ON TOTALLY REAL SUBMANIFOLDS IN A 6-SPHERE

BY
M. A. BASHIR

Abstract

The 6 -dimensional sphere S^{6} has an almost complex structure induced by properties of Cayley algebra. With respect to this structure S^{6} is a nearly Kaehlerian manifold. We investigate 2 -dimensional totally real submanifolds in S^{6}. We prove that a 2 -dimensional totally real submanifold in S^{6} is flat.

1. Introduction. A Riemannian submanifold (M, Ψ) of an almost Hermitian manifold ($\tilde{M}, J,\langle\rangle$,$) is called totally real if J_{\Psi(P)}\left(d \Psi_{P}(X)\right)$ belongs to the normal bundle ν for any $X \epsilon T_{P} M, P \epsilon M$. The almost Hermitian manifold ($\left.\tilde{M}, J,\langle\rangle,\right)$ is called a nearly Kaehlerian manifold provided that $\left(\tilde{\nabla}_{U} J\right) U=0$ for any $U \epsilon X(\tilde{M})$.

The six-dimensional sphere S^{6} is the most typical example of nearly Kaehlerian manifolds. The existence of such a nearly Kaehlerian structure for the 6 -sphere was proved by Fukami and Ishihara [2] by making use of the properties of the Cayley division algebra. The almost complex submanifolds of the 6 -dimensional sphere were studied by Gray and Sekigawa. A. Gray [3] proved that with respect to the Canonical nearly Kaehlerian structure, S^{6} has no 4-dimensional almost complex submanifolds. On the other hand Sekigawa studied the 2-dimensional almost complex submanifolds of S^{6}; [4]. He proved, among other things, that a 2-dimensional almost complex submanifold of S^{6} with Gaussian curvature $K<1$ is either diffeomorphic to a 2 dimensional torus or a 2 -dimensional sphere.

Concerning totally real submanifolds of S^{6}, on which this paper is about, N. Ejiri proved the following [1]:

Theorem 1. A 3-dimensional totally real submanifold of S^{6} is orientable and minimal.

Theorem 2. Let M be a 3-dimensional totally real submanifold of constant curvature C in S^{6}. Then either $C=1$ (i.e., M is totally geodesic) or $C=1 / 16$.

In this paper we consider the 2 -dimensional totally real submanifolds of S^{6}. For these submanifolds we obtain the following:

Theorem. Let M be a complete, 2-dimensional totally real submanifold of the 6-dimensional sphere S^{6}. Then M is flat.

Received by the editors July 29, 1988 and, in revised form, March 2, 1989
AMS (1980) Subject Classification: Primary: 53C40, Secondary: 53C55.
© Canadian Mathematical Society 1989.
2. The canonical nearly Kaehlerian structure on S^{6}. The 6-dimensional unit sphere S^{6} does not admit any Kaehlerian structure. However, it admits a nearly Kaehlerian structure [2]. The Riemannian metric \bar{g} on S^{6} induced from \mathcal{R}^{7}, is a Hermitian metric with respect to the nearly Kaehlerian structure J.

Let $\bar{\nabla}$ be the covariant derivative with respect to the Riemannian connection on S^{6}. Then we have the following

Lemma 1. For all vector fields X on $S^{6}\left(\bar{\nabla}_{X} J\right) X=0$.
Define a skew-symmetric tensor field G of type $(1,2)$ by

$$
\begin{equation*}
G(X, Y)=\left(\bar{\nabla}_{X} J\right) Y \tag{2.1}
\end{equation*}
$$

Then one can see that

$$
\begin{equation*}
G(X, J Y)=-J G(X, Y) \tag{2.2}
\end{equation*}
$$

3. 2-dimensional totally real submanifolds of S^{6}. Let M be a 2-dimensional totally real submanifold of S^{6}. Let ∇ be the Riemannian connection on M and R be the Riemannian curvature tensor of M in S^{6}. Then the Gauss formula, Weingarten formula are given respectively by

$$
\begin{equation*}
\bar{\nabla}_{X} \xi=-A_{\xi} X+\nabla_{X}^{\perp} \xi \quad X, Y \epsilon X(M) \tag{3.2}
\end{equation*}
$$

where ξ is a local field of normal vector to M, and $-A_{\xi} X$ (resp. $\nabla_{X}^{\frac{1}{X}} \xi$) denotes the tangential part (resp. normal part) of $\bar{\nabla}_{X} \xi$.

The tangential part $A_{\xi} X$ is related to the second fundamental form σ as follows:

$$
\begin{equation*}
\langle\sigma(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle \quad X, Y \epsilon X(M) \tag{3.3}
\end{equation*}
$$

We denote by R^{\perp} the curvature tensor of the normal connection i.e. $R^{\perp}(X, Y)=$ $\left[\nabla_{X}^{\perp}, \nabla_{Y}^{\perp}\right]-\nabla_{[X, Y]}^{\perp}$. Then the Gauss equation is given by

$$
\begin{align*}
\langle R(X, Y) Z, W\rangle= & \langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle+\langle\sigma(X, Z), \sigma(Y, W)\rangle \tag{3.4}\\
& -\langle\sigma(X, W), \sigma(Y, Z)\rangle
\end{align*}
$$

Write the normal bundle ν as $\nu=\mu \oplus J(T M)$ where $J \mu=\mu$ (μ is an invariant subbundle of ν). Then we have the following

Lemma 2. Let X, Y be tangent to M. Then the vector $G(X, Y) \epsilon \mu$.

Proof. It suffices to prove the lemma for tangent basis vectors. So for the time being assume that X and Y are tangent basis vectors for M. In order to prove the above lemma one needs to show that

$$
\left\langle\left(\bar{\nabla}_{X} J\right) Y, X\right\rangle=\left\langle\left(\bar{\nabla}_{X} J\right) Y, Y\right\rangle=0
$$

and

$$
\left\langle\left(\bar{\nabla}_{X} J\right) Y, J X\right\rangle=\left\langle\left(\bar{\nabla}_{X} J\right) Y, J Y\right\rangle=0 .
$$

This is because M is 2-dimensional totally real in S^{6} and the normal bundle ν is spanned by orthonormal frame field of the form $\left\{J X, J Y, N_{1}, N_{2}\right\}$, for some unit vectors $N_{1}, N_{2} \epsilon \mu$. Note that $\left\langle\left(\bar{\nabla}_{X} J\right) Y, X\right\rangle=-\left\langle Y,\left(\bar{\nabla}_{X} J\right) X\right\rangle=0$, using the fact that $\bar{\nabla} J$ is skew-symmetric with respect to \langle,$\rangle and the skew symmetry of G$. For the same reason we also have

$$
\left\langle\left(\bar{\nabla}_{X} J\right) Y, Y\right\rangle=-\left\langle\left(\bar{\nabla}_{Y} J\right) X, Y\right\rangle=\left\langle X,\left(\bar{\nabla}_{Y} J\right) Y\right\rangle=0
$$

Now using (2.1) and the skew symmetry of G we get

$$
\left\langle\left(\bar{\nabla}_{X} J\right) Y, J X\right\rangle=-\left\langle Y,\left(\bar{\nabla}_{X} J\right) J X\right\rangle=\left\langle Y, J\left(\bar{\nabla}_{X} J\right) X\right\rangle=0
$$

and

$$
\begin{aligned}
\left\langle\left(\bar{\nabla}_{X} J\right) Y, J Y\right\rangle & =-\left\langle\left(\bar{\nabla}_{Y} J\right) X, J Y\right\rangle=\left\langle X,\left(\bar{\nabla}_{Y} J\right) J Y\right\rangle \\
& =-\left\langle X, J\left(\bar{\nabla}_{Y} J\right) Y\right\rangle=0
\end{aligned}
$$

which completes the proof of the lemma.
4. Proof of the theorem. Using equation (3.2) with $\xi=J Y$ we have

$$
\begin{equation*}
J \bar{\nabla}_{X} Y+\left(\bar{\nabla}_{X} J\right) Y=-A_{J Y} X+\nabla_{X}^{\frac{1}{X}} J Y \tag{4.1}
\end{equation*}
$$

and using equations (3.1) and (2.1) in equation (4.1) we get

$$
\begin{equation*}
J \sigma(X, Y)=-A_{J Y} X+\nabla_{X}^{\perp} J Y-G(X, Y)-J \nabla_{X} Y \tag{4.2}
\end{equation*}
$$

Assume now, in particular, that $\{X, Y\}$ is an orthonormal frame field for M, chosen in such a way that $\nabla_{X} X=0$. The existence of such a frame for our complete submanifold M is possible. This follows from Gauss Lemma [5] which is in fact valid for any complete Riemannian manifold. To construct our orthonormal frame field $\{X, Y\}$ in this case, we may just choose X to be any unit vector field on M satisfying $\nabla_{X} X=0$. and then we apply Gram-Schmidt to any frame field orthogonal to X to obtain Y. For the frame field $\{X, Y\}$ we first prove that

$$
\begin{equation*}
\left\langle\nabla_{X}^{\perp} J Y, J Y\right\rangle=0 \tag{i}
\end{equation*}
$$

and
(ii)

$$
\left\langle\nabla_{X}^{\perp} J Y, J X\right\rangle=0
$$

(i) is trivial since the frame field is orthonormal. For (ii) note that \langle,$\rangle is Hermitian.$ Then using the fact that $\langle X, Y\rangle=0, \nabla_{X} X=0$ and $\left(\bar{\nabla}_{X} J\right)(X)=0$, equation (ii) follows.

Since the normal bundle $\nu=\mu \oplus J(T M)$, the vector $J \sigma(X, Y) \epsilon \mu \oplus(T M)$. Thus the vector in the right hand side of equation (4.2) namely $-A_{J Y} X+\nabla_{X}^{\perp} J Y-G(X, Y)-J \nabla_{X} Y$ belongs to $\mu \oplus(T M)$. From lemma (2) $G(X, Y) \epsilon \mu$, and we have just proved that $\nabla_{X}^{\perp} J Y \epsilon \mu$. Since $-A_{J Y} X \epsilon(T M)$ we have to have

$$
\begin{equation*}
\nabla_{X} Y=0 \tag{4.4}
\end{equation*}
$$

Switching X and Y in (4.2) we also get

$$
\begin{equation*}
\nabla_{Y} X=0 \tag{4.5}
\end{equation*}
$$

By virtue of the frame being orthonormal and equation (4.5) we get

$$
\begin{equation*}
\left\langle\nabla_{Y} Y, Y\right\rangle=0 \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\nabla_{Y} Y, X\right\rangle=0 \tag{4.7}
\end{equation*}
$$

Then it follows from (4.6) and (4.7) that

$$
\begin{equation*}
\nabla_{Y} Y=0 \tag{4.8}
\end{equation*}
$$

The sectional curvature K of M is given by

$$
\begin{equation*}
K(X, Y)=R(X, Y, Y, X)=\left\langle\nabla_{X} \nabla_{Y} Y-\nabla_{Y} \nabla_{X} Y-\nabla_{[X, Y]} Y, X\right\rangle \tag{4.9}
\end{equation*}
$$

Hence it follows from (4.3), (4.4), (4.5), (4.8) and (4.9) that M is flat.

As an immediate consequence of the above theorem, we have the following:
Corollary. A 2-dimensional sphere S^{2} is not totally real in S^{6}.

References

1. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc. 83 (1981), 759-763.
2. T. Fukami and S. Ishihara, Almost Hermitian structure on S^{6}, Tohoku Math. J. 7 (1955), 151-156.
3. A. Gray, Almost complex submanifolds of six sphere, Proc. Amer. Math. Soc. 20 (1969), 277-279.
4. K. Sekigawa, Almost complex submanifolds of a 6-dimensional sphere, Kodai Math. J., 6 (1983), 174-185.
5. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. I, second edition, Publish or Perish.

Mathematics Department
College of Science
King Saud University
P.O. Box 2455, Riyadh 11451,
SAUDI ARABIA.

