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INTERSECTIONS OF »-CONVEX SETS
MARILYN BREEN

1. Introduction. Let S be a subset of some linear topological space. The
set S is said to be m-convex, m = 2, if and only if for every m-member subset of
m
2
A point x in S is called a point of local convexity of S if and only if there is some
neighborhood N of x such that if y,z2 € N /NS, then [y, z] C S. If S fails to be
locally convex at some point ¢ in S, then ¢ is called a point of local nonconvexity

(Inc point) of S.

Several interesting decomposition theorems have been obtained for closed
m-convex sets in the plane (Valentine [9], Stamey and Marr [6], Breen and
Kay [2]). However, little work has been done on the problem of characterizing
intersections of m-convex subsets of a set. Similar characterizations have been
accomplished for intersections of maximal starshaped subsets of set S, where
S is compact, simply connected and planar (Hare and Kenelly [3]), and for
maximal L, subsets of S (Sparks [5]). Also, for S a subset of an arbitrary linear
topological space, Tattersall [7] has obtained conditions under which the inter-
section of all maximal m-convex subsets of S will be exactly the kernel of S.
Unfortunately, in general such an intersection will not even be an m-convex set.
Thus the purpose of this paper is to obtain conditions under which an inter-
section of m-convex subsets will be again m-convex. There are two main results:
the first concerns 3-convex sets in R?; the second, m-convex sets in the plane.

The following familiar terminology will be used: For points x, v in .S, we
say x sees y via S if and only if the corresponding segment [x, y] lies in S.
Points x1, . . ., x, in S are visually independent via S if and only if for 1 < 17 <
j = n, x; does not see x; via S. Throughout the paper, conv S, aff S, cl S,
bdry S, int .S, rel int S, and ker S will be used to denote the convex hull, affine
hull, closure, boundary, interior, relative interior, and kernel, respectively, of
the set S. Also, if S is convex, dim .S will denote the dimension of .S.

S, at least one of the ( ) line segments determined by these points lies in S.

2. Intersections of 3-convex sets in R?% We begin with a series of pre-
liminary lemmas.

LEmMMA 1. Let M be a closed m-convex subset of some linear topological space,
and let Q denote the set of Inc points of M. Then M = cl(M ~ Q).

Proof. Let x € M and let NV be an arbitrary neighborhood of x to show that
N contains points in M ~ Q. Assume on the contrary that N/ M C Q to
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obtain a contradiction. Select points y;, z; in N M M such that [y,, z;] € M.
Furthermore, since M is closed, we may select some neighborhood N; of y;,
N € N, such that no point of Ny M M sees z; via M. Now y; € NN\ M C Q,
so we may select ys, 25 in Ny M M such that [y,, 2,] € M. Continuing, by an
obvious induction we may select a visually independent set {z,}, contradicting
the m-convexity of M. Our assumption is false, NV contains points in M ~ Q,
and M C cl(M ~ Q). The reverse inclusion is obvious and the lemma is
proved.

LemMmA 2. Let M be a closed m-convex set in R?, where d = dim aff M, and
let Q denote the set of Inc points of M. If M ~ Q 1is connected, then M = cl(int M).

Proof. Let x € M and let N be any neighborhood of x to show that N con-
tains points interior to M. By Lemma 1, x € cl(M ~ Q), so we may select y
in NN (M ~ Q). Choose a neighborhood N, of y such that N; € N and
C = Ny M is convex.

We assert that dim C = d. Otherwise, there would be points of M not in
aff C, and since M = cl(M ~ Q), we could select z in M ~ Q such that
z ¢ aff C. Since M ~ Q is connected and locally convex, it is polygonally
connected, and there would be a path N\ in M ~ Q from y to z. However,
(aff C) N cl(M ~ aff C) C Q, so X would contain a point of Q, impossible.
Thus dim C = d, and any point in N N int C # @ will be interior to M,
finishing the argument.

LemMma 3. If M = cl(int M), dim aff M = d, and the set Q of Inc points of
M lies in ker M, then either conv Q contains an interior point of M or Q 1s
convex.

Proof. Since Q C ker M, clearly conv Q C M. If conv QM int M = @,
there is nothing to prove, so assume that conv Q € bdry M. Then dim conv
Q=d-—-1.

We will show that Q is a convex subset of M. Suppose, on the contrary, that
there is some z in conv Q ~ Q. It is easy to see that Q is closed, so conv Q ~ Q
is open in conv Q, and z may be selected in rel int conv Q. Using the fact that
z ¢ Q, select a neighborhood N of z for which N /M 1] is convex. Then since
z € bdry M, there is a hyperplane H supporting N M\ M at z, with N\ M
in cl(H;) (where H,, H, denote distinct open halfspaces determined by H).
Since z € ker M, clearly no point of M lies in H,. Also, since z € rel int conv Q,
Q must lie in H. (Otherwise, z would lie in (conv Q) M H C rel bdry conv Q.)
Therefore, for p, ¢ in M ~ H, [z, p] U [z, ¢] © M, no Inc point of M lies in
conv {z, p, q}, so by a lemma of Valentine [8, Corollary 1], conv {z, p, ¢} C
M and [p, q € M ~ H. Hence M ~ H is convex, and since M C cl(H;),
the set cl(M ~ H) = cl(int M) = M is convex. But this implies that Q = 0,
a contradiction. Thus Q must be convex, completing the proof.

LEMMA 4. Let M be a closed 3-convex set in R, where d = dim aff M, and let Q
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denote the set of Inc points of M. If M ~ Q 1is connected and Q lies in a hyper-
plane, then M is a union of two convex sets.

Proof. By Lemma 2, M = cl(int M). Also, since M is 3-convex, it is easy to
show that Q C ker M, so by Lemma 3, either conv Q contains an interior
point of M or Q is convex.

Suppose, for the moment, that w € conv Q M int M 5 @. For H a hyper-
plane containing Q, with H; and H, the corresponding open halfspaces, we
assert that cl(M M H,), cl(M M H,) are convex sets whose union is M: If x, y
are in M M H;, then [x, w] U [w, y] € M, no Inc point of M can be in conv
{x, v, w}, so by Valentine's lemma, conv {x,y, w} € M and [x,y] C H, N\ M.
Hence H; M M is convex, as is cl(H; M M). Similarly cl(H. M M) is convex,
and since M = cl(int M), clearly

M = c(H, N M)\ cl(H, N M),

the desired result.

In case conv Q M int M = @, then Q must be convex by Lemma 3. We will
show that Q satisfies the definition of essential given in [1, Definition 1].
Precisely, if ¢ € Q and N is any convex neighborhood of ¢, we assert that
(NN M) ~ Q is connected: Let 7, s belong to (int M) M N. Since M ~ Q is
connected and M = cl(int M), by standard arguments, int M is connected.
Also, int M is locally convex and hence polygonally connected, so there is a
polygonal path X in int M from 7 to s. Let T denote a neighborhood of A,
T Cint M. Since ¢ € Q C ker M, conv(T U {q}) C M, and conv(T \U {¢})
contains a path N in (int M) M N from » to s. Thus (int M) M N is poly-
gonally connected and hence connected. Since

(int M)y "NC (MM N)~Q Ccll(int M) N NJ,

it follows that (M M N) ~ Q is also connected, and the assertion is proved.
Therefore, we may apply arguments given in [1, Theorem 3] to conclude that
M isa union of two convex sets, finishing the proof of the lemma.

THEOREM 1. Let S be a closed subset of R¥, and assume that S contains all
triangles whose boundaries lie in S. Let # denote any collection of closed 3-convex
subsets of S such that for M in.M and Q, the corresponding set of Inc points of M,
each member of Qu is an Inc point for S M aff Qy and M ~ Qu s connected.
Then

N{M:-McH})=NM
15 3-convex.

Proof. Let M belong to.#, let dim aff M = d, and let Q) = Q denote the
set of Inc points of M. Since M is 3-convex, Q C ker M. We will show that
ifx,y € Mand [x, y] € S, then [x, y] € M. There are three cases to consider.
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Case 1. In case int conv Q # @ (as a subset of the d-dimensional space aff M),
then select w € int conv Q and let N be a d-dimensional neighborhood of z for
which N C conv Q. Since conv Q C ker M, conv(N U {x}) € M and
conv (N U {y}) C M. Therefore, since S contains all triangles whose boundaries
lie in S, conv(N U [x, y]) € S, and (conv{x, v, w}) ~ [x, y] can contain no
Inc point of SM aff Q. Hence (conv{x, y, w}) ~ [x, ¥] can contain no Inc
point of M, [w, x]\J [w, y] C M, and by a generalization of Valentine's
lemma, convix, v, w} € M and [x, y] C M.

Case 2. Assume that int conv Q = @ and that conv Q contains an interior
point of M. Then clearly we may select a point w in (rel int conv Q) N int M.
Unfortunately, there are three subcases to consider, depending upon whether
x, ¥ belong to aff Q:

Case 2a. If x, y ¢ aff Q, then no point of (w, x] is in aff Q, and to each point
of (w, x] we may associate a convex neighborhood disjoint from aff Q. Also,
since w € int M, there is some neighborhood of w disjoint from Q. Hence by
using a compactness argument, we may select a convex cylinder about [w, «]
disjoint from Q. Finally, let N, be a convex neighborhood of w contained in
the cylinder, N, € M. For z in N,, [z, w] U [w, x] € M, clearly no Inc point
of M lies in conv{z, w, x}, so again by Valentine's lemma, [z, x] € M. Thus
conv (N, U {x}) C M. Repeating the argument for y, we obtain a neighbor-
hood N, of w with conv(V,\U {y}) € M. Then N = N, N, is a neighbor-
hood of w with conv(N U {x}) € M and conv(N U {y}) C M. By repeating
an argument used in Case 1, conv{x, y, w} contains no Inc point of M and
[x, y] € M, the desired result.

Case 2b. If both x and y are in aff Q, then consider the set My = M M aff Q
as a subset of the flat aff Q. Since w € rel int conv Q, w is interior to ker M,
and we may select a neighborhood N of w in aff Q for which N C ker M,.
Repeating the argument in Case 1, (conv{x, y, w}) ~ [x, y] can contain no
Inc point of S M aff Q and hence no Inc point of M, so [x, y] & M.

Case 2c. In case exactly one of x and y, say v, is in aff Q, then use the argu-
ment in Lemma 4 to write M as a union of the convex sets M, = cl(M N H,)
and M, = cl(M M H,), where H,; and H, are open halfspaces determined by
a hyperplane H, with Q € H. Since w € (rel int conv Q) M int M, w is in
M1 M M,, and if N is a convex neighborhood of w in M, then N N H, # 0,
NNH; #@,and NN HC M; N\ M,.

If both x and y lie in M, (or M,), the argument is complete. Otherwise,
without loss of generality, assume that x € M, y € M,. The convex cone C
at x emanating through N M H necessarily contains some point z in N M\ H,,
and [x, z] € M. We may select a neighborhood N’ of z with N C C"\ N /M H,.
Then for 2’ in N’, [x, 2] U [z, 3] € M, there are no Inc points of M in C N H
and hence no Inc points of M in convix, z, 2’}, so again by Valentine's lemma,
[x, 21 C M. Thus conv(N'U {x}) € M. Since N' C M, and y € M,,
conv(N’ U {y}) C M. Repeating an argument from Case 1, (conv{x, y, z}) ~
[x, ¥] contains no Inc point of M and [x, y] € M, finishing the proof of Case 2.
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Case 3. Finally, consider the case in which conv Q M int M = @. By Lemma
2, M = cl(int M), and by an earlier remark, Q C ker M. Hence we may use
Lemma 3 to conclude that Q is convex. By remarks in the proof of Lemma 4,
we may apply arguments given in [1, Theorem 3] to conclude that M is a
union of two convex sets cl(M M H,) and cl(M M H,), where H; and H, are
distinct open halfspaces determined by an appropriate hyperplane H, and
Q € H. By [1, Lemma 4], int M ~ aff Q is connected, so clearly (H M int M)
~ aff Q # 0. Then by adapting an argument in [1, Theorem 3], for w any
point in (H M int M) ~ aff Q, w is in ker M.

We assert that there is some neighborhood N of w for which conv (VN U {x})
CM: lfxe M~Horif x € (MM aff Q) ~Q, then [w, x) contains no
member of aff Q, x ¢ Q, and we may employ an argument used in Case 2a
to select an appropriate neighborhood N of w. If x € (M M H) ~ aff Q, then
by an argument in [1, Theorem 3], x is in ker M; thus any neighborhood N of
w in M has the required property. A similar result holds if x € Q C ker M,
and the assertion is proved. A parallel statement holds for y, and an argument
from Case 1 may be used to show that [x, y] € M, finishing Case 3 and com-
pleting this portion of the proof.

The remaining steps are easy. For points x, y, z in (N .#, since every member
of A is 3-convex, at least one of the corresponding segments, say [x, v], lies in S.
But then by our previous argument, [x, y] lies in every M in.#, N -# is again
3-convex, and Theorem 1 is proved.

It is interesting to notice that if M ~ Q is not connected or if members of Q
are not Inc points of S, then the result in Theorem 1 fails, as later examples
will reveal.

3. Intersections of m-convex sets. The following result is an analogue of
Theorem 1 for m-convex sets in the plane.

THEOREM 2. Let S be a closed, simply connected subset of the plane. Let M be
any collection of closed m-convex subsets of S such that for M in M and Q, the
corresponding set of Inc points of M, each member of Qu ts an Inc point of S and
M ~ Qi is connected. Then N\ M 1s again an m-convex set.

Proof. Let M belong to.# with Q,, = Q the corresponding set of Inc points
of M. As in the proof of Theorem 1, we will show that if x and y are points of
M with [x, y] © S, then [x, y] & M.

By [4, Lemma 2], M is locally starshaped, so there is a neighborhood N of
x such that x sees each point of N/ M via M. Also, by Lemma 2, M =
cl(int M), so we may choose a point xo in NV /M int M and a corresponding
neighborhood N’ of x,, with N € N M int M. Then conv(N' U {x}) C M
and [xo, x) € int M. Using a parallel argument select y, with [yq, v) C int M.
Clearly xg, y0 € M ~ Q. Since M ~ (Q is connected and locally convex, it is
polygonally connected, and there is a polygonal path in M ~ Q from x, to v,.
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Moreover, since [xg, x) \J [yo, ¥) © M ~ Q, there is a polygonal path X\ in M
from x to v, with A ~ {x, y} C M ~ Q. Let

X =lo by, ... b=y

denote the consecutive vertices of \, and assume that A has been selected so
that % is minimal for all such paths in M.

For the moment, assume that A contains no point of (x, ¥). Now if & = 3,
then using the fact that .S is simply connected, for some pair of adjacent seg-
ments [£;_1, £;] and (¢, £444],

(int convi{t, 1, by b)) I (Lim, bigr)

contains no Inc point of .S (and hence no Inc point of M). Furthermore, since
x and y are the only points of X which might lie in Q, (¢,-1, t;] \J [¢4, ti11) con-
tains no Inc point of M, so by a generalization of Valentine's lemma,
conv{t;_1,t; Lt} © M. However, then [¢,_1, {:41] € M, and x and y are the only
points of [¢,_1, ¢;41] which might lie in Q. (Clearly [t,_1, tir1] M Q # @ only
ifz=1and x € Qorif i =%k — 1 and y € Q.) Letting N denote the path
having vertices to, ..., ti1, bigr, «+ ., by N~ {x, y} € M ~ Q and )\ has
length £ — 1, contradicting the minimality of k. Hence k& < 2. Similarly, if
k = 2, then [y, t] U [, t2] & M, there is no Inc point of M in (conv{io, t1, t2})
~ [to, t2], so again by Valentine's lemma, conv{ty, t1, {2} © M and [ty L] =
[x, ¥y] © M, the desired result. Of course if £ = 1, then N = [x, y] & M.

In case N\ contains points of (x, y), the argument above may be adapted
suitably for subsets of N having only their endpoints &', ¥’ on [x, ¥] to show
that [x’, ¥'] € M. Then again [x, y] £ M, and this portion of the argument is
complete.

Finally, for any m points in (.4, at least one of the corresponding segments
must lie in S. Then by the argument above, this segment lics in every member
of A, and M .# is an m-convex set, finishing the proof of the theorem.

The following example shows that the results in Theorems 1 and 2 fail
without the requirement that M ~ Q be connected for M € ..

Example 1. Let S denote the simply connected set in Figure 1, 4 and B
the indicated vertical strips, C and D the horizontal ones. Then 4 \U B,
C \J D are 3-convex subsets of .S having no Inc points, yet their intersection
is not 3-convex.

Furthermore, the results of Theorems 1 and 2 require that members of Q
be Inc points of S, as Example 2 reveals.

Example 2. Let S denote the simply connected set in Figure 2, P =
convip,: 1 £1 =<4}, R =convir,: 1 £1¢ =24}, Mz = cl(R ~ convia, b, c}),
Mp = cl(P ~ convix, y, z}). Then Mz and Mp are 3-convex, but the Inc
points b and vy are not Inc points of S, and M; M M, is not 3-convex.

The final result concerns maximal m-convex subsets of a set.
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THEOREM 3. Let S be a closed subset of R%, int ker S # @, with Q the set of
Inc points of S. Let N denote the collection of all maximal m-convex subsets of S,
and let M denote any subcollection of N such that for M in M, the Inc points of
M arein Q. Then N\ M is m-convex.

Proof. By an obvious use of Zorn’s lemma, it is easy to show that every
m-convex subset of S lies in a maximal m-convex subset of S, so the collection
A is not empty. Also, since S is closed, each member of A" is closed. Further,
it is not hard to prove that if M € A and s € ker S, then sM =
U {[s, t] : ¢t in M} is m-convex. Hence M = sM, s € ker M, and ker S C
NN NA.

If # = @, there is nothing to prove. Otherwise, let M belong to.#, and let
x, y € Ne# with [x, y] C S. Then for any z € int ker S C ker M and any
neighborhood N of z with N C ker S, conv(N U [x, y]) € S. Hence using
techniques employed in the proof of Theorem 1, [x, y] € M, and N A& is
m-convex.

In conclusion, we note that the maximality of members of 4 in Theorem 3
may be replaced by the following requirement: For each M in .#, ker M
contains a point in int ker S.
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