ON THE GRAM MATRIX

in memory of Maurice Audin

Israel Halperin

(received April 30, 1962)

1. <u>Introduction</u>. The material sketched here is mostly well known and concerns the geometrical inter-relations of vectors in a Hilbert (that is, complete inner product) space. The discussion and references are (obviously) not exhaustive but I hope the reader will find here some interesting problems.

We shall permit the scalars to be real, complex or quaternionic numbers. 1) The inner product of vectors x and y will be denoted (x|y).

Vectors (sometimes represented by rows of scalars) are to be multiplied by scalars on the left and by linear operators or matrices on the right; thus (cx|y) = c(x|y), $(x|cy) = (x|y)\overline{c}$, $(xA|y) = (x|yA^*)$. If c is a central scalar (that is, cd = dc for all scalars d) we interpret xc to mean cx.

 $\begin{bmatrix} x_1, \dots, x_m \end{bmatrix}$ will denote the subspace spanned by the vectors x_1, \dots, x_m .

2. The Gram matrix. An $m \times m$ matrix of scalars $B = (b_{i,k}; i, k=1,...,m)$ will be called a Gram matrix if in some Hilbert space there are vectors $x_1,...,x_m$ such that $b_{i,k} = (x_i \mid x_k)$ for all i, k; then B will be denoted $G(x_1,...,x_m)$.

Canad. Math. Bull. vol. 5, no. 3, September 1962.

¹⁾ For an early memoir using quaternion scalars, see [6]. For more general scalars, see [1].

As for uniqueness of the x_1, \dots, x_m , it is easy to show that $G(x_1, \dots, x_m) = G(y_1, \dots, y_m)$ if and only if there is an isometric mapping of $[x_1, \dots, x_m]$ onto $[y_1, \dots, y_m]$ which maps x_i onto y_i for each i.

3. Gram matrices coincide with matrices AA^* . Suppose given a Gram matrix $G(x_1, \dots, x_m)$. By the Gram-Schmidt orthonormalization procedure²) there exist orthonormal vectors $\varphi_1, \dots, \varphi_n$ with $n \le m$ such that $[\varphi_1, \dots, \varphi_n] = [x_1, \dots, x_m]$. Then $G = AA^*$ where A is the $m \times m$ matrix $(a_{i,k})$ with $a_{i,k} = (x_i | \varphi_k)$ for $k = 1, \dots, n$, and $a_{i,k} = 0$ for $n < k \le m$. Actually the Gram-Schmidt procedure shows that the φ_i can be chosen so that A is semi-diagonal, that is: $a_{i,k} = 0$ for all i < k.

The converse is trivial: a product AA^* is clearly the Gram matrix of x_1, \ldots, x_m vectors which can be represented (with respect to any orthonormal set of vectors) by the rows of A.

4. Gram matrices coincide with Hermitian definite matrices. We call a matrix $B = (b_{i,k})$ Hermitian if $b_{i,k} = \overline{b}_{k,i}$ for all i, k, definite (abbreviation for positive semi-definite) if $\Sigma_{i,k=1}^{m}$ $t^{i}b_{i,k}$ is real and ≥ 0 for all scalars t^{1}, \ldots, t^{m} . 3)

That $G(x_1, \dots, x_m)$ is Hermitian definite follows from its representation AA^* , or alternatively by direct verification:

$$\begin{aligned} &(\mathbf{x}_{i} \mid \mathbf{x}_{k}) &= \overline{(\mathbf{x}_{k} \mid \mathbf{x}_{i})}, \\ &\Sigma_{i, k=1}^{m} \ \mathbf{t}^{i}(\mathbf{x}_{i} \mid \mathbf{x}_{k}) \overline{\mathbf{t}^{k}} &= \left| \left| \Sigma_{i=1}^{m} \ \mathbf{t}^{i} \mathbf{x}_{i} \right| \right|^{2} \geq 0 \ . \end{aligned}$$

²⁾ See [2, pages 30-31], [4, page 16], or [5, page 13].

³⁾ If B is definite then (i): all b_{i,i} are necessarily real and > 0, and (ii): for complex or quaternionic scalars (but not for real scalars) B is necessarily Hermitian.

On the other hand, if B is a given Hermitian definite matrix, then spectral theory shows that $B = A^2$ for some Hermitian definite A and this implies that B is a Gram matrix. But the fact that B is a Gram matrix can be shown without spectral theory. The calculations are cumbersome but nevertheless of some interest; the result is almost trivial when m=1 and follows by induction from the following lemma.

(1) Suppose x_1, \dots, x_m are given vectors and $B = (b_{i,k})$ is a Hermitian definite $(m+1) \times (m+1)$ matrix with $b_{i,k} = (x_i | x_k)$ for $i,k=1,\dots,m$. Then there exists a

vector x_{m+1} such that $b_{i,k} = (x_i | x_k)$ for $i,k=1,\dots,m+1$.

Every vector has the form: $d^1x_1 + \ldots + d^mx_m + y$ (with suitable scalars d^1, \ldots, d^m and a suitable vector y orthogonal to all of x_1, \ldots, x_m) and (1) can be deduced from the following lemma:

(2) Suppose $B = (b_{i,k})$ is a Hermitian definite $(m + 1) \times (m + 1)$ matrix. Then there exist scalars d^1, \ldots, d^m such that $d^1b_{1,j} + \ldots + d^mb_{m,j} = b_{m+1,j} \quad \text{for } j = 1, \ldots, m;$ $d^1b_{1,m+1} + \ldots + d^mb_{m,m+1} \quad \text{is real and } \leq b_{m+1,m+1};$

then in (1), x_{m+1} may be taken as $d^{1}x_{1}+...+d^{m}x_{m}+y$ where y is any vector orthogonal to all of $x_{1},...,x_{m}$ which satisfies $||y||^{2} = b_{m+1,m+1} - ||d^{1}x_{1}+...+d^{m}x_{m}||^{2}$ $(=b_{m+1,m+1}-(d^{1}b_{1,m+1}+...+d^{m}b_{m,m+1})).$

To prove (2), choose n to be the largest integer with the property: for some set of integers i_1, \ldots, i_n with

$$1 \le i_1 < i_2 < \dots < i_n < m$$
 the row-vectors

$$(b_{i_1,i_1}, \ldots, b_{i_1,i_n}), \ldots, (b_{i_n,i_1}, \ldots, b_{i_n,i_n})$$

are linearly independent. Necessarily $0 \le n \le m$

We note that if for some $i \leq m+1$, $b_{i,i} = 0$, then $b_{i,k} = 0 = b_{k,i}$ for all $k=1,\ldots,m+1$; to see this, observe that if $k \neq i$, then $sb_{i,i} = 0$, t+1, t

Now, if n=0 then $b_{i,i}=0$ for all $i\leq m$, hence $b_{i,k}=0 \text{ for all } i,k=1,\ldots,\ m+1\ , \text{ except possibly for } b_{m+1,\,m+1}\ .$ In this case (2) clearly holds with $d^i=0$ for $i=1,\ldots,\ m$.

Now suppose n>0. We may suppose i=r for $1\leq r\leq n$. Then, for suitable scalars c^1,\ldots,c^n we must have:

(3)
$$b_{m+1, k} = c^1 b_{1, k} + \ldots + c^n b_{n, k} \text{ for } k = 1, \ldots, n$$
.

We shall show:

(4)
$$c^{1}b_{1,m+1} + \dots + c^{n}b_{n,m+1} \xrightarrow{\text{is real and}} \leq b_{m+1,m+1};$$

(5) For all
$$n + 1 \le k \le m$$
, (3) holds.

This will imply that (2) holds with $d^i = c^i$ for $1 \le i \le n$ and $d^i = 0$ for n + 1 < i < m.

To prove (4), note that for every scalar t,

(6)
$$\sum_{i, k=1}^{n} c^{i}b_{i, k} c^{k} + \sum_{k=1}^{n} tb_{m+1, k} c^{k} + \sum_{k=1}^{n} b_{k, m+1} t + tb_{m+1, m+1} t$$
is real and > 0.

By (3),
$$\sum_{k=1}^{n} b_{m+1, k} c^{\frac{1}{k}} = \sum_{i, k=1}^{n} c^{i} b_{i, k} c^{\frac{1}{k}}$$
; hence (6), with $t = 1$, yields (4).

To prove (5) suppose j fixed with $n < j \le m$. Then the row vector $(b_{j,1}, \ldots, b_{j,n}, b_{j,j})$ must be a left linear combination of $(b_{i,1}, \ldots, b_{i,n}, b_{i,j})$, $i = 1, \ldots, n$, because of the maximal property of n. Thus for suitable scalars d^1, \ldots, d^n :

(7)
$$b_{j,k} = d^{1}b_{1,i} + \dots + d^{n}b_{n,i}$$
 for $i = 1, \dots, n, j$.

We shall first show that (7) holds for i = m + 1 also. Since B is definite,

$$\sum_{i, k=1, \ldots, n, j, m+1} t^i b_{i, k} \overline{t^k} \ge 0$$

for all scalars $t^1, \ldots, t^n, t^j, t^{m+1}$. Choose $t^i = d^i$ for $1 \le i \le n$, $t^j = -1$ and $t^{m+1} = \varepsilon t$ with ε real, > 0. Then since $b_{j,j} = \sum_{i=1}^n d^i b_{i,j} = \sum_{i,k=1}^n d^i b_{i,k} d^k$, therefore

$$b_{j,j} - b_{j,j} - b_{j,j} + b_{j,j} + \epsilon \sum_{i=1}^{n} d^{i}b_{i,m+1} + \epsilon \sum_{i=1}^{n} tb_{m+1,i} d^{i}$$

$$- \epsilon b_{j,m+1} + \epsilon b_{m+1,j} + \epsilon^{2} |t|^{2} b_{m+1,m+1} \ge 0$$

for every scalar t and all $\epsilon > 0$. Hence

$$(b_{j,m+1} - \sum_{i=1}^{n} d^{i}b_{i,m+1})^{i} + t(b_{m+1,j} - \sum_{i=1}^{n} b_{m+1,i}^{i})^{i} \le \epsilon |t|^{2}b_{m+1,m+1}$$

for all $\varepsilon \,>\, 0$, $\,$ and hence also for $\,\varepsilon \,\,=\, 0$, $\,$ and for every scalar t .

Now with t = b j, m+1 $- \sum_{i=1}^{n} d^{i}b$ i, m+1 we obtain:

 $2|b_{j,m+1} - \sum_{i=1}^{n} d^{i}b_{i,m+1}| = 0$ and hence (7) holds for i = m+1.

Now returning to (5), we have:

$$b_{m+1,j} = \sum_{k=1}^{n} b_{m+1,k} d^{k} = \sum_{i,k=1}^{n} c^{i}b_{i,k} d^{k} = \sum_{i=1}^{n} c^{i}b_{i,j}$$

so (3) holds for k = j, as required.

This completes the proof of (2), and (1), and shows that B is a Gram matrix if and only if B is Hermitian definite.

5. Volume of a parallelepiped. If x_1, \ldots, x_m are given vectors we define the parallelepiped $P(x_1, \ldots, x_m)$ to m consist of all vectors of the form $\sum_{i=1}^{n} c^i x_i$ with c^i real and i=1 $0 \le c^i \le 1$ for all i.

The high-school formula for m-dimensional volume of a parallelepiped (we shall use the symbol $V_m(x_1, \ldots, x_m)$) would be defined (presumably) by induction on m as follows:

(8)
$$V_1(x_1) = ||x_1||$$
,

 $V_{m+1}(x_1, \dots, x_{m+1}) = ||x_{m+1}||V_m(x_1, \dots, x_m)$

where x'_{m+1} is the component of x_{m+1} orthogonal to $[x_1, \dots, x_m]$.

The formulae (8) determine $V_m(x_1,\ldots,x_m)$ uniquely as a non-negative real number which (clearly) is 0 if and only if the vectors x_1,\ldots,x_m are linearly dependent. It is usually assumed that the value of $V_m(x_1,\ldots,x_m)$ does not depend on the order of x_1,\ldots,x_m and this requires proof.

An easy proof is possible if determinants are available, that is, if the scalars are real or complex numbers. Assuming the vectors x_1, \ldots, x_m are linearly independent, we can use the Gram-Schmidt orthonormalization to obtain

(9)
$$x_i = a_{i,1} \varphi_1 + ... + a_{i,i} \varphi_i \text{ for } i = 1,..., m$$

with a real and > 0 for all i. Then $x_i' = a_{i,i} \varphi_i$, $||x_i'|| = a_{i,i}, \text{ and } V_m(x_1, \dots, x_m) = \pi a_{i=1} a_{i,i} = \det A \text{ where } A \text{ is the } m \times m \text{ matrix which has } i,k\text{-th entry equal to } a_{i,k}$ if $1 \le k \le i$ and has all other entries equal to 0. Now we have the equality:

$$V_{m}(x_{1}, \dots, x_{m}) = \sqrt{\det G(x_{1}, \dots, x_{m})}$$

(which is also obviously valid if the vectors $\mathbf{x}_1,\dots,\mathbf{x}_m$ are linearly dependent); this implies that the value of \mathbf{V}_m is independent of the order of $\mathbf{x}_1,\dots,\mathbf{x}_m$, provided the scalars are real or complex numbers.

The following direct proof is valid for real, complex or quaternionic scalars. Clearly we need only show that if m > 1 then the value of V_m is unchanged when x_m and x_{m-1} are permuted. We will then have two versions of (9) to consider, say:

$$x_{m-1} = a_{m-1, 1} \varphi_1 + \dots + a_{m-1, m-2} \varphi_{m-2} + a_{m-1, m-1} \varphi_{m-1},$$

$$x_m = a_{m, 1} \varphi_1 + \dots + a_{m, m-2} \varphi_{m-2} + a_{m, m-1} \varphi_{m-1} + a_{m, m} \varphi_m;$$
and
$$x_m = a_{m, 1} \varphi_1 + \dots + a_{m, m-2} \varphi_{m-2} + a'_{m, m-1} \psi_{m-1},$$

$$x_{m-1} = a_{m-1, 1} \varphi_1 + \dots + a_{m-1, m-2} \varphi_{m-2} + a'_{m-1, m-1} \psi_{m-1}$$

$$+ a'_{m-1, m} \psi_m;$$

and we need only show that a = a' a' m-1, m-1, m-1, m

We have:

$$a_{m-1, m-1}^{1} (\varphi_{m-1} | \psi_{m-1}) = a_{m-1, m-1}^{1},$$

$$a_{m, m-1}^{1} (\psi_{m-1} | \varphi_{m-1}) = a_{m, m-1}^{1},$$

$$|a_{m-1, m-1}|^{2} = |a_{m-1, m-1}^{1}|^{2} + |a_{m-1, m}^{1}|^{2},$$

$$|a_{m, m-1}^{1}|^{2} = |a_{m, m-1}^{1}|^{2} + |a_{m, m}^{1}|^{2};$$

so

$$a_{m-1, m-1} \begin{vmatrix} a_{m, m-1} \end{vmatrix} = a_{m, m-1}^{1} \begin{vmatrix} a_{m-1, m-1} \end{vmatrix},$$

$$(a_{m-1, m-1})^{2} ((a_{m, m-1}^{1})^{2} - (a_{m, m}^{1})^{2})$$

$$= (a_{m, m-1}^{1})^{2} ((a_{m-1, m-1}^{1})^{2} - (a_{m-1, m}^{1})^{2}),$$

$$(a_{m-1, m-1}^{1})^{2} (a_{m, m}^{1})^{2} = (a_{m, m-1}^{1})^{2} (a_{m-1, m}^{1})^{2}$$

and hence a a = a' a' as required.

m-1,m-1 m,m m,m-1 m-1,m

6. Determinants of matrices with non-commutative scalars. There are well known obstacles to an extension of the usual theory of determinants for matrices to the case where the entries are taken from a non-commutative ring. 4) But if A is an mxm matrix of quaternions we can define a generalization of "the absolute value of the determinant," denoted D(A), as follows. We observe that

(10) the quotient
$$\frac{V_m(x_1^A, \dots, x_m^A)}{V_m(x_1, \dots, x_m)}$$
 is a constant if x_1, \dots, x_m are arbitrary linearly independent row vectors (each of m scalars).

Then we define D(A) to be the value of the quotient in (10).

⁴⁾ See [3] and the references given there.

The reader can use the identities:

$$V_{m}(c_{1}x_{1}, \dots, c_{m}x_{m}) = |c_{1} \dots c_{m}|V_{m}(x_{1}, \dots, x_{m});$$

$$V(x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{m}) = V(x_{1}, \dots, x_{i-1}, y, x_{i+1}, \dots, x_{m})$$

$$\frac{\text{whenever } y = x^{i} + \text{an arbitrary left linear combination of}}{x_{1}, \dots, x_{i-1}, x_{i+1}, \dots, x_{m}}$$

to prove (10) by showing that given linearly independent vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$ can be transformed into given linearly independent vectors $\mathbf{y}_1, \dots, \mathbf{y}_m$ by successive steps each of which leaves the quotient in (10) unaltered.

The reader can also verify that the function D(A) has the properties:

- (11) D(A) is defined and is a real number ≥ 0 , D(0) = 0, D(1) = 1;
- (12) If A is a semi-diagonal matrix $(a_{i,k})$ (that is, $a_{i,k} = 0$ for all i < k) then $D(A) = \pi_{i=1}^{m} |a_{i,i}|$;
- (13) D(A) = 0 if and only if xA = 0 for some non-zero vector x;
- (14) D(AB) = D(A)D(B);⁵⁾
- (15) $D(AA^*) = D(A^*A)^{6}$, $D(A) = D(A^*) = \sqrt{D(AA^*)}$;
- 5) The validity of (14) follows from (10) if $D(A) \neq 0$ and from (13) if D(A) = 0.
- 6) Use: $A^*A = UAA^*U^*$ for some unitary U. Alternatively: there are independent vectors $\mathbf{x}_1, \ldots, \mathbf{x}_n$ such that for each i, $\mathbf{x}_i AA^* = \lambda_i \mathbf{x}_i$ for some real $\lambda_i \geq 0$ (the \mathbf{x}_i can even be chosen to be orthonormal); then $\mathbf{y}_i A^*A = \lambda_i \mathbf{y}_i$ if \mathbf{y}_i is chosen to be $\mathbf{x}_i A$. Hence $D(A^*A) = \pi_i \lambda_i = D(AA^*)$ if the \mathbf{y}_i are linearly independent (and also, by an obvious argument, if the \mathbf{y}_i are linearly dependent).

(16) D(A) = square root of the product of the spectral values of AA*.

We again have
$$V(x_1, ..., x_m) = \sqrt{D(G(x_1, ..., x_m))}$$
.

7. Generalized Schwarz inequalities. Suppose now that B is Hermitian. We shall say that B" is obtained from B by a symmetrical transformation if some B' is obtained by adding to the i-th row of B a left linear combination $\Sigma \ c^j(b_j,k; k=1,\ldots,m) \ \text{of the other rows of B and then B"}$ is obtained by adding to the i-th column of B' the corresponding conjugate right linear combination $\Sigma(b'_k,j; k=1,\ldots,m)c^j$ of the other columns of B' (symmetrical transformation of the matrix B corresponds to a certain change in the basis of the vector space).

If B_o is an m×m diagonal matrix (that is,

(b_o)_{i,k} = 0 if i ≠ k), we shall say that B_o is <u>diagonally</u>

related to B if B_o can be obtained from B by a succession

of symmetrical transformations. It is easy to see that every

Hermitian B is diagonally related to some diagonal B_o

(necessarily Hermitian but in general not uniquely determined

by B) and when B is Hermitian definite then B_o is

Hermitian definite and the product of the diagonal entries of

B_o is non-negative, coinciding with D(B).

We are led to define by induction on m for a given Hermitian $m \times m$ matrix B an expression E(B) which is a certain polynomial in the entries b_{i, k}, i, k=1,..., m, as follows:

If
$$m = 1$$
 and $B = (b_{1,1})$, set $E(B) = b_{1,1}$.

If m > 1 and E(B') is already defined for every $(m-1) \times (m-1)$ Hermitian matrix B', set E(B) = E(B') where B' is the $(m-1) \times (m-1)$ Hermitian matrix with $(b')_{i,k} = b_{1,1} b_{i,k} - b_{i,1} b_{1,k}$ for $2 \le i, k \le m$.

It is not difficult to prove that B is definite if and only if $E(B^{!}) \geq 0$ for every submatrix $B^{!} = (b^{!}_{i,k}; i, k = i_{1}, \ldots, i_{n})$ with $1 \leq i_{1} < \ldots < i_{n} \leq m$.

If m=2, then E(B) is simply $b_{1,1}b_{2,2} - \left|b_{1,2}\right|^2$, which corresponds to the well known Schwarz inequality: $(x_1 \mid x_1)(x_2 \mid x_2) - \left|(x_1 \mid x_2)\right|^2 \geq 0 .$ We may therefore call each inequality: $E(B) \geq 0$ a generalized Schwarz inequality.

8. The Hermitian matrix as an operator. Suppose B is an mxm Hermitian matrix and for each row vector x let xB be the row obtained by matrix multiplication. Then B determines a self-adjoint operator on the m dimensional Hilbert space of row vectors.

Elementary spectral theory shows that B is a difference of two Hermitian definite operators $B = G(x_1, \dots, x_m) - G(y_1, \dots, y_m)$, say, such that $G(x_1, \dots, x_m) G(y_1, \dots, y_m) = 0$.

It is interesting to enquire into the behaviour of $x_1, \ldots, x_m, y_1, \ldots, y_m$ when B is replaced by B - tl with t a real number and I the m×m unit matrix (in particular, when B is definite). Also, what is the behaviour of the spectral vectors and spectral values when B undergoes a symmetric transformation? If $G(x_1, \ldots, x_m)$ and $G(y_1, \ldots, y_m)$ commute then their product matrix is of the form $G(z_1, \ldots, z_m)$; can the z_1 be expressed in a simple way in terms of $x_1, \ldots, x_m, y_1, \ldots, y_m$?

- 9. Special Gram Matrices. It is interesting to investigate families of vectors x_1, \dots, x_m for which
- (17) $(x_i | x_k) = d$ (a constant, necessarily real) for all $i \neq k$.

If d = 0, this simply means that the vectors are mutually

orthogonal. Then, as is well known, such vectors x_1, \ldots, x_m do exist, with arbitrary non-negative values for $(x_i | x_i)$; in this case, the x_i (if non-zero) are necessarily linearly independent and, if the Hilbert space is of dimension > m, it is possible to adjoin a vector x_{m+1} so that x_1, \ldots, x_{m+1} also have property (17).

Suppose d < 0, that is, d = -c with c > 0. Then vectors do exist satisfying (17) but the values of $(\mathbf{x}_i \mid \mathbf{x}_i)$ cannot be assigned without restriction. They are arbitrary, subject to the following condition:

(18)
$$\sum_{i=1}^{m} \frac{c}{c + ||\mathbf{x}_{i}||^{2}} \leq 1.$$

Moreover, if equality holds in (18) then the vectors are linearly dependent and it is impossible to adjoin a vector \mathbf{x} so that (17) continues to hold. But if strict inequality holds in (18) then the vectors are linearly independent and (if the dimension of the Hilbert space > m) it is possible to adjoin \mathbf{x} so that (17) continues to hold.

To show this we may assume c = 1 (by replacing the former x_i by $\sqrt{c}x_i$). Suppose now that x_1, \ldots, x_m satisfy (17); then any vector (x_{m+1}, say) can be expressed as g + y with $g = a_1 x_1 + \ldots + a_m x_m$ and some y orthogonal to each of x_1, \ldots, x_m .

The statement $(x_{m+1} | x_i) = (g | x_i) = -1$ for all i = 1, ..., m is equivalent, by (17), to $\sum_{j=1}^{m} a_j(x_j | x_i) = -1$, that is, to:

(19)
$$a_i(||x_i||^2 + 1) = (\sum_{j=1}^{m} a_j) - 1 \text{ for } i=1,...,m$$
.

Elementary manipulation of fractions show that (19) is equivalent to:

(20)
$$\sum_{j=1}^{m} \frac{1}{1 + ||x_{j}||^{2}} < 1 \text{ and}$$

$$a_{i} = \frac{-1}{||x_{i}||^{2} + 1} \left(1 - \sum_{j=1}^{m} \frac{1}{1 + ||x_{j}||^{2}}\right)^{-1}$$

However (20) may also be obtained from the calculations:

$$\begin{aligned} ||g||^2 &= (g|g) = \sum_{j=1}^{m} (a_j x_j |g) = \sum_{j=1}^{m} a_j (-1) = -\sum_{j=1}^{m} a_j; \\ -a_i &= \frac{1 + ||g||^2}{1 + ||x_i||^2}; \\ ||g||^2 &= (1 + ||g||^2) \sum_{j=1}^{m} \frac{1}{1 + ||x_j||^2}; \end{aligned}$$

Since $\left|\left|\mathbf{x}_{m+1}\right|\right|^2 = \left|\left|\mathbf{g}\right|\right|^2 + \left|\left|\mathbf{y}\right|\right|^2$ it is clear that if \mathbf{x}_{m+1} exists as described, then $\sum_{i=1}^{m+1} \frac{1}{1+\left|\left|\mathbf{x}_i\right|\right|^2} \le 1$ with equality

equivalent to linear dependence of x_{m+1} on x_1, \dots, x_m . On the other hand, (20) shows that if $\sum_{j=1}^m \frac{1}{1+\left|\left|x_j\right|\right|^2} < 1$ then

 x_{m+1} does exist and, if the dimension of the Hilbert space is greater than m, the value of $\left| \left| x_{m+1} \right| \right|$ is arbitrary, subject to the condition (18) (for m+1).

As a corollary, we see that a sequence of vectors \mathbf{x}_n with $(\mathbf{x}_n | \mathbf{x}_m) = -1$ for all $n \neq m$ can exist in a Hilbert space if and only if the dimension of the space is infinite. Then the vectors are necessarily linearly independent and the values of $|\mathbf{x}_n|$ are arbitrary except for the condition:

(21)
$$\sum_{n=1}^{\infty} \frac{1}{1 + \left| \left| x_n \right| \right|^2} \le 1$$
.

The necessity of the condition (21) was first observed by I. Amemiya (oral communication, 1959). His elegant proof ran as follows: choose a unit vector g orthogonal to all the given x (enlarge the Hilbert space if necessary). Then the

vectors
$$\left(\frac{1}{1+||x_n||^2}\right)^{1/2}$$
 $(g+x_n)$, $n=1,2,...$ are

orthonormal and Bessel's inequality, applied to g with respect to this orthonormal set, gives (21).

The writer then used the Gram-Schmidt orthonormalization process to prove that for given real $p_{n,\,m}$ with all $p_{n,\,n}>0$ and $p_{n,\,m}\leq -1$ for all $n\neq m$, the condition

 $\frac{\infty}{\Sigma} = \frac{1}{1 + p_{n,n}} \le 1$ is necessary and sufficient for the existence

of vectors x_n with $(x_n | x_m) = p_{n,m}$ for all n,m (later,

A. Renyi found a proof of Amemiya's result using Bessel's inequality directly).

Then Amemiya remarked (in a letter dated October, 1961) that the following variation of his method also showed that (21) was a sufficient condition if $p_{n,m} = -1$ for all $n \neq m$:

For given
$$d_n > 0$$
 $(n \ge 1)$ with $\sum_{n=1}^{\infty} \frac{1}{1+d_n^2} \le 1$ simply choose

$$y_n$$
, $n \ge 0$ to be orthogonal vectors with $\left| \left| y_0 \right| \right| = 1$, $\sum_{n=1}^{\infty} \left| \left| y_n \right| \right|^2 = \left(1 + \frac{d^2}{n}\right)^{-1}$, let $g = ay_0 - \sum_{n=1}^{\infty} y_n$ with $a \ge 0$, $a^2 = 1 - \sum_{n=1}^{\infty} \frac{1}{1 + \frac{d^2}{n}}$. Then $x_n = g + \left(1 + \frac{d^2}{n}\right)y_n$, $n \ge 1$ satisfies $\left| \left| x_n \right| = d_n$, $\left(x_n \mid x_m \right) = -1$ for $n \ne m$.

The reader may find it interesting to vary this last construction of Amemiya in order to deal with arbitrary real $p_{n,\,m} \leq -1$.

The reader may also seek to prove, by direct arithmetic, the following consequence of Amemiya's theorem: if $p_n>0$ for $n=1,2,\ldots$ and $q_1=p_1$, $q_{n+1}=p_{n+1}\left(1+q_1^2+\ldots+q_n^2\right)$ for $n\geq 1$, then $\sum_{n=1}^\infty \frac{p_n^2}{1+q_n^2} \leq 1$.

REFERENCES

- 1. N. Bourbaki, Algèbre, Ch. 9, §7.
- 2. R. Courant and D. Hilbert, Methoden der Mathematischen Physik, vol. 1 (Springer, Berlin, 1931).
- J. Dieudonné, <u>Les déterminants sur un corps non commutatif</u>, Bull. Soc. Math. France, vol. 71 (1943), pp. 27-45.
- John von Neumann, <u>Functional Operators</u>, vol. II: <u>The Geometry of Orthogonal Spaces</u>, Annals of Mathematics Studies, No. 22, Princeton, 1950.
- M. H. Stone, <u>Linear Transformations in Hilbert Space</u>, American Mathematical Society Colloquium Publications Vol. XV, New York, 1932.

- 6. O. Teichmuller, Operatoren im Wachsschen Raum,
 - J. Reine und Angew. Math., vol. 174 (1935), pp. 73-124.

Queen's University Kingston, Canada