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Introduction

Although many samples in electron microscopy are phase ob-
jects, as in the case of optical microscopy, we cannot directly mea-
sure phase modulation by microscopy. Dennis Gabor proposed a
technique called in-line holography to record both amplitude and
phase information at the rather early stage of electron microscopy
(in 1947). With the development of highly coherent field emission
electron sources, another type of holography, off-axis holography,
became available for electrons. However, holography cannot be
applied to general cases, since there is a requirement for a vacuum
region where the reference wave passes through. Realizing a
Zernike-type phase plate, as used in optical microscopy, has also
been difficult in electron microscopy. Therefore, imaging condi-
tions proposed by Scherzer have been utilized in electron micros-
copy, where an approximate phase plate is realized by introducing
a defocus in the presence of spherical aberration.
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Figure 1. Transport of intensity due to wave propagation.

About twenty years ago, Teague [1] derived an equation for
wave propagation in terms of phase and intensity distributions,
and showed that the phase distribution may be determined by
measuring only the intensity distributions. We call this equation
the Transport of Intensity Equation (TIE). The TIE was recently ap-
plied successfully to transmission electron microscopy at medium
resolution to observe static potential distributions of biological
and non-biological samples or to measure magnetic fields. It has
been very recently verified that the TIE will be applicable to even
atomic resolution images. In this report we introduce the basic
concept of the TIE and show some results obtained from material
science specimens.

What is the Transport of Intensity Equation?

The propagation of a wave is schematically illustrated in Fig.
1. Here, a plane wave impinges a specimen, which distorts both
the amplitude and the phase of the incoming wave. For a phase

22 B MICROSCOPY TODAY May 2005

flxyz)

o

Figure 2. An experimental situation, where we have to estimate the
intensity derivative at the center plane.

object, the amplitude change is negligible, and the information
concerning the specimen is encoded in the phase modulation
(wave front deformation) only. Thus, the amplitude of the exit
wave is almost constant immediately below the specimen exit
surface. However, when a wave propagates through empty space,
the amplitude at some places will increase and at other places
the amplitude will decrease, according to the phase modulation
induced by the specimen. The transport of intensity equation says
that we will be able to determine phase information from intensity
measurements only.
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Mathematically, the TIE for electrons exactly corresponds to
the Schrodinger equation for high-energy electrons in free space.
Namely, the following TIE
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is obtained, when we replace the complex wave function v in the
Schrodinger equation with the two real functions, I and ¢, which
represent the intensity and phase distributions respectively. Here,

ol / dz isan intensity derivative along the wave propagation direc-
tion, and Viy is a two-dimensional Laplacian.

I(xyz)z -V, (I (xyz)nyq) (xyz)) (1)

Thus, we have to estimate an intensity derivative with respect
toz as accurately as possible. An accurate estimate of the intensity
derivative may be obtained by a difference of image intensities
measured at a sufficiently close interval. However, this does not
work in practice, since non-negligible noise always exists in the
images. Therefore, a large defocus step is preferable to increase the
signal over the noise in the intensity difference. For the symmetric
three-image case as shown in Fig. 2, where the three images are
recorded with the same defocus distance, the intensity derivative
may be given by an intensity difference between the two side
planes as follows.

I(Z+8)2_8](Z_8)=%+0(82)

We may note that all of the even order terms of two Taylor
expansions for [ (Z +€ ) and / (Z —&€ ) are cancelled out, and
thus the simple difference will give a good estimate of the deriva-
tive. Nevertheless, the images taken with a too large defocus step

(2)
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Figure 3. Lorenz microscope images of Perovskite-type manganese tri-oxide taken at under-focus, in-focus and and over-focus conditions. The scale bar

is 2 micromn.
will give a poor estimate of the derivative.
An upper limit of the defocus distance
that gives a good estimate of the derivative
in the case of the symmetric three images
may be given by

(nregl, )
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where gmax is the highest spatial frequency
included in the image, and ¢ is a small num-
ber, say 0.25. Table 1 will give an idea of
the defocus limits for some resolutions and
accelerating voltages. The upper defocus
limit is proportional to the square of the
resolution, and inversely proportional to
the wavelength. We may note that the up-
per defocus limit for a resolution of 0.14 nm assuming 400 kV
electrons is 9.5 nm. Since such a large defocus step will give a
sufficient intensity change even for high-resolution images, the
TIE will be applicable to atomic resolution images as shown in
the second example below.

<c<xl (3)

Table 1. Typical upper limits of defocus for the three-image case

dmin TA(2¢) 100 kv 200 kv 400 kv
0.14 nm 4.90 x1072 4.2 nm 6.2 nm 9.5 nm
0.2 9.80 x 1072 8.4 12.4 19.0
1 2.45 211 311 474
10 2.45 x102 21.1 ym 31.1 um 47.4 pym
100 2.45 x10* 2.11 mm 3.11 mm 4.74 mm

This table shows typical upper limits of defocus distance (2¢) between
under-focus and over-focus images for some resolutions d . and
accelerating voltages. Here, we assume an upper error limit as ¢=0.25.

Examples

To demonstrate the applicability of the TIE to measuring the
phase information of an exit wave function, we will show two
results from material sciences.
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Figure 4. (left) Phase distribution and (right) magnetization vector map.

Observation of magnetization patterns

Figure 3 shows in-focus, under-focus and over-focus images
taken from a Perovskite-type manganese tri-oxide (Pr1-x(Caj-y,
Sry)XMnO3 (x=0.45, y=0.4)) using a Lorenz microscope (Hitachi
HEF-3000L) at about 2k magnification. This material undergoes a
transformation from a paramagnetic (high-temperature) phase
to a ferromagnetic (low-temperature) phase at around 220°K.
The defocus distance from the in-focus plane is about 2 mm. We
note that the images taken at under-focus and over-focus condi-
tions show bright and dark contrast bands at domain boundaries,
indicative of a phase contrast effect. Figure 4 shows the restored
phase and a magnetization vector map obtained by a gradient of
the phase distribution. When we compare it with the color wheel,
itis clear that magnetization directions are parallel to the elongated
domain direction. It is also clear that the wide (180 degree) do-
mains and the narrow (stripe) domains magnetize perpendicular
to each other.
Observation of atomic structure with spherical aberration
correction

Figure 5 shows small parts of three images selected from a
focal series of twenty high-resolution images of Si3N4 taken at
a rather large under-focus from 280 nm to 240 nm to prevent
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Figure 6. Phase distributions a
minimal. The scale bar is 2 nm.

attenuation at high spatial frequency due to spatial coherency.
These images were obtained at NCEM, Berkeley using a Philips
CM300 equipped with a field emission gun. The defocus distance
between the under and over-focus images is almost 11.6 nm. Figure
6(a) shows a reconstructed phase at the plane of the center image,
namely around 270 nm under-focus from the sample. Using this
phase distribution and the observed image intensity, we can now
reconstruct a complex wave front at this image plane.

Figure 6(b) shows the phase distribution at the specimen exit
surface (zero-defocus) obtained by back-propagating the wave
front to the specimen plane. Here, Fourier filtering was employed
to remove small heterogeneous contrast. It may be noted that we
can correct spherical aberration as well as transfer attenuation due
to temporal and spatial partial coherency during the back-propaga-
tion. Figure 6(c) shows the phase distribution at the plane where
the amplitude variation is minimal. The phase maps shown in Fig.
6 (b) and (c) bear a striking resemblance to the results reported
by Ziegler et al. [2], where the whole set of twenty images is used
to retrieve the wave field with the MAL technique.

The image processing presented here was performed by using
QPt for DigitalMicrograph [3].

Conclusions

In this report we have clarified the theoretical aspects of
the TIE and shown some materials science examples. The TIE
for electrons exactly corresponds to the Schrodinger equation
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for high-energy electrons in free space, and thus the TIE can
be applied not only to a weak phase object, but also to strongly
scattering objects. It may be surprising that we can reconstruct an
exit wave function at atomic resolution, and then correct spherical
aberration using only three images.
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