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Abstract

We study the survival properties of inhomogeneous Galton–Watson processes. We
determine the so-called branching number (which is the reciprocal of the critical value for
percolation) for these random trees (conditioned on being infinite), which turns out to be an
almost sure constant. We also shed some light on the way in which the survival probability
varies between the generations. When we perform independent percolation on the family
tree of an inhomogeneous Galton–Watson process, the result is essentially a family of
inhomogeneous Galton–Watson processes, parameterized by the retention probability p.
We provide growth rates, uniformly in p, of the percolation clusters, and also show
uniform convergence of the survival probability from the nth level along subsequences.
These results also establish, as a corollary, the supercritical continuity of the percolation
function. Some of our results are generalizations of results in Lyons (1992).
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1. Introduction and main results

We start by defining the main object of study in this paper, namely the inhomogeneous
Galton–Watson processes. Start with a root o, and let L1 be the distribution of the (random)
number of offspring of the root. Proceed by letting each child (if any) of the root have an
independent and identically distributed (i.i.d.) number of offspring with distribution L2, and
also let these offspring be independent of the number of children of the root. Given a sequence
{Ln}∞n=1, we let Ln be the offspring distribution of every individual of generation n − 1.
Sometimes we will treat Ln as a random variable rather than as a distribution, this is a standard
abuse of notation. The root is considered to be generation 0. Observe that, if the distributions
{Ln}∞n=1 are all the same, we obtain a regular Galton–Watson process. Also, observe that, if
P(Ln = ln) = 1 for every n and some sequence of numbers {ln}∞n=1, we almost surely obtain
a (deterministic) spherically symmetric tree, that is, a rooted tree in which any two vertices in
the same generation have the same degree.

We denote the random family tree of such an inhomogeneous Galton–Watson process by T .
We will let T̄ be a tree with distribution equal to T conditioned on survival, and we will also
let I ⊂ T̄ be the tree that consists of those vertices x ∈ T̄ (and the edges between them) that
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Survival of inhomogeneous Galton–Watson processes 799

have infinitely many descendants in T̄ . We will denote by Tn, T̄n, and In the number of points
in the nth generation of T , T̄ , and I , respectively.

It is well known (see, e.g. [5]) and not hard to see that I is itself the family tree of an
inhomogeneous Galton–Watson process; we will use this fact later on.

For inhomogeneous Galton–Watson processes, we define the survival probability θn from
the nth generation, that is,

θn := lim
m→∞ P(Tm > 0 | Tn = 1).

For an infinite tree, a cutset π is defined to be a finite set of edges such that every infinite
path starting at the origin must contain at least one edge of the cutset. We denote by � the set
of all such cutsets. Any infinite tree S has a so-called branching number which is defined as
follows.

Definition 1.1. The branching number of an infinite tree S with root o is denoted by brS and
defined by

brS := sup

{
λ; inf

π∈�

∑
e∈π

λ−|e| > 0

}
.

The branching number is a very important property for trees (see [6]). For instance, it is
known (see [4]) that the critical density pc(S) for independent percolation (we are assuming
that the reader is familiar with the concept of percolation, otherwise please see [3] for a general
overview) on S is the reciprocal of the branching number, that is,

pc(S) = 1

brS
.

Closely related to the branching number is the lower growth number grS, which is defined by

grS := lim inf
n→∞ S

1/n
n ,

where Sn denotes the number of vertices in the nth generation of S. It is not hard to see that
we always have brS ≤ grS, while equality is not always true. It is however well known that if
S is spherically symmetric then brS = grS.

We start with the following simple survival criterion. This result is essentially contained in
Proposition 4.15 of [5], but we give a different proof based on even earlier work in [1]. The
reason is that some of the elements in the proof will be used again later in this paper.

Proposition 1.1. For any inhomogeneous Galton–Watson process with offspring distributions
{Ln}∞n=1, we have

lim inf
n→∞ (E[Tn])1/n < 1 �⇒ lim

n→∞ P(Tn > 0) = 0.

Furthermore, if
sup
n

E[L2
n] = C1 < ∞ (1.1)

and
inf
n

E[Ln] = C2 > 0, (1.2)

then we also have

lim inf
n→∞ (E[Tn])1/n > 1 �⇒ lim

n→∞ P(Tn > 0) > 0.
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Next we have a result concerning the branching number of T̄ . A priori this is a random
variable, but it turns out that brT̄ is an almost sure constant (under mild conditions).

Theorem 1.1. Consider an inhomogeneous Galton–Watson process with offspring distribu-
tions {Ln}∞n=1 satisfying (1.1) and (1.2). Also, assume that

lim inf
n→∞ E[Tn]1/n > 1. (1.3)

Then we have brT̄ = lim infn→∞ E[Tn]1/n, [T̄ ]-almost surely.

We make some remarks about this result.

Remarks. 1. In [5] it was proved that, almost surely,

brT̄ = lim inf
n→∞ E[Tn]1/n,

under the assumption that supn ||Ln||∞ < ∞. It was claimed in [5] that this assumption cannot
be weakened much; our results show that if we add the very natural condition (1.3) then in fact
we can significantly weaken the assumptions.

2. Naively, we might believe that this result would follow from easy arguments. For instance,
we might try the following approach. Define a new inhomogeneous Galton–Watson tree T ′ by
performing percolation on T , with the probability of T ′ being open equal to p. Depending on
whether p is smaller or greater than 1/ lim inf E[Tn]1/n, we find from Proposition 1.1 that T ′ dies
out almost surely or, respectively, survives with positive probability, concluding the argument.
However, we then miss the point that the fact that T ′ survives with positive probability if
p > 1/ lim inf E[Tn]1/n does not lead to the conclusion that brT ≥ lim inf E[Tn]1/n. Indeed,
it is imaginable that, with positive probability, brT = lim inf E[Tn]1/n − δ for some positive
δ and that, with positive probability, brT = lim inf E[Tn]1/n. If this were true, T ’ would still
survive with positive probability for the indicated p.

The following result about the behavior of θn will be needed in the proof of Theorem 1.1, but
it is also quite interesting in its own right. It is not to be expected that θn is in general bounded
away from 0, since we can always insert any finite number of generations of degree 1 in the
tree. However, it is the case that there is a subsequence along which θn is bounded away from 0.

Proposition 1.2. Consider an inhomogeneous Galton–Watson process with offspring distri-
butions {Ln}∞n=1 satisfying (1.1), (1.2), and (1.3). Then there exists a sequence {nk}∞k=1 of
increasing integers and a constant C > 0 such that, for all k ≥ 1,

θnk
≥ C.

Next, we study the bond percolation on I . Note that pc(I ) = pc(T̄ ), since pruning a
tree does not change its critical probability. We already noted that I itself is the family
tree of an inhomogeneous Galton–Watson process, and when we perform independent bond
percolation on I , the resulting component of the origin, to be denoted by Ip, also constitutes
a family tree of an inhomogeneous Galton–Watson process. Therefore, general results about
inhomogeneous Galton–Watson processes automatically apply to percolation on I . However,
being equipped with a parameter p now, we will derive survival estimates uniformly in p. We
remark that a special case of inhomogeneous Galton–Watson processes results from starting
with a deterministic spherically symmetric tree and performing percolation on that tree. One
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more piece of notation: the number of vertices in Ip at distance n from the root is denoted by
I

p
n . Also, in this paper we use various coupling constructions. To facilitate this, all processes,

for all values of p, are jointly constructed in the obvious way. Consequently, as in the previous
example, we will express the p-dependence in the events rather than in the measure.

In light of Theorem 1.1, we might expect that, for any ε > 0,

lim
n→∞ P(0 < I

p
n < ((1 − ε)br ¯Ip)n) = 0.

In fact, we have the next, much stronger statement.

Theorem 1.2. Consider an inhomogeneous Galton–Watson process satisfying (1.1), (1.2),
and (1.3), with family tree T , and let ε > 0. For pc(T̄ ) < p1 ≤ 1, it is the case that

lim
n→∞ P(0 < I

p
n < ((1 − ε)br ¯Ip1)n) = 0

uniformly in p ∈ [p1, 1].
Note that the pointwise (in p) convergence in Theorem 1.2 is almost a triviality. The whole

point of the theorem is proving the uniform convergence.
Theorem 1.2 combined with Proposition 1.2 will in turn lead us to our next result. Here we

define
θ(p) := P(|Ip| = ∞).

Proposition 1.3. Consider an inhomogeneous Galton–Watson process satisfying (1.1), (1.2),
and (1.3), and let p1 > pc(T̄ ). Then there exists a sequence of increasing integers {nk}∞k=1
such that

θ(p) = lim
k→∞ P(I

p
nk

> 0)

uniformly on [p1, 1].
This result also leads to continuity of the percolation function above pc for random trees.

Corollary 1.1. Consider an inhomogeneous Galton–Watson process satisfying (1.1), (1.2),
and (1.3). Then the percolation function θ(p) is continuous above pc(T̄ ). In particular, on
any spherically symmetric tree S with uniformly bounded degrees, the percolation function is
continuous above pc(S).

In fact, we can also use Theorem 1.1 to construct a more or less classical proof of this
result. As an interesting side remark, we mention that the route via Proposition 1.3 also has a
counterpart on Z

d and gives a new proof for the continuity of the percolation function in that
context. This proof does in fact give a rate of convergence for the natural approximations of
the percolation function; we discuss these continuity matters in Section 4.

In contrast to our last corollary we have the following example of a tree for which the
percolation function is not continuous above pc. To construct such a tree, we use a result in [5],
a special case of which says that there is percolation with positive probability on a spherically
symmetric tree S with parameter p if and only if

∞∑
n=1

p−n

Sn

< ∞.

To construct an example, we first take a spherically symmetric tree S which is such that Sn is
of the order 2nn2. It follows from the above that pc(S) = 1

2 and that θS( 1
2 ) > 0. Next, we take
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a regular tree S′ with common degree 4. It is well known that pc(S
′) = 1

3 . We then construct a
tree S′′ by joining the roots of S and S′ by a single edge. It is easy to see that pc(S

′′) = 1
3 and

that θS′′ is discontinuous at 1
2 .

Theorem 1.1 along with Propositions 1.1 and 1.2 will be proved in Section 2. All the other
results are proved in Section 3. The issues about continuity of the percolation function are
discussed in Section 4.

2. Proofs of Proposition 1.1, Theorem 1.1, and Proposition 1.2

We start by defining the following useful probability generating function:

h(n, s) :=
∞∑

j=0

P(Ln = j)sj for all n ≥ 1.

It is known (see [1]) that if h′′(n, 1) < ∞ for every n then, for all n ≥ 1, we have(
E[Tn]−1 +

n∑
j=1

h′′(j, 1)

h′(j, 1)
E[Tj ]−1

)−1

≤ P(Tn > 0). (2.1)

Of course, we have

h′(n, 1) =
∞∑

j=0

j P(Ln = j) = E[Ln]

and

h′′(n, 1) =
∞∑

j=0

j (j − 1) P(Ln = j) = E[L2
n] − E[Ln].

We can now proceed with the proof of Proposition 1.1.

Proof of Proposition 1.1. The proof of the first statement is easy. Assume that

lim inf
n→∞ (E[Tn])1/n = a < 1.

Then we find that, for any ε > 0 such that a(1 + ε) < 1, there exists a sequence {nk}∞k=1 such
that

P(Tnk
> 0) ≤ E[Tnk

] ≤ (a(1 + ε))nk ,

so that
lim

n→∞ P(Tn > 0) = 0.

For the second statement, we start by observing that condition (1.1) gives h′′(n, 1) = E[L2
n]−

E[Ln] < ∞ for every n. Of course, this does not require the full statement of (1.1), which will
be needed later. In turn, this shows us that inequality (2.1) is valid for every n and, therefore,
we need to prove that

lim sup
n→∞

(
E[Tn]−1 +

n∑
j=1

h′′(j, 1)

h′(j, 1)
E[Tj ]−1

)−1

= lim sup
n→∞

(
E[Tn]−1 +

n∑
j=1

E[L2
j ] − E[Lj ]
E[Lj ] E[Tj ]−1

)−1

> 0. (2.2)
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To this end, we observe that, by (1.1) and (1.2),

sup
j

E[L2
j ] − E[Lj ]
E[Lj ] ≤ C1

C2
= C < ∞.

Since lim infn→∞(E[Tn])1/n > 1, there exists a constant b > 1 and an N such that, for all
n ≥ N ,

E[Tn] > bn.

Therefore, for some constant D < ∞,

E[Tn]−1 +
n∑

j=1

h′′(j, 1)

h′(j, 1)
E[Tj ]−1 ≤ E[Tn]−1 + C

n∑
j=1

E[Tj ]−1

≤ D + C

∞∑
j=N

b−j

< ∞.

Since the right-hand side of the above inequality is independent of n, inequality (2.2) is valid.
This completes the proof.

We continue by proving Proposition 1.2.

Proof of Proposition 1.2. Let {Xi}i≥1 be i.i.d. with distribution according to Tn, conditioned
on the event that T� = 1. Observe that, for n ≥ �,

Tn =
T�∑

k=1

Xk,

so that (using Wald’s lemma)

E[X1] = E[Tn | T� = 1] = E[Tn]
E[T�] . (2.3)

Observe that by (1.1) we can use inequality (2.1) to conclude that, for n ≥ �,

(
E[Tn | T� = 1]−1 +

n∑
j=�+1

h′′(j, 1)

h′(j, 1)
E[Tj | T� = 1]−1

)−1

≤ P(Tn > 0 | T� = 1). (2.4)

We will show that there exists a sequence {nk}∞k=1 of increasing integers and a constant C < ∞
such that, for all k ≥ 1 and all n ≥ nk ,

E[Tn | Tnk
= 1]−1 +

n∑
j=nk+1

h′′(j, 1)

h′(j, 1)
E[Tj | Tnk

= 1]−1 ≤ C. (2.5)

This will give us, for all k ≥ 1,

lim
n→∞ P(Tn > 0 | Tnk

= 1) ≥ 1

C
,
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proving the lemma. To that end, observe that, as in the proof of Lemma 1.1, there exists a
constant C3 such that, for n ≥ �,

E[Tn | T� = 1]−1 +
n∑

j=�+1

h′′(j, 1)

h′(j, 1)
E[Tj | T� = 1]−1

≤ E[Tn | T� = 1]−1 + C3

n∑
j=�+1

E[Tj | T� = 1]−1

≤ (C3 + 1)

n∑
j=�+1

E[Tj | T� = 1]−1

= (C3 + 1) E[T�]
n∑

j=�+1

1

E[Tj ] , (2.6)

where we have used (2.3) in the last equality. Therefore, showing that there exists a sequence
{nk}∞k=1 of increasing integers and a constant C < ∞ such that, for all k, we have

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ C,

will give us (2.5).
We divide the proof into three cases. First, however, define

m := lim inf
n→∞ E[Tn]1/n > 1.

In the first case we have E[Tn]1/n < m for infinitely many n. We can then conclude that
there exists an n1, defined to be the largest integer such that E[Tn1 ]1/n1 = minn≥1 E[Tn]1/n.
Having defined nk , we can then define nk+1 to be the largest integer greater than nk such
that E[Tnk+1 ]1/nk+1 = minn>nk

E[Tn]1/n. Let εk be defined through E[Tnk
]1/nk = m(1 − εk).

Observe that, by definition of nk , E[Tn]1/n ≥ m(1 − εk) for every n ≥ nk and also that εk > 0
for every k, and finally that εk → 0 as k → ∞. Therefore,

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ E[Tnk
]

∞∑
j=nk+1

1

(m(1 − εk))j

= (m(1 − εk))
nk

∞∑
j=1

1

(m(1 − εk))nk+j

=
∞∑

j=1

1

(m(1 − εk))j
.

There exists a K such that m(1 − εk) > 1 for every k ≥ K . For k ≥ K , the right-hand side
of the above equation is then bounded by some constant Dk < ∞. Furthermore, we can take
Dk ≥ Dk+1 and conclude that, for all k ≥ K ,

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ DK < ∞.
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For the second and third cases, we have E[Tn]1/n < m for only finitely many n. We can
therefore find large enough N so that E[Tn]1/n ≥ m for every n ≥ N . We have, for every n,
E[Tn]1/n = m(1 + a(n)), where the sequence of numbers {a(n)}∞n=1 is such that a(n) ≥ 0 for
every n ≥ N .

The second case occurs if lim infn→∞(1 + a(n))n = C4 for some constant C4 < ∞. Then
there exists a sequence of strictly increasing integers {nk}∞k=1 such that (1 + a(nk))

nk ≤ 2C4
for every k ≥ 1. By also requiring that n1 ≥ N we obtain

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ E[Tnk
]

∞∑
j=nk+1

1

mj

= mnk (1 + a(nk))
nk

∞∑
j=1

1

mnk+j

≤ 2C4

∞∑
j=1

1

mj

< ∞.

The third case occurs if limn→∞(1 + a(n))n = ∞. We can then find a sequence {nk}∞k=1
(much as in the first case) such that, for every k ≥ 1, (1 + a(n))n ≥ (1 + a(nk))

nk for every
n ≥ nk . By again requiring that n1 ≥ N we obtain

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ E[Tnk
]

∞∑
j=nk+1

1

(m(1 + a(nk)))j

= (m(1 + a(nk)))
nk

(m(1 + a(nk)))nk

∞∑
j=1

1

(m(1 + a(nk)))j

≤
∞∑

j=1

1

mj

< ∞.

We can therefore conclude that there exists a constant C = C({Ln}∞n=1) < ∞ and a sequence
of strictly increasing integers {nk}∞k=1 such that, for all k ≥ 1,

E[Tnk
]

∞∑
j=nk+1

1

E[Tj ] ≤ C.

This completes the proof.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Using the fact that pc(I )−1 = pc(T̄ )−1 = brT̄ , we need to show that

pc(I )−1 = lim inf
n→∞ (E[Tn])1/n.

We will do this by first proving that pc(I )−1 = lim infn→∞(θn E[Tn])1/n and then proving that

lim inf
n→∞ (θn E[Tn])1/n = lim inf

n→∞ E[Tn]1/n.
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Consider the offspring distribution L′
1 of the root of I . Let T i be the tree consisting of child

number i ∈ {1, . . . , L1} of the root of T and all the descendants of this child. Also, define

N1,∞ = |{T i : |T i | = ∞, i = 1, . . . , L1}|.

It is not hard to see that, for k ≥ 1,

P(L′
1 = k) = P(N1,∞ = k | N1,∞ ≥ 1) = P(N1,∞ = k)

θ
.

Furthermore, letting Yi be i.i.d. Bin(1, θ1) random variables and using Wald’s lemma, we obtain

E[L′
1] = 1

θ
E[N1,∞] = 1

θ
E

[ L1∑
i=1

Yi

]
= 1

θ
E[Y1] E[L1] = θ1

θ
E[L1].

Furthermore, this argument holds for any generation n and, therefore, we have, for all n ≥ 1,

E[L′
n] = θn

θn−1
E[Ln]. (2.7)

Now, perform independent percolation on I with parameter p, thus creating a random graph
that we denote by �p. Recall that Ip is the component of the root of this graph. Obviously, Ip is
the family tree of an inhomogeneous Galton–Watson process with some offspring distributions
{L′′

n}∞n=1. Furthermore, trivially

E[L′′
n] = p E[L′

n] = p
θn

θn−1
E[Ln] for all n ≥ 1.

Recall that I
p
n is the number of vertices in Ip at distance n from the root, and recall that we

defined In similarly. We have, using a standard result from the theory of branching processes
and (2.7),

E[Ip
n ] = pn E[In] = pn

n∏
i=1

E[L′
i] = pn

n∏
i=1

θi

θi−1
E[Li] = pn θn

θ
E[Tn].

Therefore,

lim inf
n→∞ (E[Ip

n ])1/n = p lim inf
n→∞

(
θn

θ
E[Tn]

)1/n

= p lim inf
n→∞ (θn E[Tn])1/n. (2.8)

We would like to use Proposition 1.1 and Proposition 1.2 on Ip. However, before we can do
this, we need to show that the offspring distributions {L′′

n}∞n=1 satisfy conditions (1.1) and (1.2).
When we use Proposition 1.2, we will assume that (1.3) is satisfied; the details will become
clear.

For some vertex x in generation n − 1, let T i
x be the tree consisting of child number i ∈

{1, . . . , Ln} of x and all the descendants of this child. Define

Nn,∞ = |{T i
x : |T i

x | = ∞, i = 1, . . . , Ln}|,
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and observe that the distribution of this random variable is trivially independent of the specific
choice of x in generation n − 1. Let Yn

i be i.i.d. Bin(1, θn), and observe that

E[(L′′
n)

2] ≤ E[(L′
n)

2]

=
∞∑

j=1

j2 P(L′
n = j)

=
∞∑

j=1

j2 P(Nn,∞ = j | Nn,∞ ≥ 1)

= E[N2
n,∞]

θn−1

= E
[

E
[( ∑Ln

i=1 Yn
i

)2 | Ln

]]
θn−1

≤ E
[

E
[
Ln

∑Ln

i=1(Y
n
i )2 | Ln

]]
θn−1

= E
[
Ln

∑Ln

i=1 E
[
Yn

i | Ln

]]
θn−1

= E[L2
nθn]

θn−1
.

In the second inequality we use the fact that, for any real numbers a1, . . . , an, we have (a1 +
· · · + an)

2 ≤ n(a2
1 + · · · + a2

n). Obviously, we must also have

θn−1 ≥ P(Ln > 0)θn,

and we can use Cauchy–Schwarz to see that

E[Ln]2 = E[Ln 1{Ln>0}]2 ≤ P(Ln > 0) E[L2
n].

Therefore,
E[L2

nθn]
θn−1

≤ E[L2
n]

P(Ln > 0)
≤ E[L2

n]
E[L2

n]
E[Ln]2 ≤ C2

1

C2
2

< ∞.

Furthermore,

inf
n

E[L′′
n] = p inf

n
E[L′

n] ≥ p,

since E[L′
n] ≥ 1 for every n.

We can now proceed to use Proposition 1.1 with (2.8) to see that Ip survives with posi-
tive probability if p > (lim infn→∞(θn E[Tn])1/n)−1, while it dies out almost surely if p <

(lim infn→∞(θnE[Tn])1/n)−1.
This is not quite enough for our purposes: it could be the case that, with positive probability,

I is such that Ip almost surely dies out. Since we want to make a statement about almost all
trees I , we argue that, in fact, if p > 1/ lim infn→∞(θn E[Tn])1/n then �p contains an infinite
component with probability 1, as our next argument shows.

https://doi.org/10.1239/aap/1222868186 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1222868186


808 E. BROMAN AND R. MEESTER

Assume that lim infn→∞(E[Ip
n ])1/n = p lim infn→∞(θn E[Tn])1/n > 1. This is condi-

tion (1.3) for Ip. Construct the tree Ip by letting I
p
1 have distribution equal to L′′

1. Proceed by
letting I

p
2 be the sum

I
p
1∑

i=1

L′′
2,i ,

where {L′′
2,i}∞i=1 are i.i.d. with distribution equal to L′′

2, and let them also be independent of
everything else. Continuing in this fashion, we have two possibilities. First, we may find that
I

p
n > 0 for every n. Second, we might instead find that, for some n, we have I

p
n = 0. If this

is the case, there exists some integer nk1 > n in the subsequence dictated by Proposition 1.2.
However, since I is infinite, we see that �p must contain a subtree (possibly consisting of
only one vertex ) with the root being some vertex at level nk1 . Construct this subtree in the
same way as we constructed Ip above. This subtree has some probability to survive which is,
by Proposition 1.2, uniformly bounded away from 0. It is also easy to see that the event of
survival of this subtree is conditionally independent of the part of �p examined so far (up to
generation n).

If again we find that this subtree is finite, we continue in the same way. Since all the subtrees
that we pick have uniformly positive probability to survive by Proposition 1.2 and the survival
of them are conditionally independent, we see that �p must contain an infinite component with
probability 1. We therefore conclude that

P(�p has an infinite component) =
{

1, p > 1/ lim infn→∞(θn E[Tn])1/n,

0, p < 1/ lim infn→∞(θn E[Tn])1/n.

This is the same as saying that, for almost every I , we will, after performing percolation with
parameter p on I , almost surely obtain an infinite component if

p >
1

lim infn→∞(θnE[Tn])1/n
,

while we will almost surely only obtain finite components if

p <
1

lim infn→∞(θn E[Tn])1/n
.

It follows that, for almost every I , the probability that the component of the root is infinite is
positive if p > 1/ lim infn→∞(θn E[Tn])1/n, while it is 0 if p < 1/ lim infn→∞(θn E[Tn])1/n.
This gives us

pc(I ) = 1

lim infn→∞(θn E[Tn])1/n
,

from which it follows that brI = lim infn→∞(θn E[Tn])1/n (recall that pc(I ) = 1/brI ).
We now proceed with the final step in proving that

lim inf
n→∞ (θn E[Tn])1/n = lim inf

n→∞ E[Tn]1/n.

Obviously, θn E[Tn] ≤ E[Tn] for every n, so we only need to show that

lim inf
n→∞ (θn E[Tn])1/n ≥ lim inf

n→∞ E[Tn]1/n.
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As before, let m = lim infn→∞ E[Tn]1/n > 1, and choose ε > 0 so that m(1 − ε) > 1.
Furthermore, we can choose an N such that E[Tn]1/n ≥ m(1 − ε) for every n ≥ N . Using
inequalities (2.4) and (2.6), we obtain, for some constant C and m ≥ n,

P(Tm > 0 | Tn = 1) ≥
(

C E[Tn]
m∑

j=n+1

1

E[Tj ]
)−1

≥
(

C E[Tn]
∞∑

j=n+1

1

E[Tj ]
)−1

.

Therefore, for n ≥ N ,

θn E[Tn] = lim
m→∞ P(Tm > 0 | Tn = 1)E[Tn]

≥
(

C

∞∑
j=n+1

1

E[Tj ]
)−1

≥
(

C

∞∑
j=n+1

1

(m(1 − ε))j

)−1

=
(

C

(m(1 − ε))n

∞∑
j=1

1

(m(1 − ε))j

)−1

= (m(1 − ε))nC′,

where C′ > 0. Therefore, for all n ≥ N , we have

(θn E[Tn])1/n ≥ m(1 − ε)C′1/n,

so that
lim inf
n→∞ (θn E[Tn])1/n ≥ m(1 − ε).

Since ε > 0 can be chosen arbitrarily small, this completes the proof.

Remark 2.1. In fact, the proof of Theorem 1.1 shows that if the family tree T of a Galton–
Watson process satisfies (1.1), (1.2), and (1.3), and p > pc(T̄ ), then so does the family tree
associated with the Ip process.

3. Proofs of Theorem 1.2 and Proposition 1.3

Before we can prove Theorem 1.2, we need the following domination lemmas. The first one
appears (without proof) in [2]. The proof we give is due to Olle Häggström (unpublished).

Lemma 3.1. For k ≥ 1, p ∈ (0, 1), and 0 ≤ m ≤ k, write ρk,p,m for the distribution of a
Bin(k, p) random variable conditioned on taking a value of at least m. For p1 ≤ p2, we have

ρk,p1,m � ρk,p2,m,

where ‘�’ denotes ‘stochastic domination’.

Proof. For i = 1, 2, let Yi be a Bin(k, pi) random variable, and let Xi be a random variable
with distribution ρk,pi ,m. Since x/(1 − x) < y/(1 − y) for 0 < x < y < 1, it is enough to
show that, for any n ∈ {m + 1, . . . , k}, we have

P(X1 ≥ n)

P(X1 < n)
≤ P(X2 ≥ n)

P(X2 < n)
,
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which is the same as showing that

P(X2 ≥ n)

P(X1 ≥ n)

P(X1 < n)

P(X2 < n)
≥ 1. (3.1)

Writing Z1 and Z2 for the probabilities that Y1 ≥ m and Y2 ≥ m, respectively, the left-hand
side of (3.1) becomes

(1/Z2)
∑k

j=n

(
k
j

)
p

j
2(1 − p2)

k−j

(1/Z1)
∑k

j=n

(
k
j

)
p

j
1(1 − p1)k−j

(1/Z1)
∑n−1

j=m

(
k
j

)
p

j
1(1 − p1)

k−j

(1/Z2)
∑n−1

j=m

(
k
j

)
p

j
2(1 − p2)k−j

. (3.2)

Cancelling the Zis and introducing the notation φi = pi/(1 − pi) for i = 1, 2, the expression
in (3.2) may be further rewritten as

pn
2 (1 − p2)

k−n
∑k

j=n

(
k
j

)
φ

j−n
2

pn
1 (1 − p1)k−n

∑k
j=n

(
k
j

)
φ

j−n
1

pn
1 (1 − p1)

k−n
∑n−1

j=m

(
k
j

)
φ

j−n
1

pn
2 (1 − p2)k−n

∑n−1
j=m

(
k
j

)
φ

j−n
2

=
∑k

j=n

(
k
j

)
φ

j−n
2∑k

j=n

(
k
j

)
φ

j−n
1

∑n−1
j=m

(
k
j

)
φ

j−n
1∑n−1

j=m

(
k
j

)
φ

j−n
2

. (3.3)

Now note that φ1 ≤ φ2, so that

k∑
j=n

(
k

j

)
φ

j−n
2 ≥

k∑
j=n

(
k

j

)
φ

j−n
1

and
n−1∑
j=m

(
k

j

)
φ

j−n
1 ≥

n−1∑
j=m

(
k

j

)
φ

j−n
2 .

Hence, the expression in (3.3) is greater than or equal to 1, so (3.1) is verified and the lemma
is established.

We proceed with the following lemma. We will in fact only use it for the case in which
m = 1, but we nevertheless provide a proof of the general statement.

Lemma 3.2. In the notation of Lemma 3.1, it is the case that, for any 1 ≤ k ≤ l and 0 ≤ m ≤ k,

ρk,p,m � ρl,p,m for all 0 < p < 1.

Proof. It is obvious that we only need to prove the lemma for the case in which l =
k + 1. Therefore, let Y1, . . . , Yk+1 and X1, . . . , Xk be i.i.d. Bernoulli random variables with
expectation p, and let Y = ∑k+1

i=1 Yi and X = ∑k
j=1 Xj . We need to show that P(X ≥ n | X ≥

m) ≤ P(Y ≥ n | Y ≥ m) for all n = m, m + 1, . . . , k. To this end, we write

P(Y ≥ n | Y ≥ m) = P(Y ≥ n | Y ≥ m, Yk+1 = 0) P(Yk+1 = 0 | Y ≥ m)

+ P(Y ≥ n | Y ≥ m, Yk+1 = 1) P(Yk+1 = 1 | Y ≥ m)

= P(X ≥ n | X ≥ m) P(Yk+1 = 0 | Y ≥ m)

+ P(X ≥ n − 1 | X ≥ m − 1) P(Yk+1 = 1 | Y ≥ m).
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Therefore, we need to show that, for n > m,

P(X ≥ n − 1 | X ≥ m − 1) ≥ P(X ≥ n | X ≥ m),

or, equivalently,
P(X ≥ n | X ≥ n − 1) ≤ P(X ≥ m | X ≥ m − 1).

It is easy to see that it suffices to prove this for m = n − 1, or to simplify the notation, to show
that

P(X ≥ n + 1 | X ≥ n) ≤ P(X ≥ n | X ≥ n − 1).

Since
P(X ≥ n + 1 | X ≥ n) = 1 − P(X = n | X ≥ n),

we need to show that

P(X = n − 1 | X ≥ n − 1) ≤ P(X = n | X ≥ n).

Writing pn := P(X = n), we rewrite this as

pn + · · · + pk

pn−1 + · · · + pk

≤ pn

pn−1
,

or, equivalently, as

pn−1(pn+1 + · · · + pk) ≤ pn(pn + · · · + pk).

It suffices to show that pn−1pn+j ≤ pnpn+j−1 for 1 ≤ j ≤ k − n. This, however, is easily
checked by a straightforward calculation.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. For the purpose of this proof, we introduce a new stochastic process
Ĩ

p
n , indexed by n = 1, 2, . . ., as follows. Let Ĩ

p
1 be distributed as the number of points in I

p
1 .

However, if this number of points is 0, we resample according to the same distribution and
repeat this until the total number of offspring is at least equal to 1. If we do not resample at this
first generation, we define R0 := 1; if we do resample, we set R0 = 0.

In an inductive fashion, having defined Ĩ
p
n , we consider all points in Ĩ

p
n and give each of

them a random number of offspring distributed as L′′
n+1, independently of each other. However,

if the total number of offspring is 0, we resample all offspring using the same distributions,
until the total number of offspring is at least equal to 1. If we do not have to resample, we
define Rn := 1; if we do resample, we set Rn = 0. Of course, the distribution of the number
of points in Ĩ

p
n given Ĩ

p
n−1 = k for some k ≥ 1 is the same as the distribution of the number of

points in I
p
n given I

p
n−1 = k conditioned on being at least equal to 1.

We can now write, for any M ,

P(0 < I
p
n < M) = P

(n−1∏
i=0

Ri = 1, 0 < Ĩ
p
n < M

)

≤ P(0 < Ĩ
p
n < M)

= P(Ĩ
p
n < M). (3.4)
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Now let pc(T̄ ) < p < q. We claim that

Ĩ
p
n � Ĩ

q
n .

To see this, we note that the offspring distributions of Ip can be realized by first drawing from
the appropriate L′

n and then keeping all points in the offspring with probability p, independently
of each other. Now the combination of Lemma 3.1 and Lemma 3.2 implies that, for k ≤ � and
p ≤ q, we have

ρk,p,1 � ρ�,q,1. (3.5)

Clearly, we can couple Ĩ
p
1 and Ĩ

q
1 so that Ĩ

p
1 ≤ Ĩ

q
1 , since we can use the same offspring L′

1 for

them to obtain I1 and then the domination follows from Lemma 3.1. Let {L′
2,i}

Ĩ
q
1

i=1 be i.i.d. with

distribution equal to L′
2 and independent of everything else. We can now obtain Ĩ

p
2 by letting

it be a Bin(
∑Ĩ

p
1

i=1 L′
2,i , p) conditioned on being at least equal to 1. Similarly, we obtain Ĩ

q
2 by

letting it be a Bin(
∑Ĩ

q
1

i=1 L′
2,i , q) conditioned on being at least equal to 1. The fact that we can

couple Ĩ
q
2 and Ĩ

p
2 so that Ĩ

q
2 ≤ Ĩ

p
2 now follows from (3.5). Repeating this procedure at every

level gives
P(Ĩ

p
n < M) ≤ P(Ĩ

p1
n < M) for all p > p1, (3.6)

and this is where the uniformity in p comes from.
Of course, letting M above depend on n does not change the validity of the argument.

According to (3.4) and (3.6) it therefore suffices to show that

P(Ĩ
p1
n < ((1 − ε)br ¯Ip1)n) → 0 as n → ∞.

For this, we use Theorem 1.1 and Proposition 1.2. Consider the subsequence {nk} and the
constant C > 0 dictated by applying Proposition 1.2 to Ip1 . This is allowed according to
Remark 2.1. Since each element in the n1th generation of the Ip1 process has a probability
of at least C to survive, there is at least probability C > 0 that no resampling is ever going to
be necessary in the Ĩ p1 process after time n1. There are now two possibilities. Either at some
point resampling is needed or no resampling is ever needed after time n1.

In the latter case, Ĩ
p1
n is at least as large as the number of points in a surviving copy of an

Ip1 tree with only one vertex at generation n1. It follows from Theorem 1.1 that this surviving
tree has branching number br ¯Ip1 . Using the fact that the lower growth number is at least as
large as the branching number, we are done in this case.

On the other hand, if resampling is needed then we take the first element in the subsequence
{nk} after the first resampling and repeat the reasoning from there. It follows that, almost surely,
lim infn→∞(Ĩ

p1
n )1/n ≥ br ¯Ip1 , and the proof is complete.

We can now prove Proposition 1.3.

Proof of Proposition 1.3. We write

θ(p) = P(I
p
n > 0) − P(I

p
n > 0, |Ip| < ∞)

(recall that Ip denotes the component of the root). We will prove that, along a subsequence,
the last term tends to 0 uniformly in p ∈ [p1, 1], where p1 > pc(T̄ ), from which the result
follows.
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Since the p-dependence is important now, we write θn(p) for θn in the context of the Galton–
Watson process associated with Ip. For any M > 0, we write, for p1 ≤ p ≤ 1,

P(I
p
n > 0, |Ip| < ∞) ≤ P(0 < I

p
n < M) + P(I

p
n ≥ M, |Ip| < ∞)

≤ P(0 < I
p
n < M) + (1 − θn(p))M

≤ P(0 < I
p
n < M) + (1 − θn(p1))

M.

Let ε > 0 be arbitrary. We want to apply Proposition 1.2 to Ip. According to Remark 2.1, all
the assumptions of Proposition 1.2 hold for Ip since p > pc(T̄ ).

Now let C be the constant in Proposition 1.2 when we apply it to Ip1 . We choose M so
large that (1 − C)M < ε/2. Next choose n in the appropriate subsequence of Proposition 1.2
and at the same time choose it to be so large that the first term on the right-hand side of the
above inequality is at most ε/2; this is possible according to Theorem 1.2. The right-hand side
is then bounded above by ε, uniformly in p ∈ [p1, 1]. In summary, for any ε > 0, we can find
a K such that

θ(p) ≥ P(I
p
nk

> 0) − ε

for every p ∈ [p1, 1] and every nk in the subsequence dictated by Proposition 1.2 with k ≥ K .
We see that, for all k ≥ K and all p ∈ [p1, 1],

|θ(p) − P(I
p
nk

> 0)| ≤ ε.

This completes the proof.

4. Continuity of the percolation function

The supercritical continuity of θ(p) (Corollary 1.1) follows immediately from Proposi-
tion 1.3. We point out, however, that it is possible to obtain the same result by combining
Theorem 1.1 with a modified version of the classical argument found in [7]. We provide a
sketch.

Sketch of proof of Corollary 1.1 from Theorem 1.1. We start by drawing an I from the cor-
rect distribution. Associate to every edge e in I an independent U([0, 1]) random variable,
denoted by Ue. For pc < q < p, create � q and �p by keeping every vertex of I and
those edges e ∈ I such that Ue ≤ q, p, respectively. Consider any infinite subtree J in �p.
Theorem 1.1 gives pc(J ) = 1/brJ = 1/(p lim infn→∞ E[In]1/n) = pc(I )/p almost surely.
Therefore, performing further percolation on J with density q/p > pc(I )/p will result in
a new graph containing an infinite subgraph almost surely. Of course, the distribution of this
new graph must be the same as J ∩� q . Furthermore, this holds in particular if J = Ip, showing
that if |Ip| = ∞ then there almost surely exists an infinite subtree of Ip ∩� q . It is now possible
to proceed as in [7].

The nonclassical way to conclude continuity of the percolation function has an interesting
analogy on Z

d . Define Bn := [−n, n]d , and write ∂Bn for the (inner) boundary of Bn. Letting
{0 ↔ ∂Bn} denote the event that the origin is connected to ∂Bn by a path of open edges, define

ϕn(p) := Pp(0 ↔ ∂Bn).

Clearly,
θ(p) = lim

n→∞ ϕn(p) for all 0 ≤ p ≤ 1.
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The inequality of the following equation (valid for every n ≥ 1) is a part of Theorem 8.18
of [3]:

ϕn(p) − θ(p) = Pp(0 ↔ Bn, |C| < ∞) ≤ A(p, d)nde−nσ(p), (4.1)

where we can take

A(p, d) = d2

p2(1 − p)d−2 . (4.2)

Furthermore, according to Theorem 8.21 of [3] we can take σ(p) to be uniformly bounded
away from 0 on any closed subinterval of (pc, 1). We point out the following corollary and
sketch its proof.

Corollary 4.1. The percolation function θ(p) on Z
d , d ≥ 2, is continuous for p > pc.

Sketch of proof. Choose pc < p1 < p2 < 1. Combining (4.1), (4.2), and Theorem 8.21
of [3] explained directly above, it is straightforward to prove that there exist constants C =
C(p1, p2) < ∞ and δ = δ(p1, p2) > 0 such that, for any p ∈ [p1, p2] and any n ≥ 1,

ϕn(p) − θ(p) ≤ Ce−nδ.

Since, trivially,
θ(p) ≤ ϕn(p),

it follows that ϕn(p) → θ(p) uniformly on any closed subinterval of (pc, 1), from which the
statement follows.
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