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NUMERICAL RANGES OF DERIVATIONS

by J. KYLE

(Received 1st November 1976)

1. Introduction

In this paper we shall examine the relationship between the numerical range of an
inner derivation, and that of its implementing element.

Much of this paper is taken from the author's doctoral thesis (5) written at the
University of Newcastle upon Tyne with the helpful guidance of Professor B. E.
Johnson. The author also acknowledges the financial support of the Science Research
Council during the period of this research.

In what follows si will always denote a complex unital Banach algebra, with
identity /. Given A in si, the (inner) derivation implemented by A is the linear
mapping which sends X to XA - AX. This will be denoted by AA.

We begin by giving the relevant definitions needed for this paper. A more detailed
account of numerical ranges in normed algebras may be found in the two monographs
by Bonsall and Duncan (2) and (3).

Given a Banach algebra si, the unit sphere of si will be denoted by S(si). The
numerical range of A in si is then given by

V(A;si) = U{f(AX):fGD(X;si)}

where the union is taken over all X in S(si), and

It is known that the numerical range is also given by

V(A;si) = {f(A):f<=E(si)}

where E(si) denotes the set of normalised states of si

(i.e. E(rf) = ( /e j r f* : / ( / )= l

Using this last characterisation it follows easily that V(A; si) is always a non-empty,
compact, convex set in C.

When si = .£?(#?), for some Banach space %, we may also define the spatial
numerical range of A, which is given by

W(A\2(X)) = {f(Ax):fE.X*, x(E% and ||/|| = ||x|| = 1 = /(*)}.

Proofs of the following may be found in (2):

co W(A; &(%)) = V(A; %(%))

coSp(A;si)Q V(A;si)

(where Sp(A; si) denotes the spectrum of A in si.)
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An element A in si is said to be Hermitian whenever

V(A; i )CR,

and is said to be normal whenever

A = H + iK

where H and K are commuting Hermitian elements of si.
Finally we note the following description of V(A;s£).

Proposition 1.1 V(A; si) = D 2ec{A G C :||A - z\ *£ \\A - zl\\}.

Proof. This may be found in (1, Chapter I, §10).

2. Numerical ranges when si =

It is already known that

Sp(A,*; 2(si)) = Sp(A; si) - Sp(A; si)

whenever si = i£(^£), for some Banach space 3f. (See (5) or (7), where an earlier proof
was given.)

In this section we shall obtain the corresponding result for numerical ranges, and
examine some of its consequences. Since the techniques apply equally well we shall
state the main result for the slightly more general operator YKB given by

TA.B(X) = AX + XB

for all X in i?(3f). Proof of the following lemma may be found in (2).

Lemma 2.1. For any Banach algebra si,

V(A; si) = V{LA;

where LA(X) = AX and RA(X) = XA.

Lemma 2.2. For A, B in the Banach algebra si we have

C V(A\si)+ V(B\si).

Proof. .

C {f(LA):

= V(A\si)+V(B;si).

(by Lemma 2.1). When si = if(Sf), we also have the reverse inclusion.

Theorem 2.3. Let si = S£{j%), for some Banach space 3f, and let FA,B be as above.
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Then
V(TA,B; &(£(%)))= V(A; &(%)) + V(B ;<£{&)).

Proof. Lemma 2.2 provides one inclusion. To prove the reverse inclusion, choose
A in W(A;£($e)) and fi in W(B;£{%)). Then we can find functionals / and g in ST*,
and x, y in Sf such that

l/ll = ||x|| = f(x) = 1 with f(Ax) = A

and

llgll = IHI = g(y) = 1 withg(By) = M.

Define F in &(%)* by

F(T) = f(Ty) for all T in <£{%),

and let X be the rank-one operator in if(i?f) given by

Xz = g(z)x for all z in 3f.

Then clearly ||F|| = ||X|| = 1 and

F{X) = f(Xy) = /(g(y)Jt) = g(y)/(x) = 1.

Finally, we have

F(TA,B(X))=F(AX + XB)
= f(AXy) + f(XBy)
= f(g(y)Ax) + f(g(By)x)

i.e. X+p

Noting that the convex hull of the sum of two sets is the sum of the convex hulls of
the sets, we have

D co{ W(>V; 2(X)) + W(B;

^ ; SB(X))} + co"{W(B;

and the proof is complete.
We now examine several consequences of Theorem 2.3.

Corollary 2.4. (i) V(AA; if(i?(^))) = V(>4; £(%)) - V(A; if(#)).
(ii) Whenever H is Hermitian in

v( AH; if (if (Sf))) = 2 inf {(v(H; if (3?)) - A): A G C},

where v(A; si) denotes the numerical radius of A in s£.

https://doi.org/10.1017/S0013091500015856 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500015856


36 J- KTLE

Corollary 2.5. Suppose A G £(%) and AX = XA for all X in %(%), then A = kl
for some A6C.

Proof. We then have

0 = V(AA; if (if(3?))) = V(A;if(#"))- V(A; if (#?))

which can only happen when V(A; if(#f)) is a singleton, say {A}. Then

V(A - A/; if (£f)) = V(,4; if (2f)) - A = {0}

and so >\ = A7. (This follows from (2) Chapter 1, §4.1.)
Corollary 2.5 is, of course, well known. However, as far as we know this method

of proof has never been used before, and we include it here for completeness, since it
is quoted below in the proof of Theorem 2.7.

Corollary 2.6. For A in if(^f), A^ is Hermitian if, and only if, (A — A/) is
Hermitian for some A in C.

The corresponding result when A is normal is slightly more difficult.

Theorem 2.7. For A in if(#f), AA is normal if, and only if, A is normal.

Proof. Suppose that A = H + iK with H and K both Hermitian and HK = KH.
Then

By Corollary 2.6, both AH and AK are Hermitian, and

= XKH - KXH - HXK + HKX
= XHK - KXH - HXK + KHX

- HX) = AKAH(X)

and so A^ is normal in if (if (#f)).
Suppose now that A^ is normal in if(if(2f)). Then

AA =

where 4> and V are Hermitian and 4>^ = ^<J>. Now define an operator H on #f by

H(Xx)= -<t>(XP)x

where X is in if(#0, JC in 3f is a fixed non-zero vector, and P is a projection, of norm
one, onto the one-dimensional subspace spanned by x. Then H is well defined on 3! (if
Xx = 0, then XP = 0, and so *(XP) = 0). Also H is clearly linear and bounded, i.e.
H G if(#T). Similarly, we may define K in <£(%) by

K(Xx) = -V(XP)x for all X in if(Sf).

Then we have
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[AH(X) Y - 4>(X)Y]x = XHYx - HXYx - <D(X) Yx
= - X<*>( YP)x + 4>(XYP)x - $(X) YPx
= [-52<&(X, YP)]x

(Here S2 is the two-dimensional cobounding operator. See (4) for further details.)
Similarly,

[AK(X) Y - V(X) Y ]x = [ - 82f(X, YP)]x

Thus

[A(H+,K)(X)V - (fi+W)(X)Y]x = - [52(<D + WXX, YP)]x

= -[8\AA)(X,YP))
= 0

(since the cobounding operator annihilates every derivation.)

i.e. [A(H+1/O(X) - AA(X)] Yx = 0 for all X, Y in <£{&)

and so A^ = AH + i'AK.
We now show that H and X are both Hermitian. We have

W(H ;&(%)) = tf(tfy): Il/H = ||y|| = /(y) = 1}
= {f(HXx):\\f\\=\\Xx\\ = f(Xx)=\}
= - {/(<J>(XP)JC) : Il/H = ||Xx|| = f(Xx) = 1}

Now the functional F in i?(af)* given by F(T) = f(Tx), takes the value 1 at XP
whenever f(Xx) = 1 and so F(<D(XP)) lies in W(*;iP(if(a?))) whenever /(X*) = 1 i.e.

since <I> is Hermitian.
A similar argument shows that K is also Hermitian. Finally, by the uniqueness of

real and imaginary parts, we have

AH = * and AK = *

and so

' • e - &IHK-KH) = 0.

Corollary 2.5 then shows that HK - KH = A/, for some A in C. But the only scalar
multiple of / which can be a commutator is 0. Hence H and K commute, and
{H + iK) is normal. Then

and so A = H + iK + y.1 for some fi in C and A is normal.
As a comparison for Theorem 2.7, we have:

Proposition 2.8. Let si be a W*-algebra with centre St. Then AA is normal in
if, and only if, A is normal in si.
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Proof. As in Theorem 2.7, we can easily show that AA is normal in
whenever A is normal in si.

On the other hand suppose we can find 4> and ¥ in !£(si), both Hermitian, such
that

and AA = 4> + / *

By a result due to Sinclair (8), we can find H, and Ay (/ = 1,2) in j ^ such that

with Hj, A; (j =1,2) all Hermitian. Then

A/t = L( H ] + ,H2 ) + A(A|+1/i2)

Thus L(//I+,H2) is a derivation, which can only be 0. Hence f/| + iHt = 0, and so
H, = H2 = 0.

i.e. AA = AAl + /AA,

and so <!> = A ,̂ and ^ = A^2.

Also, as in Theorem 2.7, we have

A(AIA2-A2AO = 0 and so {AXA2- A2At) = Z G 2"

Thus

A2
A|(/\2) = 0

and so

AA,(A?) = (n \)(AAl(A2)y for all n

(see (1) Chapter II. 18.4). Hence

-»0 as n->»

i.e. Z is quasi-nilpotent in 2T and so Z = 0. Thus A,A2 = A2A, and A - (A, + iA2) €E 2T,
i.e. A is normal as required.

3. Concluding Remarks

It has already been shown (6) that when s£ is a W*-algebra, the spectrum of A^
depends directly on the centre of si. A similar connection can be established for
numerical ranges, and we hope to explore this area in a forthcoming paper.
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