Revisiting the absolute-magnitude calibration of F-type supergiants and bright giants as a function of the equivalent width of the $OI\lambda7774\text{\AA}$ triplet

A. K. Dambis

Sternberg Astronomical Institute, M. V. Lomonosov Moscow State University, Universitetskii pr. 13, Moscow, 119992 Russia email: mirage@sai.msu.ru

Abstract. We reduce the published measurements of the equivalent width of the oxygen triplet $(OI\lambda7774\text{\AA})$ to a single system and combine the resulting homogenized indices with revised Hipparcos parallaxes to derive the M_K versus $\log[W(OI\lambda7774\text{\AA})]$ absolute-magnitude calibration for bright F-type giants and supergiants and use the resulting calibration to estimate both the distance to the Large Magellanic Cloud and the parameters of the Galactic rotation curve.

Keywords. stars: distances, stars: luminosities, supergiants, stars: kinematics

1. Introduction

Merrill (1925, 1934) found that the strength of the OI λ 7774Å feature was very different in stars of different luminosity classes and Keenan & Hynek (1950) proposed to use it as a luminosity indicator for A- and F-type stars. Since then, many authors have measured the strength of the OI λ 7774Å feature in different stars and calibrated it in terms of absolute magnitude (Osmer 1972; Baker 1974; Sorvari 1974; Kameswara Rao & Mallik 1978; Hopkinson & Humrich 1981; Faraggiana *et al.* 1988; Arellano Ferro *et al.* 1989, 1991, 1993, 2003; Mendoza & Arellano Ferro 1993; Slowik & Peterson 1993, 1995; Kovtyukh *et al.* 2012). Our aim is to determine the parameters of the linear log[$W(OI\lambda7774Å)$] versus M_K relation for F0–G0 I–II stars. K-band absolute magnitudes (M_K) are adopted rather than V-band magnitudes (M_V) to minimize the effect of possible errors in the adopted interstellar extinction estimates by rendering these barely significant.

2. Sample and Calibration

Our working sample consists of 96 F0–G0 I–II-type stars with published $Oi\lambda7774$ Å strength measurements in different systems (equivalent widths and photometric indices), which we reduced to a single homogeneous system defined by the measurements of Kov-tyukh *et al.* (2012).

We first use 14 F0–G0 I–II-type stars in 13 open clusters (see Table 1) with homogeneously determined (main-sequence fitting) photometric distances (Dambis 1999) to determine the slope of the log[$W(Oi\lambda7774\text{\AA})$] versus M_K relation (see Fig. 1).

The resulting equivalent width–luminosity relation is

$$M_K = -5.33 - 10.81 \log \left[W(\text{OI}\lambda7774\text{\AA}) \right]; \sigma(M_K) = 0.48 \text{ mag.}$$
(2.1)

We now adjust the zero point of this relation in two ways. First, we use the technique employed by Feast & Catchpole (1997), which consists of determining the correction

Figure 1. M_K as a function of $\log[W(OI\lambda7774\text{\AA})]$ for stars from Table 1.

Star	Spectral	W(7774)	$\sigma_{W(7774)}$	$K_{\rm s}$	$(m-M)_0$	E(B-V)	M_K	Cluster		
	type	(Å)	(Å)	(mag)	(mag)	(mag)	(mag)			
HD 7927	F0Ia	2.36	0.02	2.750	11.92	0.505	-9.33	NGC 457		
HD236433	F2Iab	1.15	0.05	6.165	10.97	0.508	-4.97	NGC 129		
BD + 59.65	F5Ib	1.13	0.23	5.857	10.97	0.508	-5.28	NGC 129		
HD332843	F0Ib	1.13	0.13	7.225	11.66	0.777	-4.69	NGC 6834		
HD 20902	F5Ib	1.09	0.02	0.540	5.94	0.099	-5.43	α Per		
$BD+60\ 2532$	F7Ib	0.94	0.04	5.320	10.80	0.650	-5.69	NGC 7654		
HD 10494	F5Ia	1.77	0.03	4.104	11.95	0.935	-8.15	NGC 654		
HD 87283	F0II	0.93	0.09	5.030	9.90	0.080	-4.90	NGC 3114		
HD 90772	F0Ia	2.12	0.05	3.070	11.68	0.428	-8.75	IC 2581		
HD 54605	F8Ia	1.67	0.03	0.380	9.00	0.027	-8.63	Cr 121		
HD 17971	F5Ia	1.57	0.03	4.428	11.39	0.657	-7.17	IC 1848		
HD101947	G0Ia	1.97	0.04	3.180	11.67	0.245	-8.57	Stock 14		
HD173638	F1II	1.31	0.05	3.840	10.61	0.601	-6.96	NGC 6694		
HD 74180	F2Ia	2.53	0.03	1.890	11.18	0.444	-9.43	Pismis 6		

Table 1. Parameters of the cluster stars used for calibration

factor, p, to reconcile photometric parallaxes based on the above $\log[W(OI\lambda7774\text{\AA})] - M_K$ relation with the revised *Hipparcos* trigonometric parallaxes (van Leeuwen 2007) of 51 stars:

$$\pi_{\rm HIP} = p\pi_{\rm phot}.\tag{2.2}$$

We find $p = 0.90 \pm 0.07$, implying an absolute-magnitude correction of $\Delta M_K = -0.23 \pm 0.17$ mag. We next estimate an independent absolute-magnitude correction using the maximum-likelihood version of the method of statistical parallax determination as described by Murray (1983). The resulting kinematic plus distance-scale solution is summarized in Table 2.

We finally apply the weighted average of the two corrections to Eq. (1) to derive the final relation,

$$M_K = -5.66 - 10.81 \log \left[W(\text{OI}\lambda7774\text{\AA}) \right].$$
(2.3)

When applied to 20 F0–G0 I–II-type stars in the Large Magellanic Cloud with published $W(\text{OI}\lambda7774\text{\AA})$ data (Mantegazza 1991), this relation yields $(m-M)_0^{\text{LMC}} = 18.53 \pm 0.28$ mag.

$\frac{U_0}{(\mathrm{km \ s}^{-1})}$	$V_0 \ ({\rm km~s^{-1}})$	$\begin{array}{c} W_0 \\ (\mathrm{km \ s}^{-1}) \end{array}$	$\sigma_U \over ({ m km~s^{-1}})$	$\sigma_V \over ({ m km~s}^{-1})$	$\sigma_W \over ({\rm km~s^{-1}})$	$\begin{array}{c}\Omega_0\\(\mathrm{km~s}^{-1}\\\mathrm{kpc}^{-1})\end{array}$	$\begin{array}{c} A \\ (\mathrm{km} \ \mathrm{s}^{-1} \\ \mathrm{kpc}^{-1}) \end{array}$	$\begin{array}{c} \Omega^{\prime\prime} \\ (\mathrm{km} \ \mathrm{s}^{-1} \\ \mathrm{kpc}^{-3}) \end{array}$	ΔM_K (mag)
-8.9 ± 2.2	$^{-14.8}_{\pm \ 1.9}$	$^{-8.0}_{\pm \ 1.3}$	16.8 ± 1.7	$14.0 \\ \pm 1.4$	8.3 ± 1.2	23.8 ± 2.4	13.5 ± 2.0	$^{+0.84}_{\pm \ 0.44}$	-0.29 ± 0.22

 Table 2. Rotation-curve plus distance-scale solution for local F0–G0 I–II-type stars (statistical parallax method).

Acknowledgements

This work was supported by the Russian Foundation for Basic Research (grants 10-02-00489-a and 11-02-00608-a).

References

Arellano Ferro, A., Giridhar, S., Chavez, M., & Parrao, L. 1989, A&A, 214, 123 Arellano Ferro, A., Giridhar, S., & Goswamin, A. 1991, MNRAS, 250, 1 Arellano Ferro, A., Mendoza V., & Eugenio E. 1993, AJ, 106, 2516 Arellano Ferro, A., Giridhar, S., & Rojo Arellano, E. 2003, Rev. Mex. Astron. Astrof., 39, 3 Baker, P. W. 1974, *PASP*, 86, 33 Dambis, A. K. 1999, Astron. Lett., 25, 10 Faraggiana, R., Gerbaldi, M., van 't Veer, C., & Floquet, M. 1988, A&A, 201, 259 Feast, M. W. & Catchpole, R. M. 1997, MNRAS, 286, L1 Hopkinson, G. R. & Humrich, A. 1981, MNRAS, 195, 661 Kameswara Rao, N. & Mallik, S. G. V. 1978, MNRAS, 183, 147 Keenan, P. C. & Hynek, J. A. 1950, AJ, 111, 1 Kovtyukh, V. V., Gorlova, N. I., & Belik, S. I. 2012, MNRAS, 423, 3268 Mantegazza, L. 1991, A&A, 265, 527 Mendoza, E. E. & Arellano Ferro, A. 1993, AJ, 106, 2524 Merrill, P. 1925, PASP, 37, 272 Merrill, P. 1934, ApJ, 132, 68 Murray, C. A. 1983, *Vectorial Astrometry* (Bristol: A. Hilger) Osmer, P. S. 1972, ApJS, 24, 247 Slowik, D. J. & Peterson, D. M. 1993, AJ, 105, 1997 Slowik, D. J. & Peterson, D. M. 1995, AJ, 109, 2193 Sorvari, J. M. 1974, AJ, 79, 1416 van Leeuwen, F. 2007, A&A, 474, 653