ON THE GRAM MATRIX
in memory of Maurice Audin
Israel Halperin

{(received April 30, 1962)

1. Introduction. The material sketched here is mostly
well known and concerns the geom=trical inter-relations of
vectors in a Hilbert (that is, complete inner product) space.
The discussion and references are (obviously) not exhaustive
but I hope the reader will find here some interesting problems.

We shall permit the scalars to be real, complex or
quaternionic numbers. 1) The inner product of vectors x and
y will be denoted (x|y).

Vectors (sometimes represented by rows of scalars) are
to be multiplied by scalars on the left and by linear operators
or matrices on the right; thus (cx|y) =c(x|y), (x|cy) =
(x]y)e, (xAl]y) =(x’yA*). If ¢ is a central scalar (that is,
cd =dc for all scalars d) we interpret xc to m=an cx.

[Xi’ e ,xm] will denote the subspace spanned by the

vectors x ,...,X .
1 m
2. The Gram matrix. An mXm matrix of scalars

B = (b, K i,k=1,...,m) will be called a Gram matrix if in
i,

some Hilbert space there are vectors x

L e, X such that
1 m

b. =(x,|x ) for all i,k; then B will be denoted
i,k i’ k

G(x1,. .. ,xm).

1) For an early memoir using quaternion scalars, see [6].
For more general scalars, see [1].
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As for uniqueness of the Xi’ ...,X , it is easy to show
that G(x1, e ,xm) = G(Yi’ ce ,ym) if and only if there is an
i i : i f t hich
isometric mapping o [x1 xm] onto [y1 ym] whic
maps x, onto y. for each i.

1 1

3. Gram matrices coincide with matrices AA™.
Suppose given a Gram matrix G(x1, e, xm). By the Gram-

Schmidt orthonormalization procedurez) there exist ortho-

normal vectors qai, ..., with n< m such that
n =

[(Pi, ce <pn] =[x1, cen ,xm]. Then G = AA® where A is the
mXm matrix (ai’ k) with ai’ K- (xi] <pk) for k=1,...,n, and
a, = 0 for n<k<m. Actually the Gram-Schmidt procedure
i, -
shows that the ¢, can be chosen so that A is semi-diagonal,
1

thatis: a. =0 for all i< k.
i,k

The converse is trivial: a product AA™ is clearly the
Gram matrix of Xpooooo X vectors which can be
m

represented (with respect to any orthonormal set of vectors)

by the rows of A.

4. Gram matrices coincide with Hermitian definite
matrices. We call a matrix B = (b, k) Hermitian if
marrices i, Hertiitien

b, K ='5k . for all i,k, definite (abbreviation for positive
1, ) 1 R

i k
semi-definite) if Zl.’n tlb. t is real and > 0 for all
i, k=1 i,k -

1
scalars t,... ,tm. 3)

That G(Xi’ c ,xm) is Hermitian definite follows from

its representation AA*, or alternatively by direct verification:

(Xilxk) = (e lx),

—_— 2

m i k m i
Zi,k:it(xilxk)t = I]Z}i:1txi|| >0.

2) See [2, pages 30-31], [4, page 16], or [5, page 13].

3) If B is definite then (i): all b; ; are necessarily real and
> 0, and (ii): for complex or quaternionic scalars (but not
for real scalars) B is necessarily Hermitian.
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On the other hand, if B is a given Hermitian definite
matrix, then spectral theory shows that B =A% for some
Hermitian definite A and this implies that B is a Gram matrix.
But the fact that B is a Gram matrix can be shown without
spectral theory. The calculations are cumbersome but
nevertheless of some interest; the result is almost trivial

when m =1 and follows by induction from the following

lemma.
(1) Suppose x1, .o ,xrn are given vectors and B = (bi,k)
is a Hermitian definite {m } 1) X (m + 1) matrix with
b. =(x‘lx ) for i,k=1,...,m. Then there exists a
.k it k' ——
vector x such that b, =(x,]x ) for i,k=1,...,m+1.
— mtl —— i,k i’ k¥ —

1 m
Every vector has the form: d x1+. ..+ d X + vy (with

1
suitable scalars d,... ,dm and a suitable vector y ortho-
gonal to all of x1, ce ,xm) and (1) can be deduced from the

following lemma:

(2) Suppose B = (b, k) is a Hermitian definite (m + 1) X{(m + 1)
DUPPOSE i,

matrix. Then there exist scalars d1,...,dm such that
1
d'b ,+...+dmb .=b . for j=1,...,m;
1,j m,] m+i,j —
1 m
...+ d i d< ;
bi,m+1+ * bm,m+1 is real and —bm+1,m+1
then in (1) be tak d1 + +dm +
en in , xrn+1 may be taken as x1 x tvy
where y 1is any vector orthogonal to all of Koo X which
2 1 m 2
isfi = - d ...+d
satisfies Hy” bm+1,m+1 H x1+ + me
1 m
=b - (d +...4d b .
( m+1i, m+1 ( bi,m+1 : m,m+1))

To prove (2), choose n to be the largest integer with

the property: for some set of integers ii’ .o ,in with
1< i1 < i2< ... <i <m the row-vectors
(bi "”"bi i'),...,(b, i,...,bi i)
11 1" 'n 'n’ M n’'n

are linearly independent. Necessarily 0<n<m.
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We note that if for some i<m+ 1, b, . =0, then
- i, 1

b, =0=b, . forall k=14, ..., m+ 1 ; to see this, observe
i,k k,i

if k#i, th s t s t>0 f
that if k# i, then sb, s+ b, +tbk,is+tbk,k >0 for

all scalars s,t. Now choose t=-¢€ with € real and > 0 and

choose s =bk i Then since b. . =0 it follows that

2
>2¢ |b
€ bk b,

i, 1

,kt ; hence ebk,kzzibi,kl

and hence also for ¢ =0 . This proves: b, k- 0 as stated.
1

>

for all e >0

Now, if n=0 then b, . =0 forall i<m , hence
i, i -

k=0 for all i,k=1, ..., m+ 1, except possibly for

In this case (2) clearly holds with d' =0 for

Now suppose n >0 . We may suppose i =r for
r

. 1 n
1<r<nmn. Then, for suitable scalars ¢, ..., ¢ we must

have:

(3) cb, +...+cb for k=1, ..

Dot k- € Pk n, k

We shall show:

1 n

(4) cb is real and < b

+... 5
1, m+1 te bn,m+1 —_— = "m#+1, m+1’
(5) For all n+1<k<m, (3)holds.

This will imply that (2) holds with d'=c’ for 1 <i<n and

d' =0 for n+l1<i<m.
To prove (4), note that for every scalar t,
n . — n — n

6) T b, .c+2 tb Kizop T+ tb

t
] ‘ H ] l ’ ] l 3 3

is real andz 0.

268

https://doi.org/10.4153/CMB-1962-027-1 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1962-027-1

o x 2 ik
By (3), = b c =X ¢'b, .c ; hence (6), with t=1,

K=t m+1l,k i ket i,k

yields (4).

To prove (5) suppose j fixed with n< j<m . Then the

row vector (b, ., ..., b, , b, ) must be a left linear
i1 AR S P

combination of (b, , ..., b, , b ), i=1, ..., n,
i, 1 1L,n 1,j
because of the maximal property of n. Thus for suitable

1
scalars d°, ..., dn:

1 n
=d +...+d f i=1, ..., n,j.
(7) bj,k bi,i + bn,i or i n,j

We shall first show that (7) holds for i=m + 1 also.
Since B is definite,

ik
t t >
bi,k >0
i,k=t,...,n,j,m+l
for all scalars ti, e, tn, tJ,tm+1 . Choose t1=d1 for

1<i<n, t‘]=—1 and tm+1= ¢t with € real, > 0. Then

T S
since b, . =Z dlb, .=. Z db. .d , therefore
J.J . i,j i, kA i,k
i=1
n . _ n —_
b, .-b, .-b, _+b, ., +e€Z db, RN ic11
JsJ RE J»] AER i=t 1, =t ,
_ 2, ,2
- t - t >0
b i1t T Pyt 1t bt mea 2
for every scalar t and all € >0 . Hence
n n -
(b -z db )t + t(b -2 b d'y<elt]%
jm+i i, m+1 m+1,j ., mt+i,i - m+1, mt1
i=1 ' i=1
for all € >0, and hence also for € =0, and for every scalart.
n .
Now with t=b, - dlb, we obtain:
j,m+1 i b m+1
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2 - db =0 and hence (7) holds for i=m+ 1.
lbj,m+1 1—1 ey nd hence (7)

Now returning to (5), we have:

n _‘E n . T n .
b ., .=Zb_ d = I c'p. A== b
mrLl oy T ikt =

so (3) holds for k=j, as required.

This completes the proof of (2), and (1), and shows that
B is a Gram matrix if and only if B is Hermitian definite.

5. Volume= of a parallelepiped. If Xpo oo x are
given vectors we define the parallelepiped P(xi, ey xm) to
m

i i
consist of all vectors of the form % ¢ x, with ¢ real and
, =t 7
1 .
0<c <1 for all 1.

The high-school formula for m-dimensional volume of a
parallelepiped (we shall use the symbol V (x1, N )
m m

would be defined (presumably) by induction on m as follows:

v = ,
(8  V,(x) = []x]]
A\ e e e = ! A\ e ey
mi1'y “rt) = P V0 *n)
where x! is the component of  x orthogonal to
m+t1 m+1
[x ,....x ]
The formalae (8) determine V (xi, ...,X ) uniquely
m
as a non-negative real number which (clearly) is 0 if and
only if the vectors Xysewon X oare linearly dependent. It is
usually assumed that the value of V_({x,,...,x ) does not
m 1 m
depend on the order of L TERERE and this requires proof.

An easy proof is possible if determinants are available,
that is, if the scalars are real or complex numbers. Assuming
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the vectors xi, ...,x are linearly independent, we can use
m -

the Gram-Schmidt orthonormalization to obtain

= f i=1,...,
(9) x, ai,‘1 2 +...+ ai,i(Pi or i=1 m
with a, . realand >0 forall i. Then x'=a.  .¢.,
i, i m i,i"i
||x'|| =2, ., and V_(x,,...,x ) =n_  a . =det A where
i i m 1 m i=1 i,1

’

A is the mXm matrix which has i, k-th entry equal to a, K
1,

if 1<k<i and has all other entries equalto 0. Now we
have the equality:

(x ,...,x ) = '\/detG(x,...,x )
m 1 m 1 m

(which is also obviously valid if the vectors Xy,...,X o are

linearly dependent); this implies that the value of Vm is
independent of the order of xi, cees x]:n , provided the scalars

are real or complex numbers.

The following direct proof is valid for real, complex or
quaternionic scalars. Clearly we need only show that if m > 1
then the value of Vm is unchanged when X and x , are

permuted. We will then have two versions of (9) to consider,

say:
= +.. .+ + s
xm-'l am-i, 191 am-i,m—2¢m-2 am-i,m-i(pm-i
= +... + a + a
xm am, 1¢1 + am,m—Z(pm-Z m,m—iq)m-i m,m(p
and
- 1
*m am, 1¢1+' ot am,m-2¢m--2 + arn,m-i‘"pm—i ’
= + a'
xm-1 am-1;1¢1+ + am—i,m-2¢m-2 m-1,m—1¢m—1
+ a' ' ;
m—i,qum
and we need only show that a =a' !

a = a .
m-1i,m-1 m,m m,m-1 m-1,m
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We have:

(o [

a'm-i,m-i m-1'"" m-1

a (¥ 1|<p ) = a

m,m-1" "m- m-1

IZ - ,Ia
m-1,m-1

Iam-'l,m-i

m,m-1 m,m

- |a

la1'rn,m-’ll

SO

am-1,m—1lam,m-1l :all'n,m-ila;n-i,m-i ’

2 . 2 2
am-i,m-i) ((am,m-1) B (am,m) )

) ((a

(

- (a ¥y

— 1
(a m-1,m

m,m-1 m-1,m-1

(a ¥ )= (a % (ar )

m-1,m-1 m,m m,m-1 m-1,m

2

and hence a a =a' a'
m-1,m-1 m,m m,m-1 m-1,m

as required.
6. Determinants of matrices with non-commutative
scalars. There are well known obstacles to an extension of
the usual theory of determinants for matrices to the case
where the entries are taken from a non-commutative ring. 4)
But if A is an mXm matrix of quaternions we can define
a generalization of ''the ab solute value of the determinant, "
denoted D(A), as follows. We observe that

Vm(x'lA’ e, xr-nA)
(10) the quotient is a constant if

Vm(xi’ ce e, xm)

b'd ., xm are arbitrary linearly independent row

1’7
vectors (each of m scalars).

Then we define D(A) to be the value of the quotient in (10).

4) See [3] and the references given there.
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The reader can use the identities:

Vv s e e ey = “ e y e s ey 5
m(cixi mem) Ici chVm(x1 Xm)

Vix ,...,x, ,X,X yeee s X =V ye e .V,
(%, 11779 M ) = V% EOVER AR

i
whenever y =x + an arbitrary left linear combination of

X e, X, 23X, 0., X
1 i-17 i+

to prove (10) by showing that given linearly independent vectors

x1, ...,x can be transformed into given linearly independent
m

vectors Yy ,ym by successive steps each of which leaves

the quotient in (10) unaltered.

The reader can also verify that the function D(A) has
the properties:

(11) D(A) is defined and is a real number > 0, D(0) =0
D(1) =1;

(12) If A is a semi-diagonal matrix (a, ) (that is,
i

)

a =0 forall i<k) then D(A)—Trm [a s

1, 1,1

(13) D(A) =0 if and only if xA =0 for some non-zero vector x;

(14) D(AB) = D(A)D(B);>

6)

(15) D(AA*) =D(A*A) ', D(A) = D(A¥) = ND(AAF) ;

5) The validity of (14) follows from (10) if D(A) # 0 and from
(13) if D(A) =

6) Use: A *A = UAA*U* for some unitary U. Alternatively:
there are independent vectors SRR X such that for
each i, x AA™ = )\ixi for some real )\i> 0 (the x, can

i Z

even be chosen to be orthonormal); then yiA*A = )\iyi if
v, is chosen to be xiA. Hence D(A*A) = vi)\i = D(AA¥) if

the y, are linearly independent (and also, by an obvious

argument, if the y. are linearly dependent).
g ¥y Yy
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(16) D(A) = square root of the product of the spectral values
of AA™.

We again have V(x, ,...,x ) = «/D(G(x,...,x )) .
1 m 1 m

7. Generalized Schwarz inequalities. Suppose now that
B is Hermitian. We shall say that B' is obtained from B
by a symmesatrical transformation if some B' 1is obtained by
adding to the i-th row of B a left linear combination

= cJ(b, k; k=A,...,m) of the other rows of B and then B"
i

is obtained by adding to the i-~th column of B' the corresponding
conjugate right linear combination Z(bi{ j; k=1,...,m)c) of the

other columns of B' (symms=trical transformation of the matrix
B corresponds to a certain change in the basis of the vector
space).

If B is an mXm diagonal matrix (that is,
o

(b )

.. =0 if 1i# k), we shall say that B is diagonally
oi, k o —_—

related to B if Bo can be obtained from B by a succession

of symmetrical transformations. It is easy to see that every
Hermitian B is diagonally related to som= diagonal B
o

(necessarily Hermitian but in general not uniquely determined
by B) and when B 1is Hermitian definite then BO is

Hermitian definite and the product of the diagonal entries of
B is non-negative, coinciding with D(B).
o

We are ied to define by induction on m for a given
Hermitian mXm matrix B an expression E(B} which is a

certain polynomial in the entries b, K’ i,k=t,...,m, as
1,

follows:

If m=1 and B=(b1 1), set E(B):b1

17

If m>41 and E(B') is already defined for every
(m-1) X(m-1) Hermitian matrix B', set E(B) =E(B')
where B' is the (m-1)X(m-1) Hermitian matrix with

! - - . .
(b )i,k bi,ibi,k bi,1b1,k for 2<i, k<m
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It is not difficult to prove that B is definite if and only

if E(B')>0 for every submatrix B' =(b'i K i,k=i1,...,i )
Z , n
with 1<i <...<i <m.
— 1 n—
If m=2, then E(B) is simply b, b - |b ]2
1,1 2,2 1,2 ’

which corresponds to the well known Schwarz inequality:
2
(x1|x1)(lex2) - l(x1 ]xz)] > 0. We may therefore call each

inequality: E(B)> 0 a generalized Schwarz inequality.

8. The Hermitian matrix as an operator. Suppose B
is an mXm Hermitian matrix and for each row vector x Jlet
xB be the row obtained by matrix multiplication. Then B
determines a self-adjoint operator on the m dimesnsional
Hilbert space of row vectors.

Elementary spectral theory shows that B is a difference
of two Hermitian definite operators B = G(xi, e, X ) G(yi,...,y ),
. m m

, such that s Gy, ,... =0.
say, suc a C‘1(x1 xm) (y1 )

;Ym

It is interesting to enquire into the behaviour of

x RE S SEEEEE) when B is replaced by B - tl with

1"
t a real number and 1 the mXm unit matrix (in particular,
when B 1is definite). Also, what is the behaviour of the
spectral vectors and spectral values when B undergoes a

symmeatric transformation? If G(x. ,...,x and G e,
y ric transfor ion ( 1 m) n (y'1 ym)
commute then their product matrix is of the form G(z1, e zm);
can the z, be expressed in a simple way in terms of L ITEERNE S
1
PR | ?
Y4 Ym

9. Special Gram Matrices. It is interesting to investigate
families of vectors x1, e, X for which
m

(17) (xilxk) = d (a constant, necessarily real) forall i# k.

If d=0, this simply means that the vectors are mutually
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orthogonal. Then, as is well known, such vectors X’l’ e, X
m

do exist, with arbitrary non-negative values for (x, ‘x_) ; in
it
this case, the x, (if non-zero) are necessarily linearly
i

independent and, if the Hilbert space is of dimension >m ,

it is possible to adjoin a vector x so that x ,...,x
m+1 1 m+1

also have property (17).

Suppose d< 0, thatis, d=-c with ¢> 0. Then
vectors do exist satisfying (17) but the values of (xi[xi) cannot

be assigned without restriction. They are arbitrary, subject
to the following condition:

m
(18) T ———— <1
i=1 C+HxiH

Moreover, if equality holds in (18) then the vectors are

linearly dependent and it is impossible to adjoin a vector

X 1 so that (17) continues to hold. But if strict inequality
m-

holds in (18) then the vectors are linearly independent and
(if the dimension of the Hilbert space > m) it is possible to
adjoin x o1 so that (417) continues to hold.

m-

To show this we may assume c =1 (by replacing the

formsr x, by Ncx)). Suppose now that Xi’ e X satisfy
i i m
(17); then any vector (Xm+1’ say) can be expressedas g+ vy
with g = a, x + ...+ a X and some y orthogonal to each
f e .
of x, x
The statement (xm+1 Ixi) = (glxi) =-4 forall i=1,..., m

is equivalent, by (17), to 1}‘:1'1 a_(x‘lxi) =-1, thatis, to:
j=
> m
(19) ai(l Ixill +1) = (= a)-1 for i=t,...,m .
=t
Elementary manipulation of fractions show that (19) is equivalent
to:
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m 1
(200 £ ———— <1 and
j=t 1+HXJ.H

1 -1

-1
)

a, = ——/— (1 -
SR IR j

M 3

o x|

However (20) may also be obtained from *he calculations:

> m m m
[lgl]" =(glg) =2 (a.x]g == a(-1)=- a ;
=t 3 =t =
2
I S U111
i 2’
14 | ]x ]|
m
2 2 1
Hell™ = 1+ [le]|™) = >
=t ]Ikl
m
= 1 + ! = 1.
. 2 2
w1 ] e ] lel]
. 2 2 2 .. .
Since lem+1” = |]gll™+ ||yll” itis clear that if X i1
m+1
exists as described, then Z — < 1 with equality
i=1 1+ Hxi[[
equivalent to linear dependeace of Xm+1 on LRTERRE On
iy 1
the other hand, (20) shows that if & ——————= <1 then
=1 1+ .
j [
x +1 does exist and, if the dimension of the Hilbert space is
m
greater than m , the value of ] Ixm+1| I is arbitrary, subject

to the condition (18) (for m+1) .
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As a corollary, we see that a sequence of vectors x
n
with (x |x )=-1 for all n# m can exist in a Hilbert space
n m

if and only if the dimension of the space is infinite. Then the
vectors are necessarily linearly independent and the values of
| Ix I ] are arbitrary except for the condition:

n

© 1
(21) = —— < 1.
n=1 1+ [Ian

The necessity of the condition (21) was first observed by
I. Amemiya (oral commuanication, 1959). His elegant proof
ran as follows: choose a unit vector g orthogonal to all the
given x (enlarge the Hilbert space if necessary). Then the
. . 1/2
(g + xn) , n=1,2,... are

]

vectors \ > !

1+ |[x !

112
orthonormal and Bessel' s inequality, applied to g with respect
to this orthonormal set, gives (21).

The writer then used the Gram-Schmidt orthonormalization
process to prove that for given real p . with all p >0
n n,n

» N )

and p < -1 forall n# m , the condition

n,m—
2 1
Z —— <1 is necessary and sufficient for the existence

=1 1+
" L
of vectors x with (x ]x )=p for all n,m (later,
n n m n,m

A. Renyi found-a proof of Amemiya's result using Bessel's
inequality directly).

Then Amemiya remarked (in a letter dated October, 1961)
that the following variation of his method also showed that (21)

was a sufficient condition if p ==-1 forall n#m:
n,m
)
For given dn>0 (n>1)with = <1 simply choose
n=1 1+d
n
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Y. n> 0 to be orthogonal vectors with ||y || =1,
' o
o0

2 2. -1
H‘/n” =(1+dn) , let g=ayo~2yn with a> 0,

00 n=1
2 1 2
a =1- =z Then x =g+ (1+d )y , n>1 satisfies
n=1 1+d n n’n
n
[l || =d, (x |x )=-1 for n#m .
n n n m

The reader may find it interesting to vary this last
construction of Amemiya in order to deal with arbitrary real

<-1.
n,m-—

The reader may also seek to prove, by direct arithmeatic,
the following consequence of Amamiya's theorem: if p >0
n

2 2
f =1.2,... d = s = 1+ R
°r n ‘ and qy =Py Ay TP Uha tta)
) p2
for n>1, then T n2$1
n=l 1+ q
n
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