
8 
Supersymmetric strings and T-duality 

8.1 T-duality of supersymmetric strings 

We noticed in section 7.5, when considering the low energy spectrum of 
the type II superstrings compactified on tori, that there is an equivalence 
between them. We saw much the same things happen for the heterotic 
strings in section 7.4 too. This is of course T-duality, as we should examine 
it further here and check that it is the familiar exact equivalence. Just 
as in the case of bosonic strings, doing this when there are open string 
sectors present will uncover D-branes of various dimensions. 

8.1.1 T-duality of type II superstrings 

T-duality on the closed oriented Type II theories has a somewhat more 
interesting effect than in the bosonic case12, 8. Consider compactifying a 
single coordinate X 9 , of radius R. In the R ----+ 00 limit the momenta are 
p~ = pI, while in the R ----+ 0 limit p~ = -PI. Both theories are 50(9,1) 
invariant but under different 50(9, l)s. T-duality, as a right-handed parity 
transformation (see (4.18)), reverses the sign of the right-moving X 9 (z); 
therefore by superconformal invariance it does so on (;9(z). Separat~the 
Lorentz generators into their left- and right-moving parts MJ-LV + MJ-Lv. 

Duality reverses all terms in MJ-L9, so the p,9 Lorentz generators of the 
T-dual theory are MJ-L9 - MJ-L9. In particular this reverses the sign of the 
he Ii city .94 and so switches the chirality on the right-moving side. If one 
starts in the IIA theory, with opposite chiralities, the R ----+ 0 theory has the 
same chirality on both sides and is the R ----+ 00 limit of the lIB theory, and 
vice versa. In short, T -duality, as a one-sided spacetime parity operation, 
reverses the relative chiralities of the right- and left-moving ground states. 
The same is true if one dualises on any odd number of dimensions, whilst 
dualising on an even number returns the original type II theory. 

192 
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8.1 T-duality of supersymmetric strings 193 

Since the IIA and IIB theories have different R-R fields, T9 duality 
must transform one set into the other. The action of duality on the spin 
fields is of the form 

(8.1 ) 

for some matrix P9, the parity transformation (nine-reflection) on the 
spinors. In order for this to be consistent with the action {;9 ----+ _{;9, P9 

must anticommute with r9 and commute with the remaining rM. Thus 
P9 = r9rll (the phase of P9 is determined, up to sign, by hermiticity of 
the spin field). Now consider the effect on the R-R vertex operators (7.27). 
The rll just contributes a sign, because the spin fields have definite chi­
rality. Then by the r-matrix identity (7.28), the effect is to add a 9-index 
to G if none is present, or to remove one if it is. The effect on the potential 
C (G = dC) is the same. Take as an example the type IIA vector Cw The 
component C9 maps to the IIB scalar C, while the fL i- 9 components 
map to CM9. The remaining components of CMV come from CMv9, and so 
on. 

Of course, these relations should be translated into rules for T-dualising 
the spacetime fields in the supergravity actions (7.41) and (7.42). The NS­
NS sector fields' transformations are the same as those shown in equations 
(5.4),(5.6), while for the R-R potentials77 : 

d n - 1) G 
C- (n) _ C(n-1) _ ( _ 1) [M· .. vI9 la]9 

M· .. va9 - M· .. va n G99 
(8.2) 

8.1.2 T-duality of type I superstrings 

Just as in the case of the bosonic string, the action of T -duality in the open 
and unoriented open superstring theory produces D-branes and orientifold 
planes. Having done it once (say on X 9 with radius R), we get a T9-
dual theory on the line interval 5 1/7/.,2, where 7/.,2 acts as the reflection 
X 9 ----+ _X9 . The 51 has radius R' = a'/R). There are 16 D8-branes and 
their mirror images (coming from the 16 D9-branes), together with two 
orientifold 08-planes located at X 9 = 0, 'ITR'. This is called the 'type 1/' 
theory (and sometimes the 'type lA' theory, and then the usual open 
string is 'type IB'), about which we will have more to say later as well. 

Starting with the type IB theory, i.e. 16 D9-branes and one 09-plane, we 
can carry this out n times on n directions, giving us 16 D(9 - n) and their 
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194 8 Supersymmetric strings and T-duality 

mirror images through 2n 0(9 - 17)-planes arranged on the hypercube of 
fixed points of Tn /Z2, where the Z2 acts as a reflection in the 17 directions. 
If 17 is odd, the bulk theory away from the planes and branes is type IIA 
string theory, while we are back in type IIB otherwise. 

Let us focus here on a single D-brane, taking a limit in which the other 
D-branes and the O-planes are very far away and can be ignored. Away 
from the D-brane, only closed strings propagate. The local physics is that 
of the type II theory, with two gravitinos. This is true even though we 
began with the unoriented type I theory which has only a single gravitino. 
The point is that the closed string begins with two gravitinos, one with 
the spacetime supersymmetry on the right-moving side of the world-sheet 
and one on the left. The orientation projection of the type I theory leaves 
one linear combination of these. However in the T -dual theory, the ori­
entation projection does not constrain the local state of the string, but 
relates it to the state of the (distant) image gravitino. Locally there are 
two independent gravitinos, with equal chiralities if 17, (the number of 
dimensions on which we dualised) is even and opposite if 17 is odd. 

This is all summarised nicely by saying that while the type I string 
theory comes from projecting the type IIB theory by 0, the T-dual string 
theories come from projecting type II string theory compactified on the 
torus Tn by Orrm[Rm(-l)F], where the product over m is over all the 
17 directions, and Rm is a reflection in the mth direction. This is indeed 
a symmetry of the theory and hence a good symmetry with which to 
project. So we have that T-duality takes the orientifold groups into one 
another: 

(8.3) 

This is a rather trivial example of an orientifold group, since it takes 
type II strings on the torus Tn and simply gives a theory which is sim­
ply related to type I string theory on Tn by 17 T-dualities. Nevertheless, 
it is illustrative of the general constructions of orientifold backgrounds 
made by using more complicated orientifold groups. This is a useful piece 
of technology for constructing string backgrounds with interesting gauge 
groups, with fewer symmetries, as a starting point for phenomenological 
applications. 

8.1.3 T-duality for the heterotic strings 

As we noticed in section 7.4, there is a T-duality equivalence between 
the heterotic strings once we compactify on a circle. Let us uncover it 
carefully. 
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8.2 D-branes as BPS solitons 195 

We can begin by compactifying the SO(32) string on a circle of radius 
R, with Wilson line: 

. 1 {1 1 } A~ = 27TR diag 2'···2,0, ... ,0 , (8.4) 

with eight ~s and eight Os breaking down the gauge group to SO(16) x 
SO(16). We can compute the mass spectrum of the nine dimensional 
theory which results from this reduction, in the presence of the Wilson 
line. This is no harder than the computations which we did in chapter 4. 
The Wilson line simply shifts the contribution to the spectrum coming 
from the PL momenta. We can focus on the sector which is uncharged 
under the gauge group, i.e. we switch off the pt. The mass formula is: 

(n + 2m) 2mR 
IlL = R ± --,-, 

R 0: 

where we see that the allowed windings (coming in units of two) are 
controlled by the integer m, and the momenta are controlled by m and n 
in the combination n + 2m. 

We could instead have started from the Es x Es string on a circle of 
radius R', with Wilson line 

. 1 
A~ = --diag{l, 0 ... 0,1,0, ... , O}, 

27TR' 
(8.5) 

again in two equal blocks of eight. This also breaks down the gauge group 
to SO(16) x SO(16). A computation of the spectrum of the neutral states 
gives: 

, (n' + 2m') 2m'R' 
PL = R' ± --,-, 

R 0: 

for integers n' and m'. We see that if we exchange n + 2m with m' and 
m with n' + 2m' then the spectrum is invariant if we do the right handed 
parity identification PL +--+ p~, PR +--+ -p~, provided that the circles' radii 
are inversely related as R' = 0:' j(2R). 

We shall see that this relation will result in some very remarkable 
connections between non-perturbative string vacua much later, in 
chapters 12 and 16. 

8.2 D-branes as BPS solitons 

Let us return to the type II strings, and the D-branes which we can place 
in them. While there is type II string theory in the bulk (i.e. away from the 
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branes and orientifolds), notice that the open string boundary conditions 
are invariant under only one supersymmetry. In the original type I theory, 
the left-moving world-sheet current for spacetime supersymmetry ja(z) 
flows into the boundary and_the right-moving current Ja(Z) flows out, so 
only the total charge Qa + Qa of the left- and right-movers is conserved. 
Under T-duality this becomes 

(8.6) 

where the product of reflections Pm runs over all the dualised dimensions, 
that is, over all directions orthogonal to the D-brane. Closed strings couple 
to open, so the general amplitude has only one linearly realised supersym­
metry. That is, the vacuum without D-branes is invariant under N = 2 
supersymmetry, but the state containing the D-brane is invariant under 
only N = 1: it is a BPS state265 , 93. 

BPS states must carry conserved charges. In the present case there 
is only one set of charges with the correct Lorentz properties, namely 
the antisymmetric R-R charges. The world volume of a p-brane natu­
rally couples to a (p + I)-form potential C(p+1) , which has a (p + 2)­
form field strength G(p+2). This identification can also be made from the 
g;;l behaviour of the D-brane tension: this is the behaviour of an R-R 
soliton94, 96 as will be developed further later. 

The IIA theory has Dp-branes for p = 0, 2, 4, 6, and 8. The vertex 
operators (7.27) describe field strengths of all even ranks from zero to 
ten. The n-form and (10 - n)-form field strengths are Hodge dual to one 
another*, so a p-brane and (6 - p)-brane are sources for the same field, 
but one magnetic and one electric. The field equation for the ten-form 
field strength allows no propagating states, but the field can still have a 
physically significant energy density 265, 97, 98. 

The IIB theory has Dp-branes for p = -1, 1,3,5,7, and 9. The vertex 
operators (7.27) describe field strengths of all odd ranks from one to 
nine, appropriate to couple to all but the nine-brane. The nine-brane 
does couple to a non-trivial potential, as we will see below. 

A (-1 )-brane is a Dirichlet instanton, defined by Dirichlet conditions 
in the time direction as well as all spatial directions99 . Of course, it is 
not clear that T -duality in the time direction has any meaning, but one 
can argue for the presence of ( -1)-branes as follows. Given zero-branes in 
the IIA theory, there should be virtual zero-brane world-lines that wind 
in a purely spatial direction. Such world-lines are required by quantum 
mechanics, but note that they are essentially instantons, being localised in 
time. A T-duality in the winding direction then gives a (-I)-brane. One 

* This works at the level of vertex operators via a r -matrix identity. 
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8.3 The D-brane charge and tension 197 

of the first clues to the relevance of D-branes25 , was the observation that 
D-instantons, having action g;;l, would contribute effects of order e- 1/ 9s 

as expected from the behaviour of large orders of string perturbation 
theorylOO. 

The D-brane, unlike the fundamental string, carries R-R charge. This is 
consistent with the fact that they are BPS states, and so there must be a 
conserved charge. A more careful argument, involving the R-R vertex op­
erators, can be used to show that they must couple thus, and furthermore 
that fundamental strings cannot carry R-R charges (see also insert 8.1). 

8.3 The D-brane charge and tension 

The discussion of section 5.3 will supply us with the world-volume action 
(5.21) for the bosonic excitations of the D-branes in this supersymmetric 
context. Now that we have seen that Dp-branes are BPS states, and couple 
to R-R sector (p + I)-form potential, we ought to compute the values of 
their charges and tensions. 

Focusing on the R-R sector for now, supplementing the spacetime su­
per gravity action with the D-brane action we must have at least (recall 
that the dilaton will not appear here, and also that we cannot write this 
for p = 3): 

s = -2\ jG(P+2)*G(P+2) + /Lp] C(pH) , (8.7) 
/'Co Mp+l 

where /Lp is the charge of the Dp-brane under the (p + I)-form C(pH). 
MpH is the world-volume of the Dp-brane. 

Now the same vacuum cylinder diagram as in the bosonic string, as we 
did in chapter 6. With the fermionic sectors, our trace must include a 
sum over the NS and R sectors, and furthermore must include the GSO 
projection onto even fermion number. Formally, therefore, the amplitude 
looks like265 : 

A -1OOdtT {l+(-l)F - 2TrtLO} - rNS+R e. ° 2t 2 
(8.8) 

Performing the traces over the open superstring spectrum gives 

where again q = e-2Trt , and we are using the definitions given in chapter 4, 
when we computed partition functions of various sorts. Insert 14.1, p. 327, 
uncovers more of the properties of the f -functions. 
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198 8 Supersymmetric strings and T-duality 

Insert 8.1. A summary of forms and branes 

Common to both type IIA and IIB are the NS-NS sector fields 

The latter is a rank two antisymmetric tensor potential, and we have 
seen that the fundamental closed string couples to it electrically by 
the coupling 

where VI = (21Ta') -1, M2 is the world sheet, with coordinates ea , 

a = 1,1. B(2) = Babdeade, and Bab is the pullback of B/Lv via (5.8). 
By ten dimensional Hodge duality, we can also construct a six form 
potential B(6)' by the relation dB(6) = *dB(2)' There is a natural 
electric coupling V5 fM6 B(6)' to the world-volume M6 of a five di­
mensional extended object. This NS-NS charged object, which is 
commonly called the 'NS5-brane' is the magnetic dual of the fun­
damental string72 , 73. It is in fact, in the ten dimensional sense, the 
monopole of the U(I) associated to B(2)' We shall be forced to discuss 
it by strong coupling considerations in section 12.3. 

The string theory has other potentials, from the R-R sector: 

type IIA: C(l), C(3) , C(5), C(7) 

type IIB: C(O) , C(2) , C( 4), C(6) , C(8) 

where in each case the last two are Hodge duals of the first two, and 
C(4) is self dual. (A p-form potential and a rank q-form potential are 
Hodge dual to one another in D dimensions if p + q = D - 2.) 

Dp-branes are the basic p-dimensional extended sources which cou­
ple to all of these via an electric coupling of the form: 

to their p + I-dimensional world volumes M p+1 . 

The three terms in the braces come from the open string R sector 
with ~ in the trace, from the NS sector with ~ in the trace, and the NS 
sector with ~ (_I)F in the trace; the R sector with ~ (_I)F gives no net 
contribution. In fact, these three terms sum to zero by Jacobi's abstruse 
identity ('aequatio identico satis abstrusa', see insert 14.2, p. 328) as they 
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ought to since the open string spectrum is supersymmetric, and we are 
computing a vacuum diagram. 

What does this result mean? Recall that this vacuum diagram also 
represents the exchange of closed strings between two identical branes. 
the result A = 0 is simply a restatement of the fact that D-branes are 
BPS states: the net forces from the NS-NS and R-R exchanges cancel. 
A = 0 has a useful structure, nonetheless, and we can learn more by 
identifying the separate NS-NS and R-R pieces. This is easy, if we look 
at the diagram afresh in terms of closed string: In the terms with (-l)F, 
the world-sheet fermions are periodic around the cylinder thus correspond 
to R-R exchange. Meanwhile the terms without (-l)F have antiperiodic 
fermions and are therefore NS-NS exchange. 

Obtaining the t ---+ 0 behaviour as before (use the limits in insert 6.2 
(p. 145)) gives 

Comparing with field theory calculations runs just as it did in chapter 6, 
with the result265 : 

(8.11) 

Finally, using the explicit expression (7.44) for K, in terms of string theory 
quantities, we get an extremely simple form for the charge: 

and (8.12) 

(For consistency with the discussion in the bosonic case, we shall still 
use the symbol Tp to mean Tpgs , in situations where we write the action 
with the dilaton present. It will be understood then that e-<I> contains the 
required factor of g;; 1.) 

It is worth updating our bosonic formula (5.27) for the coupling of the 
Yang-Mills theory which appears on the world-volume of Dp-branes with 
our superstring result above, to give: 

(8.13) 

a formula we will use a lot in what is to follow. 
Note that our formula for the tension (8.12) gives for the D1-brane 

1 
(8.14) 
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which sets the ratios of the tension of the fundamental string, Tf == T = 

(27TCx')-1 , and the D-string to be simply the string coupling g8' This is a 
very elegant normalisation and is quite natural. 

D-branes that are not parallel feel a net force since the cancellation is no 
longer exact. In the extreme case, where one of the D-branes is rotated by 
'IT, the coupling to the dilaton and graviton is unchanged but the coupling 
to the R-R tensor is reversed in sign. So the two terms in the cylinder 
amplitude add, instead of cancelling, as Jacobi cannot help us. The result 
IS: 

(8.15) 

where f(t) approaches zero as t ----+ O. Differentiating this with respect to 
Y to extract the force per unit world-volume, we get 

(8.16) 

The point to notice here is that the force diverges as y2 ----+ 2'ITa'. This 
is significant. One would expect a divergence, of course, since the two 
oppositely charged objects are on their way to annihilating101 . The in­
teresting feature it that the divergence begins when their separation is 
of order the string length. This is where the physics of light fundamental 
strings stretching between the two branes begins to take over. Notice that 
the argument of the exponential is tU2 , where U = Yj(2a') is the energy 
of the lightest open string connecting the branes. A scale like U will ap­
pear again, as it is a useful guide to new variables to D-brane physics at 
'substringy' distances102, 103, 104 in the limit where a' and Y go to zero. 

8.4 The orientifold charge and tension 

Orientifold planes also break half the supersymmetry and are R-R and 
NS-NS sources. In the original type I t~eory the orientation projection 
keeps only the linear combination Qa + Qa. In the T-dualised theory this 
becomes Qa + (TIm Pm)Qa just as for the D-branes. The force between an 
orientifold plane and a D-brane can be obtained from the Mobius strip as 
in the bosonic case; again the total is zero and can be separated into NS­
NS and R-R exchanges. The result is similar to the bosonic result (6.18), 

(8.17) 

where the plus sign is correlated with SO(n) groups and the minus with 
USp(n). Since there are 29 - p orientifold planes, the total O-plane charge 
is =r=16ILp, and the total fixed-plane tension is =r=16Tp. 
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8.5 Type I from type lIB, revisited 

A non-zero total tension represents a source for the graviton and dilaton, 
for which the response is simply a time dependence of these background 
fields 105 . A non-zero total R-R source is more serious, since this would 
mean that the field equations are inconsistent: there is a violation of 
Gauss's Law, as R-R flux lines have no place to go in the compact space 
T 9 -p. So our result tells us that on T 9 -p, we need exactly 16 D-branes, 
with the 50 projection, in order to cancel the R-R G(p+2) form charge. 
This gives the T-dual of 50(32), completing our simple orientifold story. 

The spacetime anomalies for G # 50(32) (see also section 7.1.3) are 
thus accompanied by a divergence107 in the full string theory, as promised, 
with inconsistent field equations in the R-R sector: as in field theory, the 
anomaly is related to the ultra-violet limit of a (open string) loop graph. 
But this ultraviolet limit of the annulus/cylinder (t ----+ (0) is in fact the 
infrared limit of the closed string tree graph, and the anomaly comes from 
this infrared divergence. From the world-sheet point of view, as we have 
seen in the bosonic case, inconsistency of the field equations indicates that 
there is a conformal anomaly that cannot be cancelled. This is associated 
to the presence of a 'tadpole' which is simply an amplitude for creating 
quanta out of the vacuum with a one-point function, which is a sickness 
of the theory which must be cured. 

The prototype of all of this is the original D = 10 type I theory31. The 
N D9-branes and single 09-plane couple to an R-R ten-form, and we can 
write its action formally as 

(8.18) 

The field equation from varying C lO is just G = 50(32). 

8.6 Dirac charge quantisation 

We are of course studying a quantum theory, and so the presence of 
both magnetic and electric sources of various potentials in the theory 
should give some cause for concern. We should check that the values of 
the charges are consistent with the appropriate generalisation of114 the 
Dirac quantisation condition. The field strengths to which a Dp-brane and 
D(6 - p)-brane couple are dual to one another, G(p+2) = *G(8-p). 

We can integrate the field strength *G(p+2) on an (8 - p)-sphere sur­
rounding a Dp-brane, and using the action (8.7), we find a total flux 
<I> = /Lp. We can write *G(p+2) = G(8-p) = dC(7_p) everywhere except on 
a Dirac 'string' (see also insert 9.2; here it is really a sheet), at the end of 
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which lives the D(6 - p) 'monopole'. Then 

<I> = 212 r *G(p+2) = 212 r C(7-p) , 
K:o J sS-p K:o J S7-p 

(8.19) 

where we perform the last integral on a small sphere surrounding the 
Dirac string. A (6 - p)-brane circling the string picks up a phase eiJ1G - p iJ>. 

The condition that the string be invisible is 

(8.20) 

The D-branes' charges (8.11) satisfy this condition with the mzmmum 
quantum n = 1. 

While this argument does not apply directly to the case p = 3, as the 
self-dual five-form field strength has no covariant action, the result follows 
by the T-duality recursion relation (5.11) and the BPS property. 

8.7 D-branes in type I 

As we saw in section 7.1.3, the only R-R potentials available in type I 
theory are the two-form and its dual, the 6-form, and so we can have D1-
branes in the theory, and D5-branes, which are electromagnetic duals of 
each other. The overall 16 d9-branes carry an 50(32) gauge group, as we 
have seen from many points of view. Let us remind ourselves of how this 
gauge group came about, since there are important subtleties of which we 
should be mindful132 . 

The action of 0 has representation 10' which acts on the Chan-Paton 
indices, as discussed in chapter 4: 

where '1jJ represents the vertex operator which makes the state in ques­
tion, and O'lj; is the action of 0 on it. The reader should recall that we 
transposed the indices because 0 exchanges the endpoints of the string. 
We can consider the square of 0: 

(8.21) 

and so we see that we have the choice 

If 10 is symmetric, the with n branes we can write it as I 2n , the 2n x 2n 
identity matrix. Since the 99 open string vertex operator is 8t X J1 , it has 
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(as we have seen a lot in chapter 4) n = -1. Therefore we do have the 
symmetric choice since, as we tacitly assumed in equation (8.21) n2 = 1, 
and so we conclude that the Chan-Paton wavefunction is antisymmetric. 
Since n = 16, we have gauge group SO(32). 

If '0 was antisymmetric, then we could have written it as 

iIn) 
o ' 

and we would have been able to have gauge group U Sp(2n). In fact, 
we shall have to make this choice for D5-branes. Let us see why. Let 
us place the D5-branes so that they are pointlike in the directions X rn , 
m = 6,7,8,9, and aligned in the directions Xfl, fL = 0,1, ... ,5. 

Consider the 5-5 sector, i.e. strings beginning and ending on D5-branes. 
Again we have n = -1 for the vectors 3t Xfl, and the opposite sign for 
the transverse scalars 3n xrn. In general, other sectors can have different 
mode expansions. Generically the mode for a fermion is 'I/Jr and n acts 
on this as ±(-It = ±ei7Tr (see chapter 11 for more discussion of these 
possible modings). In the NS sector they are half-integer and since GSO 
requires them to act in pairs in vertex operators, their individual ±is give 
n = ±1, with a similar result in the R sector by supersymmetry. 

The 59 sector is more subtle132 . The xrn are now half-integer moded 
and the 'ljJrn are integer moded. The ground states of the latter therefore 
form a representation of the Clifford algebra and we can bosonise them 
into a spin field, as we did in chapter 7 in a similar situation: eiH3 rv 

'ljJ6 + i'l/J 7, and eiH4 rv '1/J8 + i'ljJ9. In fact, the vertex operator (the part of it 
relevant to this discussion) in that sector is 

Now consider the square of this operator. It has parts which are either in 
the 55 sector or the 99 sector, and is of the form 

So it has n = -1, since each 'l/J-l/2 gives ±i. So n2 = -1 for V59 for 
consistency. 

Returning to our problem of the choices to make for the Chan-Paton 
factors we see that we have an extra sign in equation (8.21), and so 
must choose the antisymmetric condition ,,[; = -'0. Therefore, in type I 
string theory, n D5-branes have gauge group USp(2n). Notice that this 
means that a single one has SU(2), and the Chan-Paton wavefunction 
can be chosen as the Pauli matrices. The Chan-Paton wavefunction for 
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the scalars for transverse motion must simply be 8ij , since we have an­
other sign. This simply means that the two D5-branes (corresponding to 
the two index choices) are forced to move with each other as one unit. 

Notice that this fits rather nicely with our charge quantisation com­
putation of the previous section132 . The orientifold projection will halve 
the force between D1-branes and between D5-branes in the charge calcu­
lation, and so their effective charges would be reduced by y'2, violating 
the Dirac quantisation condition by a factor of a half. However, the fact 
that the D5-branes are forced to move as a pair restores a factor of two 
in the quantisation condition, and so we learn that D-branes are still the 
smallest consistent charge carries of the R-R sector. 

We can augment the argument above for Dp branes in type I in general, 
and obtain132 

For p = 3 and p = 7, we see that simply gives an inconsistency, which is 
itself consistent with the fact that there is no R-R four-forms or eight­
form for a stable D3-brane or D7-brane to couple to. For p = 1 we recover 
the naively expected result that they have an SO(2n) gauge group. 

In chapter 14 we shall see that when we combine the orientifold action 
with other spacetime orbifold symmetries, we can recover extra phase 
factors by means analogous to what we have uncovered here in order to 
discover other choices for D5- and D9-brane gauge groups. 
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