discussed above. Recently, Fu et al. (2023) experimentally investigated
the individual motion of an isolated flexible plant model and how that changes when
multiple plants are arranged in a canopy, while Monti et al. (2023) studied the motion
of the filaments in a flexible canopy, mostly to characterise their collective dynamics
(honami/monami). To reconcile the different insights offered by all these works, in the
following section we further describe the flapping state of the individual filaments and
better contextualise our observations.

4.2. The flapping state
To better investigate the different dynamical regimes of the filaments, we compute
their dominant flapping frequency along the spanwise direction, f flap

z , i.e. the peak
location of the spectra reported in figure 18(b), and plot it against the natural
frequency associated to the corresponding value of Ca, i.e. with reference to § 2,

fnat ≈ (3.516/dh2)

√
ρf dh3U2

b/2Caρsπ3 ≈ 0.45(Ub/h)
√

(ρf /ρs)(h/d)(1/Ca). Since for
the highest values of Ca the position of the spectral peak does not appear to undergo
any significant change with the structural parameters of the filaments, we denote it as fturb
(i.e. the characteristic flapping frequency of the filaments in the turbulence-dominated
regime) and employ it to adimensionalise both f flap

z and fturb. The outcome is reported in
figure 19(a), where flapping frequencies close to the natural one lay on the dashed-dotted
line with unitary slope, f flap

z /fturb = fnat/fturb, while those close to the chosen value of fturb
approach the dashed horizontal asymptote. We thus confirm that the most rigid filaments
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Figure 19. Flapping states of the filaments for different values of Ca, hence fnat/fturb. We first show (a) the
dominant frequency of oscillation along the spanwise direction, f flap

z , extracted as the peak location of the
spectra in figure 18. Squares denote data from the cases at different density ratios. (b) We also report the trends
of the elastic (Γs) and kinetic (Ks) energy of the filaments per unit length, averaged over time and over all the
filaments. The error bars are computed carrying out the same measurement on the time signals truncated to
their first half, and fall within the markers size for most points.

exhibit their natural response, while the most flexible ones deviate from it and approach
f flap
z ≈ fturb = 0.5Ub/H. Such frequency, independent from the structural characteristics

of the filaments, is consistent with the outcome of our previous investigation (Foggi
Rota et al. 2024) focused on the flapping states of an isolated flexible fibre clamped in
wall turbulence. Also in that case indeed, we identified a turbulence-dominated regime
for the highest values of Ca where the fibre is compliant to the flow and its motion is
characterised by a slow flapping with a period comparable to the bulk time scale of the
flow. Furthermore, despite the absence of a physical justification for f flap

z ≈ 0.5Ub/H, we
observe that its occurrence in both the motion of an isolated flexible fibre in a full-channel
flow and in the motion of the canopy filaments in the half-channel considered here supports
the reproducibility and generality of the result.

In order to assess the effect of an increase in the structural density of the filaments on
their dynamics, we also report in the map of figure 19(a), the results of the cases at ρs/ρf =
{1 + 1.46 × 10−2, 1 + 1.46 × 10−1}, respectively associated to a higher and a lower value
of the natural frequency. Differently from what was found in our previous investigation of
a single filament (Foggi Rota et al. 2024), here an increase in ρs/ρf prevents the filaments
from flapping at fturb and they thus exhibit their natural response. This difference originates
from the fact that denser filaments yield a stronger obstruction of the mean flow in the case
of a canopy (as elucidated in § 3.6), and consequently get less deflected and maintain an
almost upright configuration, swaying at fnat. This effect is lost in the case of an isolated
fibre, as the back reaction on the mean flow is negligible; in this isolated case the fibre is
less shielded and consequently gets more deflected by the flow, swaying with it.

Interestingly, also the experimental investigation of Fu et al. (2023) addresses the
dynamical response of a synthetic plant submerged in a turbulent flow, comparing the
isolated case to the one in which the plant is part of a vegetation patch (i.e. a canopy).
There, a simplified plant model constituted by a series of five wooden buoyant pellets
connected by a fine rope is exposed to a turbulent channel flow at different Reynolds
numbers, thus focusing on a different scenario from that explored here. The synthetic plant
used in the experiments, in fact, appears hinged to the bottom wall rather than clamped, and
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it does not have homogeneous structural properties like our filaments. Consequently, while
the motion of our filaments is dominated by a single dynamics even (and particularly) in
the highest range of f flap

z , the plant of Fu et al. (2023) alternates phases of swaying at a
lower frequency synchronous mode to phases at a higher frequency asynchronous one,
both of them laying far above the range of f flap

z we considered here.
The effect of the clamp on the dynamics of the filaments is further understood observing

the variation of their elastic energy with Ca, while their motion is better described in terms
of kinetic energy. To those ends, we therefore consider the weak form of (2.3) and (2.4),
integrated over a time span t̃ and over the length of the filaments,∫

t̃

∫
h

[
Δρ̃

∂X
∂t

· ∂X
∂t

+ γ
∂2X
∂s2 · ∂2X

∂s2 − T + F · X
]

ds dt = 0, (4.1)

which can be interpreted as a balance equation for the structural energy under the
assumption of a beam configuration X compatible with the constraints. In particular,

Γs = 1
nxnz

1
t̃

1
h

∑
nxnz

∫
t̃

∫
h
γ

∂2X
∂s2 · ∂2X

∂s2 ds dt (4.2)

represents the structural elastic energy per unit length, averaged over time and over all the
filaments, while

Ks = 1
nxnz

1
t̃

1
h

∑
nxnz

∫
t̃

∫
h
Δρ̃

∂X
∂t

· ∂X
∂t

ds dt (4.3)

represents the structural kinetic energy per unit length, likewise averaged. We report the
trends of Γs and Ks with fnat/fturb, and hence, with the Ca, in figure 19(b). While the
magnitude of Γs is comparable to that measured by Rosti et al. (2018a), the position
of its peak contrasts with their findings. Here, in fact, Γs peaks well within the regime
dominated by the natural response of the filaments, confirming what can also be observed
in the case of an isolated clamped fibre. We therefore deduce that the clamp to the wall,
constraining the shape of the filaments, hinders their deflection and shifts the maximum of
Γs towards higher values of γ . The kinetic energy, instead, follows a trend consistent with
the amplitude of the fluctuations in figure 18(a), increasing with the Ca in the most rigid
cases and reaching a plateau close to the resonance between fnat and fturb.

Characterising the dominant dynamics of our canopy filaments, we have been able
to compare our results with those attained considering a single fibre clamped in wall
turbulence (Foggi Rota et al. 2024) and plants with a different geometry (Fu et al. 2023).
We have also isolated the role played by the sheltering effect of the canopy upon increasing
the density of the filaments, and by the model adopted to describe them. Nevertheless, we
emphasise that the present investigation is unable to capture any sub-dominant dynamics
of the filaments, such as the contribution of turbulence to their motion in the regime
dominated by the natural response. Regardless of the value of Ca, in fact, the coherent
motion of the filaments (honami/monami) investigated by Monti et al. (2023) remains
dictated by the turbulent structures in the flow.

5. Conclusions

Our numerical study systematically characterises both the turbulent flow within and above
a flexible canopy and the dynamical response of its constitutive elements across different
values of the filament flexibility. Building on top of the database generated by Monti
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et al. (2023) (constituted by the first fully resolved simulations of a flexible canopy),
we have considered a turbulent half-channel flow at a bulk Reynolds number of about
5000, populated by 15 552 individually resolved flexible filaments vertically clamped to the
bottom wall. Their dynamical response to the turbulent forcing, described by an extended
version of the Euler–Bernoulli beam model (Yu 2005; Huang et al. 2007), is controlled by
their flexibility, which we have varied over two orders of magnitude.

Filaments of increasing flexibility are more deflected by the flow, thus reducing the
frontal area of the canopy, and they yield a weaker drag discontinuity at the canopy
tip, associated to velocity fluctuations less intense then in the rigid case. Consequently,
the canopy drag decreases increasing the flexibility up to saturation, attained when the
fully deflected filaments start piling on top of each other parallel to the wall. Our data
compare well to the experimental measurements of Shimizu et al. (1992) and Ghisalberti
& Nepf (2006). The spectra of the TKE within the canopy confirm the spectral short cut
mechanism described by Finnigan (2000) and Olivieri et al. (2020), while a more regular
energy cascade is attained above the canopy tip. Furthermore, the intensity of the velocity
fluctuations within the canopy increases with its flexibility due to the increased motion of
the filaments. Outside the canopy, instead, the opposite trend is attained by virtue of the
generation of a stronger shear layer in the more rigid cases.

The characterisation of the turbulent state at different distances from the bottom wall
suggests a multi-layer approach to turbulence modelling in canopy flows. Within the
canopy, turbulence is quasi two dimensional close to the bottom wall and it approaches
an isotropic state between the inner inflection point and the virtual origin of the outer flow.
The picture becomes more blurred increasing the flexibility, as the flow in the canopy
turns less isotropic. A strongly anisotropic state is attained approaching the canopy tip,
and the flow exhibits a behaviour consistent with what is observed in conventional channel
flows moving above it, thus supporting outer similarity arguments. Turbulence inside the
canopy appears to be sustained by intense events generated in the outer flow, induced by
the structures populating the close proximity of the shear layer. Those structures cause
sweeps and ejections dominating the interaction between the inner and the outer flows, but
only the strongest sweep events are able to penetrate the canopy due to the obstruction
exerted by the deflected filaments. The effect increases with the flexibility, yielding a
more weakly driven turbulent state within the most compliant canopies even though the
filaments oscillate more. On the other hand, ejections are less obstructed by the filaments
and, thus, dominate the inner–outer flow interactions.

For the sake of completeness, we have also investigated the consequences of an increase
in the filament density, which yields effects similar to those of a reduction in the flexibility.
The blockage of the mean flow is in fact enhanced, while intense sweep events become
more likely.

In order to isolate the effects of the filament flapping on turbulence, we have ‘frozen’
them in one of their instantaneously deflected configurations and allowed the flow to
develop. The turbulent shear is depleted with respect to the case in which the filaments
are free to flap, since less energy is ‘pumped’ into the turbulent fluctuations by their
motion. Furthermore, the ‘frozen’ canopies also prove more effective in shielding the
inner flow. Consequently, throughout all cases, the drag is reduced with respect to the
flexible ones upon ‘freezing’ the canopy, and the maximum reduction is achieved for
intermediate values of the flexibility, where the filaments exhibit large-amplitude, regular
fluctuations. Consistent with our previous work on the flapping states of a clamped flexible
fibre in wall turbulence (Foggi Rota et al. 2024), also here we observe two regimes of
motion for the filaments: one dominated by their structural natural response and one
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by turbulence. At the transition between the two, resonance occurs. Furthermore, in the
turbulence-dominated regime, all the filaments exhibit a dominant flapping frequency
of about 0.5Ub/H in the spanwise direction regardless of their structural parameters,
once again supporting the outcome of our precursory study. Nevertheless, here, an
increase in the density of the filaments drives them to exhibit their natural response
since they better shield each other and get less deflected by the mean flow. Separately
observing the terms of the structural energy balance we also note that the elastic energy
peaks well within the regime dominated by the natural response, differently from the
case of free fibres in homogeneous isotropic turbulence (Rosti et al. 2018a), where
the peak is found at the transition between the two regimes. Furthermore, here, the
kinetic energy saturates as soon as the filaments approach the turbulence-dominated
regime.

Canopy flows are complex systems governed by a multitude of parameters responsible
for coupled and non-trivial effects. The effort to combine them together into dimensionless
quantities supposedly descriptive of specific behaviours is therefore not always successful,
as the individual dependencies of the results from the parameters combined in
dimensionless quantities can be retained. This is the case, for example, of the solidity
parameter (Monti et al. 2020; Nicholas et al. 2023), which well characterises canopies
in the sparse regime, but proves unsatisfactory to describe the individual effects of the
filament spacing and length in the dense regime. To avoid such kinds of issues, in
our investigation we have chosen to keep all the parameters fixed and equal to those
employed in previous investigations (Monti et al. 2022), but for the flexibility of the
filaments, to assess its individual role. Proceeding in this way we have nevertheless missed
the effect of a variation in the flexibility combined with any other parameter (e.g. the
Reynolds number, the filament length) along with the geometry of the canopy elements
adopted. We have in fact noticed that our flexible filaments, characterised by homogeneous
structural properties along their axis, exhibit a dynamical response contrasting with that
of different plant models (Fu et al. 2023). Both issues can be mitigated broadening the
range of parameters considered, but such analysis currently appears challenging from a
computational standpoint. Instead, it is of particular interest to investigate the effect of
the motion of the filaments on turbulent mixing (Ghisalberti 2010; Wang et al. 2023),
assessing up to what extent that is enhanced by the flexibility. Our results provide solid
grounds for such a study, which we leave for a future investigation, and pave the way
towards the simulation of realistic scenarios constituted by more accurate plant models.
On the other hand, we also offer an accurate description of the flow within and above the
flexible canopy, which can prove helpful in the development of accurate turbulence models
for RANS and LES simulations, without the need to resolve the flow up to the filament
scale.
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Appendix. Flow visualisations

We devote this appendix to the visualisation of the instantaneous flow fields. Panel (a) of
each figure reports a slice in the x–y plane sampled from the rigid canopy case, while panel
(b) shows a similar slice from the flexible canopy case, at Ca = 100. The flow is oriented
from left to right. We display the instantaneous values of u′ (figure 20), v′ (figure 21)
and p′ (figure 22): they indicate a less strongly driven turbulent state in the flexible
canopy case, with enhanced spatial coherence compared with the rigid one. Furthermore,
areas of markedly low pressure can be seen at the canopy tip, denoting the cores of the
spanwise rollers populating that region. In figure 23 we also visualise the instantaneous
flow anisotropy. On average, the flow above the rigid canopy appears more anisotropic
than that above the flexible one, while the opposite is true within the canopy. Such a
scenario is consistent with the plots reported in figure 10.

(a)

(b)

Figure 20. We report vertical slices of the fluctuating streamwise velocity in and above a rigid (a) and a flexible
(b) canopy with Ca = 100, with the mean flow directed from left to right. A colour scale going from violet to
orange is adopted, ranging in [−0.8, 0.8]Ub.

(a)

(b)

Figure 21. We report vertical slices of the fluctuating wall-normal velocity in and above a rigid (a) and a
flexible (b) canopy with Ca = 100, with the mean flow directed from left to right. A colour scale going from
violet to orange is adopted, ranging in [−0.6, 0.6]Ub.

989 A11-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-7795-6620
https://orcid.org/0000-0002-7795-6620
https://orcid.org/0000-0002-9004-2292
https://orcid.org/0000-0002-9004-2292
https://doi.org/10.1017/jfm.2024.481


Dynamics & FSI in turbulent flows over flexible canopies

(a)

(b)

Figure 22. We report vertical slices of the fluctuating pressure in and above a rigid (a) and a flexible (b) canopy
with Ca = 100, with the mean flow directed from left to right. A colour scale going from violet to orange is
adopted, ranging in [−0.2, 0.2]ρU2

b .

(a)

(b)

Figure 23. We report vertical slices of the instantaneous flow anisotropy in and above a rigid (a) and a flexible
(b) canopy with Ca = 100, with the mean flow directed from left to right. A colour scale going from violet to
orange is adopted, ranging in [0.0, 0.58].
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