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1. INTRODUCTION

It is well known that populations of sexually reproducing organisms such as
man and Drosophila contain a large amount of genetic variability. Ubiquity of
lethal and detrimental genes has been demonstrated in various species of Droso-
phila. Inbreeding studies suggest that the same situation is met with also in man
and other organisms. The existence of genetic variability in quantitative characters
has been amply demonstrated by selection experiments with diverse plants and
animals. Moreover, recent studies on enzyme polymorphism in man and Drosophila
(Harris, 1966 ; Lewontin & Hubby, 1966) strongly suggest that genetic variability
is quite pronounced at the protein level. It is probable that at the level of genetic
material, or in terms of nucleotide sequence, variability within a population is still
greater.

Since each gene is made up of a sequence of at least hundreds or thousands of
nucleotide pairs and since some base substitutions may have very little effect, it is
possible, as reasoned by Kimura & Crow (1964), that the wild-type gene is not a
single entity, but a set of different isoalleles that are indistinguishable by any
ordinary procedure. They investigated the population consequences of such a
system, assuming neutral and overdominant mutations. More recently, Wright
(1966) discussed the evolutionary implications of such a system under the term
‘polyallelic random drift’.

The purpose of the present paper is to present a fuller treatment of this system
for neutral mutations. Also, some discussion on the nearly neutral mutations will be
presented. The recent findings of ‘degeneracy’ of DNA code, that is, existence of
two or more base triplets coding for the same amino acid, seem to suggest that
neutral mutations may not be as rare as previously considered. Furthermore, some
amino acid substitution in a polypeptide chain may have very little effect on the
biological activity of the protein, still adding to the possibility of neutral or nearly
neutral mutations. '
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by a Grant from Toyo Rayon Foundation.
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2. AVERAGE HOMOZYGOSITY AND THE EFFECTIVE NUMBER
OF ALLELES IN A POPULATION

Throughout this paper, I will consider a population of NV diploid individuals and
designate by N, the effective population number (cf. Kimura & Crow, 1963), which
may be different from the actual number N.

Let us consider a particular locus and assume that there are K possible allelic
states 4,, 4,,..., Ag and that each allele mutates with rate «/(K — 1) to one of the
remaining (K — 1) alleles, so that « is the mutation rate per gene per generation and
this is equal to all the alleles. Then, if «; is the frequency of 4, in a population, the
amount of change in one generation of z; denoted by dz; has mean and variance

u

K-1
V(dz;) = x;(1—=;)/(2N,). (2.2)

M(ox;) = (1-Kuz,), (2.1)

Thus, it can be shown with rather elementary but exact calculation that, at
equilibrium in which the mutation and random sampling of gametes balance each
other, the frequency distribution of x; has the first and the second moments about
zero as follows:

m = 1K, (2.3)

2 22
, 4N,u 2N,u l}/{4NeuK 2N, u*K 1} - (2-4)

Ha = =K(K—1)"(K—1)2+F K—1 (K-1p"

Therefore the average homozygosity, or the expectation of the sum of squares of
allelic frequencies is

_ K
H, = E( in) = Ku,, (2.5)
i=1
with u, given by (2.4).
The effective number of alleles (n,) as defined by Kimura & Crow (1964) is the

reciprocal of H,, so that

n, = 1/H, = :4Neu(EIf—l)—2Neu2<%)2+ 1}/{%—%+ 1}. (2.6)

If 2N, 42 is much smaller than unity, we have, with good approximation,

K 1
n, = {42\731‘(1?_—1) + 1}/{41\7‘4“(?{&—1) + 1} . (2.7)
If, in addition, the number of allelic states is indefinitely large (K = o0), the above
reduces to
n, = 1/Hy = 4N,u+1, (2.8)

a result derived by Kimura & Crow (1964) using a different method. Actually, the
formula is valid as long as the number of allelic states K is much larger than
4N,u+1.
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On the other hand, if 2N,u? is not necessarily very small but K = oo, (2.6)
reduces to
n, = 4N,u+1— 2N, u2. (2.9)

Since formula (2.6) is exact and no restrictions are placed on mutation rate u,
effective population number N, and the number of possible allelic states K, it is
reassuring to find here that formula (2.8), i.e. n, = 4N,u+ 1 is valid under rather
mild restrictions

2Nu? € 4N,u+1 < K. (2.10)

It is sometimes remarked that a formula like (2.8) is valid only for % up to 1/N,,
but no such restriction is needed.

3. PROBABILITY DISTRIBUTION OF ALLELIC FREQUENCIES AND
THE AVERAGE NUMBER OF ALLELES IN A POPULATION

In this section, we will investigate the distribution of allelic frequencies using the
method of diffusing approximation (cf. Kimura, 1964). Let ¢(p, x; ¢) be the proba-
bility density that the frequency of 4; becomes x at the ¢th generation given that
it is p at the zero (initial) generation. In the following, in order to simplify expres-
sions, letter « rather than z; will be used to represent the frequency of A4,, still
assuming that there are K possible allelic states. Since, from (2.1) and (2.2), the
mean and the variance of §z per generation are respectively

Ku (1
z(l—x
and Viz = (2Ne ), (3.2)
&(p, x; t) satisfies the following Kolmogorov forward equation
o¢p 1 02 _0f,_
- = Z—ﬁeﬁlx(l -—x)_¢} —m%{(x—x)q’)}, (3.3)

where m = Ku/(K—1)and z = 1/K.

The above equation represents a continuous stochastic process in the change of
gene frequency x due to linear evolutionary pressures (mutation, migration) and
random sampling of gametes. The solution of this process for arbitrary values of
p, m, T and N, was obtained by the present author through the study of the
moments of the distribution (cf. Crow & Kimura, 1956). It is given by

P(p, x; ) = 1210 X; (x)eXP{“i(Tn+i4—T:)t}, (3.4)

where X,(z) = 28 1(1—2)4-BP-1F4+i—1, —i,A—B,1-x)
NA—-B+i)l'( A+ 20’4 +3—1)
IMA-B)I'(B+i)I'(4+2i—-1)

x F(A+i—1, —i, A—B, 1—p)

in which 4 = 4N,m, B = 4N,z and F(., ., ., .) represents the hypergeometric
function. For the present case 4 = 4N,uK/(K—1) and B = 4N,u/(K—1).
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At the limit ¢ - oo, the above distribution converges to

P(p, z; 0) = Xo(),

which is independent of the initial frequency p. We will denote this distribution by
¢(x). Thus we obtain

P(@) = %ﬁ%’%(b@hlﬁ—l, (3:5)

where « = A—B = 4N,u and § = B = 4N,u/(K—-1).
The first and the second moments about zero of this distribution are

pi = 1K (3.6)

, 1 1 K
Ho = E{ 41\7611/(]{'—_1‘) + 1}/{4Mu(ﬁ) -+ 1} (3.7)
respectively.

The distribution given by (3.5) is the steady-state distribution which is realized
when the effects of mutation (or migration) and random sampling of gametes
balance each other. It can also be derived by using Wright’s formula for the gene
frequency distribution at steady state, namely,

and

d(x) = Vgexp(Z ﬁ'f"wdx) (Wright, 1938a), (3.8)
Sx oz

in which constant C is determined such that

fol d(x)dx = 1. (3.9)

Going back to the general solution (3.4), we note, as pointed out earlier (Crow &
Kimura, 1956), that

flqﬂ(p, x;t)de = 1. (3.10)
0

This means that, for the present case, the procedure (3.9) of determining C is not
an arbitrary statistical procedure, but is the one intrinsically determined by the
process. Also, it means that with the present formulation no probability mass
exists at any time strictly at the boundaries, i.e. at both x = 0 and z = 1. On
the other hand, in an actual population, especially when it is small, we should
expect a considerable possibility of an allele being temporarily lost or fixed in the
population.

It looks, then, as if the above approach based on the diffusion approximation
is inadequate to obtain the probability of temporary loss or fixation. Fortunately,
however, it turns out that the required probability mass lies in the intervals
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(0, 1/2N) and (1—1/2N, 1). Thus, the probability that allele 4, is temporarily
lost from the population may be obtained from

1/(2N)
10 = [ @) (3.11)
and the probability that it is temporarily fixed in the population from
1
fa) = f o (x)dx. (3.12)
1-1/(2N)

The probability that both 4, and its alleles (collectively denoted by 4;) co-exist
in the population is
1-1/(2N)
Q= o(x)dx. (3.13)
1/(2N)
If we substitute the distribution formula (3.5) into (3.11), we obtain
T(@+f) [Hew

1O = gorip), (- (3.14)

as the probability that 4, is temporarily lost from the population. Since » and
1/(2N) are generally very small, the above reduces, with good approximation, to

_ De+p) (1)
10 = syrigin (o) @19
where o = 4N,u and f = 4N,u/(K—1). Similarly, the probability that 4, is

temporarily fixed is
_ TDe+p) 1\
10 =t (zn) (3.16)

Now, formula (3.15) may be expressed in the form

()0 -1 8503 )

é 1\ _ T@a+p) (1)1
2N] — D(«)T(B) \2N
approximately, it may also be expressed as

sl - ME o

The left-hand side of the above equation represents the number of populations
which have no 4, genes which move to the class having one or more of them, since
2Nu/(K —1) is the expected number of A; genes produced per generation in a
population where A4; is absent. On the other hand, the right-hand side of the
equation is half the frequency of the subterminal class (x = 1/2N) multiplied by the
factor N/N, and it represents the number of populations containing one or more 4,

but, since
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genes which move to the class where 4, is absent (cf. Kimura, 1964, p. 12). At
statistical equilibrium in which mutational production of an allele is balanced by
random extinction of that allele, the above two numbers should be equal and this
justifies equation (3.17) and therefore (3.15). A similar argument applies to (3.16).

I will now proceed to derive the effective and the average number of alleles
maintained in a population, using the above approach.

The effective number of alleles, as defined in the previous selection, is the
reciprocal of the sum of squares of the allelic frequencies. The latter is

B () - i ol o ()

(3.18)
and this gives the effective allele number

e 1 N A

which agrees with (2.7) of the previous section. At the limit K — co, where the
number of possible allelic states is infinite, this reduces to n, = 4N,u+1.

The average number of alleles denoted by =, is equal to the reciprocal of the
mean frequency of alleles existing within a population. The mean here is different
from the unconditional mean (x;) in that temporarily lost alleles are not taken into
account. The frequency of a particular allele, say A,, averaged over all cases in
which it is represented at least once in a population is

7w + 0] = pi/{1—-f(0)}. (3.20)

In the present model of assuming equal mutation rates, this value is the same for all
the alleles and therefore the average number of alleles turns out to be as follows:

K I‘(cx+ﬁ
@) I(8) J 112y
where o = 4N,u and £ = 4Neu/(K— 1).
Figure 1 illustrates the relation between n, and K assuming 4N,u = 1 and
N = 104, together with the relation between », and K. At the limit K - co, the
above formula for n, converges to

n, = K{1-f(0)} = (1 —z)*1f-1dx, (3.21)

1
= 4;N;uf (1 —)tNeu—1p—1 gy, (3.22)
1/(2N)
This can also be derived immediately by the frequency distribution given by
Kimura & Crow (1964),
O(z) = 4M (1 —x)M 11 (3.23)

where M = N,u, in which » is the mutation rate to new (not pre-existing) alleles.
This distribution has a different meaning from the one so far considered, such as
(3.5), in that ®(x)dx represents the expected number of alleles whose frequency is
in the range z to « + dz within the population, rather than representing the proba-
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bility that o particular allele lies in the frequency range z to x+dx. Thus, inte-
grating (3.23) from z = 1/(2N) to = 1, we obtain

1
n, = 4Mf (1 —x)M-1x1 dyg, (3.24)
1/(2N)

which agrees with (3.22). In the special case of N = N,, this reduces a formula
given by Ewens (1964, 1966), who derived it by considering the fate of a new allele.
Essentially the same formula as that of Ewens was obtained earlier by Wright

n,

-
o

wv

Number of alleles

-

1 P11 I B | (| 1
1 2 5 10 20 50 100 200 500 1000 ©
K

Fig. 1. Relationship between the number of alleles (n4, 7,) and the number of
possible allelic states (K) in a population of N = 10000, assuming N,u =0-25
(N,; effective population number, %; mutation rate). The solid line represents the
relationship between the actual number of alleles (n,) and K, while the broken line
represents the relationship between the effective number of alleles (n,) and K.

(1949). It is important to note, however, that in natural as well as controlled
populations, the actual population number (N) may be considerably different
from the effective population number (XV,).

The effective number of alleles is obtained from the above distribution (3.23) by

evaluating the reciprocal of
1
f 22 ®(x)dx,
0

giving
n, = 4M+1 = 4N,u+1 (3.25)

(Kimura & Crow, 1964). This agrees with formula (2.8) in the previous section.
Table 1 lists the average number of alleles obtained by numerical integration of
formula (3.24), together with the effective number of alleles derived from (3.25).
Also, the relation between the number of alleles and N,u is illustrated in Fig. 2.

4. SOME SIMULATION STUDIES

In order to check the validity of the foregoing treatments, simulation studies
were carried out by using computer IBM 7090. Two programmes (both in Fortran
IT) were written that differ essentially in the mode of production of mutant genes.

In the first program, a pre-determined number of new mutant alleles are intro-

17 GRH II
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duced into the population in each generation (deterministic mutation). Also, it is
so written that all members of the population contribute equally to the gene pool,
from which 2N gametes are randomly sampled to form the next generation. Thus,
the program simulates a monoecious population whose effective number is equal
to the actual number, i.e. N = N,. In the second program, mutation to a new
allele is induced with a given probability (x) at each step of gamete sampling
(random mutation). The program is so written that the population consists of an

Table 1. The average number (n,) and the effective number (n,) of alleles in a
population of actual size N and effective size N,

AN,
N:vk
0-001
0-010
0-025
0-050
0-100
0-250
0-500
1-000
2-000
4-000
6-000
8-000

5x 102

1-028
1-274
1-675
2-324
3-557
6-908
11-82
20-31
34-58
57-67
76-72
93-18

10-000 107-7

108

1-030
1-301
1-745
2-462
3-834
7-601
13-20
23-08
40-09
68-64
93-08
114-9
134-7

Number of alleles

5x 108 10t
1.037 1-040
1-366  1-394
1-906  1-975
2-784  2-923
4-478 4755
9-210 9-903
16-42 17-81
29-51  32-28
5295  58:50
94-30 105-4
131-5 1481
166-0 1881
198-5  226-1
10° -
800 I~
600 -
400
200
1021
80
60
40
20
10
8
6
4
2

-
-
=—f===1" 1 11

5x 10t

1-046
1-458
2-136
3-245
5-399
11-51
21-03
38:72
71-36

1311
186-7
239-6
290-4

108

1-049
1-486
2-205
3:384
5-676
12-21
22-41
41-49
76-91
142-2
203-3
261-7
3181

5x 108

1-055
1-550
2-367
3-705
6-320
13-82
2563
47-93
89-78
168-0
242-0
313-2
382-5

N=10¢

108

1-058
1-578
2-436
3-844
6-597
14-51
27-02
50-70
- 95:33
179-0
258-6
3354
410-2

10-2 1071

Neu

Effective
number of
alleles n,

1-004
1-040
1-100
1-200
1-400
2-000
3:000
5-000
9-000
17-000
25-00
33-00
41-00

Fig. 2. Graphs showing the relationship between the number of alleles and N,u,
where N, is the effective population number and « is the mutation rate. The solid
lines give the average number of alleles (n,) corresponding to four levels of population
number, N = 103, 10, 10° and 10%, while the broken line gives the effective number
of alleles (n,), which is independent of N.
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equal number of males and females and that the numbers of breeding males and
females may be made smaller than the actual numbers of males and females. Thus
it simulates a dioecious population whose effective number may be smaller than
the actual number. The effective population number here is given by Wright’s
formula (Wright, 1938),

Z\'Te = mef/(Nm'i'ZVf):

where N,, and N, are the numbers of breeding males and females.

In both programs, sampling of gametes and occurrence of mutation are simu-
lated by generating pseudo-random numbers (using subroutine RAND1). Also,
each mutation is treated as a state not pre-existing in the population, so that three
formulas, (3.23),(3.24) and (3.25), are relevant in comparing theoretical expectations
with computer results. Outputs of both the actual and effective allele numbers
were given at pre-assigned intervals. Also, frequency distribution of various alleles
within a population was printed out.

g . -\}\”\/

3 S 1s5f N '
ZEEMNANG A A
- 5 10 NS
o 0 M‘o-oo..o
3 E sf ol N
E Z ol vy 0oy g Y Yt
Z 200 400 600 800 1000 1200 80 240 400 560 720 880

Generation Generation

Fig. 3 Fig. 4

Figs. 3 and 4. Results of Monte Carlo experiments regarding the number of neutral
alleles. In both these experiments, one new mutation is induced in each generation.
The average (actual) and the effective number of alleles are plotted respectively
by solid and open circles. Horizontal lines, solid and broken, represent corresponding
theoretical values derived from the method of diffusion approximation. In Fig. 3, the
population consists of 100 monoecious individuals who contribute with equal prob-
ability to leaving offspring, namely, N = N, = 100. The mutation rate («) is 0-005.
In Fig. 4, N = N, = 500, u = 0-001. Neutral alleles deterministic mutation:
@—, average (actual) number, O -- -, effective number.

Figures 3-6 illustrate some of the results of Monte Carlo experiments performed
by using these two programs. Throughout the experiments, the initial condition
was set up such that a population at the zero generation contained 2N alleles,
that is, all the genes in the initial population were represented by different
alleles.

In the experiment shown in Fig. 3, one new mutation was induced in each
generation in a population of 100 individuals (2Nu = 1, N = N, = 100). Starting
with 200 alleles, the balance between mutation and random extinction of alleles
has been reached well before generation 100. Actually, a few trials indicated that
the majority of the initial 200 alleles are lost within the first 20 generations. Both
the average (actual) and the effective numbers of alleles are plotted in the figure
at intervals of 20 generations from generation 100 through generation 1200

17-2
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(56 outputs for each of these two allele numbers). Averaged over these 56 outputs,
the average and the effective numbers of alleles turned out to be as follows:

ng, = 968, n, = 3-13 (observed).

The former was obtained by taking the arithmetic mean of the 56 observed values
for the actual allele number, while the latter was obtained by taking the harmonic
mean of the 56 observed values for the effective allele number. The corresponding
values for n, and n,, derived from equations (3.24) and (3.25) by putting N = 100
and N,u = 0-5, are as follows:

n, = 861, mn, = 3-00 (theoretical).

These are shown by the horizontal lines in the figure.

Figure 4 illustrates a result of a similar experiment assuming a population of
500 individuals in which one new mutant allele is introduced in each generation.
Starting with 1000 different alleles in the zero generation, the balance between
mutation and random extinction of alleles is reached well before generation 200.
Actually, a majority of the initial 1000 alleles are lost by generation 50. Note that
in a very large population the chance of survival of a single neutral gene for ¢
generations is approximately 2/t when ¢ is large (Fisher, 1930). Averaged over
21 outputs (from generation 200 through generation 1000 at intervals of 40
generations), the average and the effective numbers of alleles were as follows:

n, = 13-43, n, = 2-79 (observed).
The corresponding values derived from diffusion approximations are
n, = 11-82, n, = 3-00 (theoretical).

Thus, the two experiments assuming deterministic mutation have given results
that agree fairly well with theoretical predictions. The diffusion approximation,
however, tends to underestimate n, slightly. The remaining two experiments which
are illustrated in Figs. 5 and 6 were carried out by using the second program
(random mutation).

In the experiment shown in Fig. 5, the population consists of 50 males and 50
females (N = 100), of which only 25 males and 25 females actually participate
in breeding (&, = 50). In each generation, 100 male and 100 female gametes are
randomly chosen from these 25 breeding males and 25 breeding females to form
the next generation. Mutation to a new, not pre-existing, allele is induced in each
gamete with probability 0-005 prior to the formation of zygotes (v = 0-005). The
initial population was set up such that it contained 200 different alleles. The
balance between mutation and random extinction of alleles was reached well
before generation 100. Actually, the majority of the original 200 alleles were lost
by generation 20. The figure depicts the course of fluctuation of the average and
the effective numbers of alleles in the population at intervals of 40 generations,
from generation 120 through generation 2080. The actual computer outputs were
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at intervals of 20 generations and gave 100 observed pairs over generations 120—
2100, from which the average and the effective numbers of alleles came out as
follows:

n, = 6:05, n, = 2:07 (observed).

On the other hand, from equations (3.24) and (3.25), the corresponding values are:
n, = 530, mn, = 2:00 (theoretical).

In the experiment illustrated in Fig. 6, the actual population number is 100, while

the effective population number is 18 (5 breeding males and 45 breeding females).

The mutation rate is the same as before. The simulation was carried out until
generation 1300 and outputs of both the average and the effective numbers of

§ 100 8 100

b—1 80 o -

T 60 = 5OF

5} s oF

g ol ? sob

€ 20 2 20 Poasen e -

=] 00 S 0-0 1 [ 1 -

z 1000 1400 1800 z 200 400 600 800 1000 1200
Generation Generation
Fig. 5 Fig. 6

Figs. 5-6. Results of Monte Carlo experiments as regards the number of neutral
alleles. In these 2 experiments, mutation to a new, not pre-existing, allele is induced
at each gamete sampling with probability 4 = 0-005. The average and the effective
numbers of alleles are plotted respectively by solid and open circles. Horizontal
lines, solid and broken, represent corresponding theoretical values derived from the
diffusion approximations. In Fig. 5, the population consists of 50 males and 50
females, 25 of each sex participating in breeding, so that N = 100, N, = 50. In
Fig. 6, N = 100 but N, = 18. For details, see text. Neutral alleles random mutation:
@®—, average (actual) number, O ---, effective number.

alleles are given at intervals of 20 generations starting from generation 120. This
yielded 60 pairs of outputs, from which the following values were obtained :

n, = 412, n, = 1-38 (observed).

The corresponding values derived from equations (3.24) and (3.25) by putting
N = 100, N, = 18, u = 0-005 are:

n, = 2:74, m, = 1-36 (theoretical).

Additional results of Monte Carlo experiments together with those already men-
tioned are summarized in Table 2. Despite the smallness of the population number
assumed in these experiments, agreement between observed and expected values
is fairly good, except that the diffusion approximation tends to underestimate »,.

These Monte Carlo experiments also gave the frequency distribution of various
alleles within a population at equilibrium. An example is given in Fig. 7 in which
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observed values are plotted with the squared dots. They were derived from the
same experiment from which Fig. 5 was constructed and they were the averages
of 100 actual distributions observed from generation 120 through generation

Table 2. Summary of the results of Monte Carlo experiments regarding the
number of neutral alleles in a population
In the experiments No. 1 and No. 2, mutation is deterministic, but in the remain-

ing experiments, mutation is stochastic. The numbers inside parentheses indicate
the numbers of outputs from which n, and n, were computed.

Population Observed Diffusion
size means approximations
EXpt . f—‘—A_ﬁ Muta.tion f_‘A‘_—\ f—“—k_—_ﬂ
no. N Ne 3 9 rate Output N, M, N, 7,

1 (Fig. 3) 100 100 /[ / 0-005 100-1200 (56) 9-68 3-13 8:61 3-00
2 (Fig. 4) 500 500 /[ / 0-001  200-1000 (21) 13-43 2-79 11-82 3-00
3 (Fig. 5) 100 50 25 25 0-005 120-2100 (100) 6-05 2-07 5-30 2-00
4 100 100 50 50 0-005 120-2100 (100) 9-34 2-26 861 3-00
5 (Fig.6) 100 18 5 45 0005 120-1300 (60) 4-12 1-38 2-74 1-36

( 100 100 50 50 0-005 100-1200 (23) 10-91 3-22 8-61 3-00
7 100 50 25 25 0-005 100-1200 (23) 5-52 1-93 5-30 2-00
8 50 50 25 25 0-01 40-400 (19) 9-32 3-67 7-23 3-00
9 100 50 25 25 0-01 50-500 (19) 10-42 313 8-61 3-:00
10 200 200 100 100 0-01 140-1120 (50) 34-74 10-66 27-30 9-00
11 500 167 50 250 0-001  220-900 (18) 6-78 1-99 5-07 1-67

1-41—

13F
12+
11
10 |-
09 |-
0-8
07
06
0-5
0-4
03
0-2
L u
s T T
1 5 10 15 20 25 30 35 40
Number of representatives in population

Frequency of alleles

Fig. 7. Frequency distribution of alleles at equilibrium in a population consisting of
50 males and 50 females, of which only 25 males and 25 females actually participate in
breeding. The mutation to a new, not pre-existing, allele is induced at each gamete
sampling with probability 0-005. Squared dots represent the observed values from
a Monte Carlo experiment and the solid curve represents the theoretical distribution
obtained from the diffusion approximation. The ordinate stands for the frequency
(in absolute number) of alleles having 1, 2, 3, etc., representatives in the population.
Frequency distribution of neutral alleles in a population: N = 100, N, = 50,
u = 0-005; —, theoretical distributions, W, observed frequency.
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2100 at intervals of 20 generations. The ordinate in the figure stands for the fre-
quency (in absolute numbers) of alleles that have 1, 2, 3, etc., representatives in
the population. To make the meaning of the above distribution clearer, let us
suppose that a small population consists of 5 individuals, 4,4,, 4,4, 4,4,
AzA,, A Ag. In this case, allele 4, has 3 representatives, alleles 4, and 4; have
2 representatives each, and alleles 4,, 4; and A4 have a single representative each.
Thus the frequencies (in absolute number) of alleles that have 1, 2 and 3 repre-
sentatives are 3, 2, and 1 respectively. This population contains 6 different alleles
but the sum of squares of allelic frequencies (in proportion) is 0-2 and therefore
n, = 6, n, = 5.

Going back to the distribution in Fig. 7, the solid curve represents the theoretical
distribution derived from ®(x)dx by replacing dx by 1/(2N). Since, for the
present experiment M = N,u = 50 x -005 = 0-25, formula (3.23) gives

®(z)dx = 1/(2Nx),

where 2Nx is the number of representatives in the population.

The agreement between the observed and the theoretical distributions is fairly
good except that the diffusion approximation tends to underestimate the fre-
quency of alleles represented only once in the population. The same tendency was
observed also in the experiment performed with N = 100, N, = 100, v = 0-005
(random mutation).

5. DISCUSSION

(1) Nature of mutant alleles. The ultimate source of genetic variability in a popu-
lation is mutation. It is now known that mutation is caused by changes in DNA
base arrangements, namely, substitutions, gains and losses. Among them, addition
or loss of a single base pair causes a shift of reading frame (‘frame shift’) and will
produce far more drastic effects than single-base alterations. Among the base
substitutions, some lead to alteration of amino acids which are quite dissimilar in
chemical properties, thus producing marked mutational effects. Especially,
changes to the chain termination codons (nonsense codons) would be most
damaging. Those leading to substitution of chemically similar amino acids at a
position of the polypeptide chain which is different from the active site may pro-
duce very little phenotypic effect. Still others cause no alteration of amino acids
and their mutational effect in general should be minimal. Sonneborn (1965) called
the last category of mutations ‘synonymous’. He conjectured that it would not be
surprising if 20 9, or more of all single-base mutations were synonymous. Since a
more complete dictionary of the genetic code is now available, an attempt was
made to obtain the probability that a mutation is synonymous, giving due weight
to the frequencies of various codons in a haploid chromosome set. The method of
calculation is given in detail in Appendix I. The results support Sonneborn’s con-
jecture. That is, the probability is about 0-34 if the base pair replacement is
exclusively of transitional type, but is roughly 0-23 if all types of single-base sub-
stitution occur with equal frequency.
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Sonneborn also suggested a possibility of ‘recombinational pseudomutation’,
that is, production of a codon for a different amino acid by recombination of two
synonymous codons. For example, UGC (Cys) would be produced from UCU (Ser)
and AGC (Ser) by recombination. This event could take place only in a population
which is polymorphic with respect to synonymous codons at a given site on a
chromosome. Since the mutation rate per nucleotide pair per replication is estimated
to be about 10~ in Drosophila and 10~12 in man (Kimura, 1967), the mutation
rate (u,) per codon per generation is probably of the order of 10~8 in Drosophila
and 10~? in man even if nearly neutral mutations are included. Thus even for a
population of N, = 10%, N,u, is at most of the order of 10—4. This means that at each
site of DNA triplet, synonymous polymorphism must be extremely rare and,
accordingly, recombinational pseudomutation is probably a very rare phenomenon
in nature.

It is important to note here that probably not all synonymous mutations are
neutral, even if most of them are nearly so.

Mutations which lead to substitution of somewhat similar amino acids also
produce little or no change in biological activity, depending on their position in the
polypeptide chain, and such mutations might be called ¢mperfectly synonymous.
For example, substitution of serine for glycine, in position 47 of the E. cols trypto-
phan synthetase A, leaves the enzymic activity intact (cf. Watson, 1965). Some of
the imperfectly synonymous mutations may produce enzymes that have different
electrophoretic property, yet differ little in biological activity. Some of the isozyme
polymorphisms must be caused by such mutations.

Thus we have a wide mutation spectrum with respect to fitness: the (recessive)
lethal mutations damage the developmental processes so drastically that indi-
viduals carrying them in homozygous condition cannot survive to maturity. In
the second chromosome of Drosophila melanogaster, some 500 loci (possibly about
one-eighth of the total) are capable of producing lethal mutations and the total
rate amounts to about 0-59%,. Mutations causing less deleterious effect, on what
Mukai (1964) called viability polygenes, appear to be much more numerous. The
mutation rate for such genes is estimated to be about 14 9, per second chromosome.
This means that the total mutation rate per individual may reach at least 70 9.
Probably, the mutational load due to such viability polygenes is reduced by
‘reinforcing type’ epistasis (Kimura & Maruyama, 1966). Mutations causing still
less deleterious effect are difficult to detect, except possibly those found to be
isozyme mutations. In addition, a recent analysis of the genetic variation con-
cerning the number of sternopleural bristles in Drosophila suggests that the genes
responsible for the character are nearly neutral (Robertson, 1967). It is probable
that the same situation will be met with when many other quantitative characters
are concerned, and, as suggested earlier by Clayton & Robertson (1955), their
existing variation could well be maintained by the equilibrium between inbreeding
and mutation.

An important problem confronting us now is what the rate is of occurrence of
neutral and nearly neutral mutations. According to Robertson (1967), ‘apparently
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fewer than 30 9, of the single amino acid substitutions compatible with the genetic
code would cause a change in the electrical charge of the protein molecule’ (see also
Shaw, 1965). This means that mutations that cannot be detected by electro-
phoresis occur twice as frequently as those that can be so detected. Substitution
of similar amino acids such as leucine with isoleucine will not cause a change in the
electrical charge.

In discussing neutral or nearly neutral mutations, the fact that substitution of
amino acids in many parts of a polypeptide chain often causes no change of its
catalytic activity (cf. Watson, 1965) is probably significant.

If the effects of amino acid substitution on the activity of a polypeptide chain
were thoroughly known, it would be possible to assess the frequency of neutral
or nearly neutral mutations by estimating the frequencies of synonymous or imper-
fectly synonymous mutations and the average size of the active site or sites in a
chain.

The following is a preliminary (and admittedly crude) attempt along this line.
According to Goldberg & Wittes (1966), 20 amino acids may be divided into 8
groups of similar amino acids, namely: {Pro}, {Try, Tyr, Phe, Ileu, Leu, Met, Val},
{Cys}, {Thr, Ser}, {Gly, Ala}, {GluN, AspN}, {Glu, Asp} and {His, Arg, Lys}. For
each group, they calculated the probability that a single-base substitution would
not lead to a change of group, assuming that all the codons have the same fre-
quency. Using these probabilities but giving due weight to each group of amino
acids and their expected frequencies (cf. Table A1, column 3), the average probability
(p,) was calculated. It turned out that p, is about 0-43, if all types of a single-base
substitution occur with equal frequency. If the base substitution is exclusively of
transitional type, the corresponding probability is about 0-46. Let a be the
fraction of length which the active site or sites occupy on a polypeptide chain.
Since the value of @ must vary from molecule to molecule, we will take its average
value for @. Then, among all mutations due to a single-base substitution with
respect to a polypeptide chain, the fraction of mutations that are synonymous or
imperfectly synonymous on the non-active site is (1 —a)p,. The actual value of ¢
is not known but it is probable that a is at the most 10 9,. So, the above fraction
should be roughly equal to p,. Since there are always some (more drastic but less
frequent) mutations due to DNA base additions or losses, p, will impart an upper
limit to the fraction of neutral or nearly neutral mutations among all mutations.
In conclusion, it seems probable that neutral or nearly neutral mutations might
reach some 40 %, of all mutations.

If this conclusion turns out to be correct, and, if the remaining 609, of all
mutations are detected as viability polygenes, lethals and semi-lethals, the total
mutation rate per gamete in Drosophila may reach some 60 9, per generation.

(2) A definition of neutrality. For any species, there is an upper limit to the total
genetic load, or the amount of selective elimination due to genotypic differences.
This is because the reproductive capacity of each species is limited. Furthermore,
there is always death or sterility due to environmental causes. Thus, as pointed
out earlier by Wright (1931) and others, selection intensity per locus depends on
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the total number of segregating loci in a population. The former must decrease as
the latter increases.

In the last decade, much emphasis has been laid on the possibility of non-
existence of neutral mutations. It may be true that the ‘visible’ mutations, in the
sense that they are discernible by the human eye, do have almost always some
selective difference. However, the number of polymorphisms due to such mutations
must be small as compared with the total number of loci. On the other hand,
recent studies of enzyme polymorphisms suggest that a large number of loci are
segregating in a population. In Harris’s (1966) study, among the 10 arbitrarily
chosen enzymes of man, 3 were found to be polymorphic. In the case of Drosophila
pseudoobscura, Lewontin & Hubby (1966) studied 18 loci responsible for enzymes
and other proteins; they found that the average population is polymorphic for
about 30 9, of the loci. They estimated that each individual is heterozygous on the
average for 12 9, of all loci. Since the total gene number in Drosophila is estimated
to be about 10000 (cf. Muller, 1967), the above findings mean that in this organism
each individual is heterozygous for over 1000 loci on the average. The same situa-
tion may be met with in man.

This brings us to the problem of natural selection toward holding these poly-
morphisms. A consideration of the genetic load leads us to conclude that the natural
selection acting on the majority of loci at any one time must be small. Kimura &
Crow (1964) have shown that if polymorphisms are maintained in thousands of loci
by overdominance, each with appreciable selection coefficients, the total load
becomes intolerably large.

In considering the effect of selection on each locus, an important quantity is
N,s,namely, the product of selection coefficient (s) and effective population number
(IV,). A mutant gene may be called almost neutral if |2N,s| is much smaller than unity.
Under this definition, neutrality depends not only on s but also on ,. Thus a gene
is almost neutral in a small population but not so in a large one. In this connexion
it should be noted that mild overdominance which is efficient enough to maintain
a polymorphism in a large population has very little effect in maintaining the
polymorphism in a small population.

To see this point more clearly, let us consider a pair of overdominant alleles 4,
and A, and assume that the relative fitnesses of the three genotypes 4,4,, 4,4,
and 4,4, are 1—s;, 1 and 1—s, respectively. Accordingly, in a population of
effective size N,, assuming the most favourable condition s, = s, = s for main-
taining polymorphism, it has been shown by the present author (cf. Robertson,
1962) that the probability of co-existence of both alleles decreases at the rate

24.3 28
" , )

+ N68)2_55'7<‘Z\788)2_

1 2N,s
{1_ =t (5.1)

=2—ZV;3

per generation. The above power series is valid for V,s up to about 4.
Since the corresponding rate for a strictly neutral pair of alleles is
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the above formula (5.1) shows that for a small value of N,s, the rate of decay of
variance is reduced only by the fraction

2
2N,s.

Thus for a pair of alleles with 19, overdominance (s = 0-01), if an experimental
population is kept in a culture bottle with 50 parents (N, = 50) in each generation,
the above fraction becomes 0-2. This value will become much less if s; + s, and
also if N, is sometimes reduced in the course of breeding. Thus, no appreciable
effects of overdominance should be observed under such conditions. On the other
hand, in a population of N, = 10¢, the overdominant alleles with s = 0-01 will be
kept in the population almost indefinitely.

(3) Population structure and migration. Usually, a species which occupies a wide
territory and consists of a large number of individuals does not form a single
panmictic unit, but comprises a number of subgroups or ‘demes’, mating taking
place within each deme nearly at random. However, there is always some migra-
tion between the subgroups, so that as a whole the species forms a single repro-
ductive community. It has been advocated by Wright (cf. Wright, 1951) that such
a subdivided structure is conducive to the maintenance of genetic variability and
therefore is favourable to rapid evolutionary progress. He studied the local
differentiation of gene frequencies by assuming a continuous population structure.

The problem of local differentiation in gene frequencies was also studied by
Kimura & Weiss (1964), who used ‘the stepping stone model’ of population
structure, in which the entire population is subdivided into colonies and migration
is restricted to nearby colonies. In this model, if N, is the effective number of each
colony and m, is the rate of migration between adjacent colonies, then, assuming
mutation as in §2 (K possible allelic states and mutation rates equal in all direc-
tions), the gene frequency distribution corresponding to formula (3.5) is approxi-

mately
F(A_) B—1 A_71)—
= V7 4B-1(] — x)4-B) 1, 52
@) = s @) (5:2)
where
A = 4N,m', B = 4N,m'%,
in which

_ Ku
T K-1

’

m +my(l—ry), == 1/K.
In the above expressions, r; is the correlation coefficient of gene frequencies
between two adjacent colonies (i.e. colonies ‘one step’ apart) and its actual value
depends on the number of dimensions as well as the rates of migration and muta-
tion (Kimura & Weiss, 1964; Weiss & Kimura, 1965).

From the above distribution (5.2),

-k f 01 () da = (%m,+1) / ANm’ +1). (5.3)
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For the one-dimensional stepping-stone model, if w € m; < 1, it can be shown that
1—ry = J[{2Ku/(K —1) m,}].

Thus, if N, = 104, 4 = 1075, K = 10 and m; = 101, we have r; ~ 0-985, and the
average homozygosity is approximately

H, = 0-11 (heterozygosity of about 89 %,).

On the other hand if m, = 0 but under otherwise the same condition

H,; = 0-71 (heterozygosity of about 29 9,).

For the two-dimensional stepping-stone model, if 4 € m; < 1, it can also be shown
that

i 4 -1
I=n=3 (‘°g64[2Ku/{<K— 1>ml}]) '

Thus, if N, = 104, » = 1075, K = 10 and m, = 10-1, we have r; & 0-72 and the
average homozygosity is approximately

H, = o0-10.
On the other hand, if m; = 0, H, = 0-71, as before. These examples show that
under subdivided structure and migration, much higher heterozygosity is expected.

When the number of allelic states is infinite, 7, is proportional to the probability
that two homologous genes taken one from each of the two colonies & steps apart
have the same allelic state. Thus r, gives the fraction of alleles (in terms of the
effective allele number) that are shared by these two colonies.

The advantage of population subdivision in keeping a large number of alleles
may best be seen by comparing the average number of alleles maintained in a
species under panmixis and under subdivision. For example, in a species of
N = N, =108, if 4 = 10-% and if every mutation is to a new, not pre-existing,
allele, then n, = 410-2 when the species forms a single random mating unit (see
Table 1). On the other hand, n, = 1-301 x 1000 ~ 1300 when the species is sub-
divided into 1000 completely isolated colonies of size N = N, = 103. With a small
amount of migration, this number will be reduced but may still be large as com-
pared with the panmictic population.

SUMMARY

1. The average and the effective numbers of alleles maintained in a finite
population due to mutational production of neutral isoalleles were studied by
mathematical analysis and computer simulation.

2. The exact formula was derived for the effective number (n,) of alleles main-
tained in a population of effective size N,, assuming that there are K possible
allelic states and mutation occurs with equal frequency in all directions. If the
number of allelic states is so large that every mutation is to a new, not pre-existing,
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allele, we have n, = 4N,u+1—2N,u?, where u is the mutation rate. Thus, the
approximation formula, n, = 4N,u+ 1, given by Kimura & Crow (1964) is valid
as long as 2N,u? < 1.

3. The formula for the average number of alleles (n,) maintained in a population
of actual size NV and effective size NV, was derived by using the method of diffusion
approximation. If every mutation is to a new, not pre-existing, allele, we obtain

1
n, = 4M f (1 —z) M -1p-1 gy,
1/(2N)

where M = 4N,u. The average number of alleles as a function of M and N is listed
in Table 1.

4. In order to check the validity of the diffusion approximations, Monte Carlo
experiments were carried out using the computer IBM 7090. The experiments
showed that the approximations are satisfactory for practical purposes.

5. It is estimated that among the mutations produced by DNA base substitu-
tions, synonymous mutations, that is, those which cause no alterations of amino
acids, amount roughly to 0-2-0-3 in vertebrates. Incompletely synonymous muta-
tions, that is, those which lead to substitution of chemically similar amino acids
at a different position of the polypeptide chain from the active site and therefore
produce almost no phenotypic effects, must be very common. Together with
synonymous mutations, they might constitute at least some 409, of all muta-
tions. These considerations suggest that neutral and nearly neutral mutations must
be more common than previously considered.

I would like to express my thanks to Dr Takeo Maruyama for stimulating dis-
cussions in the course of the present work. Thanks are also due to Dr Alan
Robertson for reading the manuscript and making valuable suggestions.

APPENDIX I

Probability that a multation is synonymous

Two or more codons are said to be synonyms (Muller, 1963, cited in Muller, 1967)
if they code for the same amino acid. In order to calculate the relative frequency
of synonymous mutations among all the mutations produced in an individual by
DNA base substitutions, we must know (1) the relative frequencies of various
codons in a haploid chromosome set and (2) the frequency of synonymous muta-
tions for each codon. Since the relative frequencies of various codons in the
haploid set are not known, we must estimate them either from the frequencies of
the four DNA bases, adenine (A), thymine (T), guanine (G) and cytosine (C), or
from the frequencies of 16 dinucleotides obtained by the nearest-neighbour analysis
(Josse, Kaiser & Kornberg, 1961). Throughout the present calculation, the RNA
code dictionary used was the one given by Crick (1966), with UGA included as a
nonsense triplet, following Brenner, Barnett, Katz & Crick (1967). We note here that
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uracil (U) in RNA code corresponds to thymine (T) in DNA code. Note also that the
messenger RNA is complementary to one of the strands of DNA from which the
former is ‘ transcribed ’. According to Sueoka (cf. 1965), the G—C content of DNA ob-
tained from various vertebrate species lies within the range 40—-44 9. So, in the first
calculation, the relative frequencies of A, T, G and C are assumed to be 0-285, 0-285,
0-215 and 0-215, respectively. Actually, the transcription is made from only one of
the two strands of DNA and the frequencies of A and G may not necessarily be
equal respectively to T and C in this strand. However, we will assume that in

Table A1l. Observed and expected frequencies of various amino acids
tn the proteins of vertebrates (for details, see text)

Relative frequency (9)
AL

r Al
Amino acid Observed Expected (1) Expected (2)

Gla

GluN 10-13 6:51 7-89
Asp . . .
AspN 9-13 7-57 8-28
Gly 7:96 4-91 4-88
Leu 7-92 10-82 12-26
Ser 7-67 9-76 9-10
Ala 7-53 4-91 1-43
Lys 6-70 4-31 5-58
Val 6-68 6-50 9-53
Arg 6-28 8-16 7-34
Thr 5-87 6-50 6-78
Pro 5-21 4-91 4-46
Tleu 4-05 6-77 517
Phe 3-81 4-31 5-97
Tyr 3-55 4-31 3-92
Cys 2-77 325 2:08
His 2-37 3-25 3-01
Met 1:52 1-85 1-15
Try 0-85 1-40 1-17
Total 100-00 100-00 100-00

higher organisms, A = T, and G = C hold approximately in each strand of DNA.,
Using the above frequencies of A, T, G, C and assuming independence of base
arrangements, relative frequencies of 64 codons may be obtained. For example,
the frequency of AAA is (0-285)3 or about 0-02315, from which RNA codon UUU
is derived. However, three codons, UAA (Ochre), UAG (Amber) and UGA lead to
chain termination in polypeptide synthesis. So the relative frequencies of the
remaining 61 codons are recalculated after removing these 3 nonsense codons. In
order to test the validity of this approach, the relative frequencies of occurrence
of various amino acids in proteins were predicted, using the frequencies of those
codons. For example, lysine is coded by AAA and AAG. Thus the estimated fre-
quency of this amino acid is the sum of the frequencies of the two codons, which
turns out to be 4-3129,. The third column in Table A1 lists the frequencies of
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amino acids computed in this way. They should be compared with the corre-
sponding values (second column) actually observed in proteins from vertebrates.
The latter values are averages from 61 proteins of vertebrate origin listed in Smith’s
paper (1966), who compiled the amino acid composition of 80 proteins including
those of non-vertebrate origin. Agreement between the observed and the expected
frequencies is only fair, but it does indicate that the method is sound as a first
approximation in predicting frequencies of various codons. (Prediction is some-
what poor for Ala and Gly but this may be due to some unknown functions of these
amino acids.) A similar calculation was carried out using dinucleotide frequencies
obtained by Josse et al. (1961) for calf thymus DNA (they are as follows: AA 0-089,
TT 0-087, CA 0-080, TG 0-076, GA 0-064, TC 0-067, CT 0-067, AG 0-072, GT 0-056,
AC 0-052, GG 0-050, CC 0-054, TA 0-053, AT 0-073, CG 0-016, GC 0-044). This
second method of calculation assumes that the frequency of codon TTC, for
example, is proportional to the product of the frequencies of TT and TC. The last
column of Table A1 lists the relative frequencies of amino acids predicted by
using frequencies of 61 sense codons thus calculated. The agreement between the

Table A2. Probability that a mutation is synonymous

Predicted by Predicted by
mononucleotide dinucleotide
Type of base substitution frequencies frequencies
Transition only, equal in both directions 0-341 0-349
All single-base substitutions with equal frequency 0-233 0-231

observed and the expected frequencies is less satisfactory than in the previous case.

For each codon, the probability that it still codes for the same amino acid after
single-base substitution depends on the type and frequency of DNA base replace-
ment. So, two cases were studied. In the first case, only transition (§ = #) was
considered and this was assumed to occur with equal frequency in both directions.
Thus, for example, in terms of RNA codon, GCA (Ala) changes to ACA (Thr),
GUA (Val) and GCG (Ala) with equal frequency, and therefore the probability is
1 that GCA still codes for the same amino acid after single-base substitution. This
probability was calculated for each of the 61 sense codons, and the resulting
probabilities were averaged by giving weight to the frequencies of codons predicted
by the two different methods mentioned above. The final results are listed in
Table A2. From the figures in the upper row of the table, it will be seen that the
probability that a mutation is synonymous is about 0-34.

In the second case studied, every one of the four nucleotides is assumed to
change to one of the remaining three nucleotides with equal probability. Thus, for
example, UUA (Leu) changes to UUU (Phe), UUC (Phe), UUG (Leu), UCA (Ser),
UAA (Ochre), UGA (nonsense), CUA (Leu), AUA (Ileu) and GUA (Val) with equal
frequency, and therefore the probability is 2 that UUA still codes for the same
amino acid after single-base substitution. In this way, the probability was cal-
culated for each of the 61 sense codons and weighted averages were calculated as
in the previous case. The results are given in the bottom row of Table A2. They
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show that with this type of base substitutions, the probability that a mutation is
synonymous is about 0-23.

Summing up, it is estimated that in vertebrate species, the probability that a
mutation is synonymous is about 0-34 if the base substitution is exclusively of
transition type, but is roughly 0-23 if all types of single-base substitution occur
with equal frequency.
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