SOME RESULTS ON WEAK COVERING CONDITIONS

RAYMOND F. GITTINGS

1. Introduction. A space X is called *countably metacompact* (countably paracompact) if every countable open cover has a point finite (locally finite) open refinement. According to Hodel [5], a space X is called *countably sub-paracompact* if every countable open cover has a σ -discrete closed refinement. It is well-known (see Mansfield [10] and Dowker [4]) that in normal spaces all of the preceding notions are equivalent. Also, according to Hodel [5], a countably subparacompact space is countably metacompact and the reverse implication is false.

In Section 2 we define in a natural way the concept of a countably θ -refinable space and show that these spaces turn out to be exactly the countably metacompact spaces. In Section 3 we discuss $w\Delta$ -spaces and show that every $w\Delta$ space is countably metacompact but not necessarily countably paracompact nor countably subparacompact. This result is compared with Ishii's result on wM-spaces in [7]. Finally, in Section 4 we give a new characterization of countably subparacompact spaces using σ -cushioned refinements.

Unless otherwise stated, no separation axioms are assumed; however normal spaces are assumed to be T_1 . The set of positive integers is denoted by N.

2. Countably θ -refinable spaces. Let \mathscr{U} be a collection in a space X and let $x \in X$. We mean by $\operatorname{ord}(x, \mathscr{U})$, the number of members of \mathscr{U} which contain x.

A space X is θ -refinable [13] if, for every open cover \mathscr{U} of X, there is a sequence $\{\mathscr{G}_n : n \in N\}$ of open refinements of \mathscr{U} such that, if $x \in X$, there is an $n(x) \in N$ such that $\operatorname{ord}(x, \mathscr{G}_{n(x)})$ is finite. Such a sequence is called a θ -refinement of \mathscr{U} .

Definition 2.1. A space X is called *countably* θ -refinable if every countable open cover has a θ -refinement.

Clearly every countably metacompact space is countably θ -refinable and, as the following result shows, the reverse implication is also valid.

THEOREM 2.2. For a space X, the following conditions are equivalent:

(a) X is countably metacompact.

(b) X is countably θ -refinable.

(c) If $\{F_n : n \in N\}$ is a decreasing sequence of closed subsets of X with

Received March 19, 1973 and in revised form, November 29, 1973.

 $\bigcap_{n=1}^{\infty} F_n = \emptyset$, there is a sequence $\{G_n : n \in N\}$ of G_{δ} -sets in X such that $G_n \supset F_n$ for all $n \in N$ and $\bigcap_{n=1}^{\infty} G_n = \emptyset$.

(d) If $\{F_n : n \in N\}$ is a decreasing sequence of closed subsets of X with $\bigcap_{n=1}^{\infty} F_n = \emptyset$, there is a sequence $\{U_n : n \in N\}$ of open sets in X such that $U_n \supset F_n$ for all $n \in N$ and $\bigcap_{n=1}^{\infty} U_n = \emptyset$.

Proof. (a) \Rightarrow (b) is obvious.

(b) \Rightarrow (c). Suppose X is countably θ -refinable and let $\{F_n : n \in N\}$ be a decreasing sequence of closed sets such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$. Let $\mathscr{U} = \{X - F_n : n \in N\}$. Then \mathscr{U} is a countable open cover of X and hence has a θ -refinement $\{\mathscr{V}_n : n \in N\}$. Put $G_{nj} = \operatorname{St}(F_n, \mathscr{V}_j)$ and $G_n = \bigcap_{j=1}^{\infty} G_{nj}$. Then each G_n is a G_{δ} -set and $G_n \supset F_n$. We assert that $\bigcap_{n=1}^{\infty} G_n = \emptyset$. If not, there is an $x \in X$ such that $x \in \bigcap_{n=1}^{\infty} G_n$. Choose j_0 such that $\operatorname{ord}(x, \mathscr{V}_{j_0}) < \infty$, say $\operatorname{ord}(x, \mathscr{V}_{j_0}) = k$. Then there are sets $V_1, \ldots, V_k \in \mathscr{V}_{j_0}$ such that $x \in V_i$ and $x \notin V \in \mathscr{V}_{j_0}$ for $V \neq V_i, i = 1, 2, \ldots, k$. Now, for each i, there is an $n_i \in N$ such that $V_i \subset X - F_{n_i}$. If we put $n = \max\{n_1, \ldots, n_k\}$, then $V_i \subset X - F_n$ for $i = 1, 2, \ldots, k$. But $x \in G_{nj_0}$ and thus there exists a $V \in \mathscr{V}_{j_0}$ with $x \in V$ and $V \cap F_n \neq \emptyset$. Since $x \in V, V = V_i$ for some $i = 1, \ldots, k$ and thus $V \subset X - F_n$ which is a contradiction.

(c) \Rightarrow (d). Let $\{F_n : n \in N\}$ be a decreasing sequence of closed subsets of X. By (b) there is a sequence $\{G_n : n \in N\}$ of G_{δ} -sets satisfying $G_n \supset F_n$ for all $n \in N$ and $\bigcap_{n=1}^{\infty} G_n = \emptyset$. Put $G_n = \bigcap_{j=1}^{\infty} G_{nj}$ where each G_{nj} is open in X. For $n \geq 1$, define

$$U_n = \bigcap \{G_{ij} : 1 \leq i \leq n \text{ and } 1 \leq j \leq n\}.$$

Then clearly each U_n is open, $U_n \supset F_n$ and $\bigcap_{n=1}^{\infty} U_n = \emptyset$. (d) \Rightarrow (a) is due to Ishikawa [8].

 $(\mathbf{u}) \Rightarrow (\mathbf{a})$ is due to Isinkawa [**b**].

Since every θ -refinable space is countably θ -refinable, we have:

COROLLARY 2.3. Every θ -refinable space is countably metacompact.

It is interesting to note that although the concepts of θ -refinability and metacompactness are equivalent when restricted to countable open covers this equivalence does not hold in general. Clearly every metacompact space is θ -refinable but there are many examples of non-metacompact, θ -refinable spaces. In fact, Bing's Example H is a normal subparacompact space (and thus a θ -refinable space) which is not metacompact. This example was noted by Burke in [3].

3. $w\Delta$ -spaces and weak covering conditions. Let X be a space and $\{\mathscr{U}_n : n \in N\}$ a sequence of open covers of X subject to one of the following conditions:

(A) If $x_n \in \text{St}(x, \mathscr{U}_n)$ for n = 1, 2, ..., then the sequence $\langle x_n \rangle$ has a cluster point.

RAYMOND F. GITTINGS

(B) If $x_n \in \text{St}^2(x, \mathscr{U}_n)$ for n = 1, 2, ..., then the sequence $\langle x_n \rangle$ has a cluster point.

(C) If $x_n \in \text{St}(x, \mathscr{U}_n)$ for n = 1, 2, ..., then x is a cluster point of the sequence $\langle x_n \rangle$.

A space is called a $w\Delta$ -space [1] if it satisfies (A) and a wM-space [7] if it satisfies (B). Clearly (C) is an equivalent formulation of developable spaces. It is immediate that every wM-space and every developable space is a $w\Delta$ -space.

In [7] Ishii proved the following:

THEOREM 3.1. (1) Every wM-space is countably paracompact.

(2) Every normal wM-space is collectionwise normal and countably paracompact.

In this section we show that a $w\Delta$ -space is countably metacompact but not necessarily countably paracompact. In light of Theorem 3.1 the following question seems interesting.

Question 3.2. Is there an example of a normal $w\Delta$ -space which is not collectionwise normal?

THEOREM 3.3. Every $w\Delta$ -space is countably metacompact.

Proof. Let $\{\mathscr{U}_n : n \in N\}$ be a sequence of open covers of X satisfying condition (A). We may assume $\mathscr{U}_{n+1} < \mathscr{U}_n$ for all $n \in N$. Let $\{F_n : n \in N\}$ be a decreasing collection of closed subsets of x such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$. For each $n \in N$, put $G_n = \operatorname{St}(F_n, \mathscr{U}_n)$. Now clearly $G_n \supset F_n$ and each G_n is open in X. By Theorem 2.2 (d), we need only show $\bigcap_{n=1}^{\infty} G_n = \emptyset$. So assume there is an $x \in X$ such that $x \in \bigcap_{n=1}^{\infty} G_n$. But then, for each $n \in N$, there exists $U_n \in \mathscr{U}_n$ such that $x \in U_n$ and $U_n \cap F_n \neq \emptyset$. For each n, choose $x_n \in U_n \cap F_n$. Then $x_n \in \operatorname{St}(x, \mathscr{U}_n)$ and thus the sequence $\langle x_n \rangle$ has a cluster point x_0 . But $x_0 \in \bigcap_{n=1}^{\infty} F_n$ and this is a contradiction.

We remark that the referee has informed us that Hodel [6] has recently shown that every β -space is countably metacompact. Clearly every $w\Delta$ -space is a β -space.

Since, as was noted in the introduction, every normal countably metacompact space is countably paracompact, we have:

COROLLARY 3.4. Every normal $w\Delta$ -space is countably paracompact.

Example 3.5. A $w\Delta$ -space which is not countably paracompact:

Let ω be the first infinite ordinal and Ω the first uncountable ordinal. Let

 $X = [0, \omega] \times [0, \Omega] - (\omega, \Omega).$ Ishii showed that X is a $w\Delta$ -space; but Shiraki [12] proved that X is not countably paracompact. We also note that, according to Theorem 3.1, X is not a wM-space.

Example 3.6. A countably compact T_2 -space (thus both a *wM*-space and a *w* Δ -space) which is not countably subparacompact: Let $R = [0, \Omega], S =$

 $[0, \Omega)$ and $X = R \times S$. Then X is clearly a countably compact T₂-space; Kramer [9] has shown that this space is not countably subparacompact. In fact, if we let $H = \{(x, \Omega) : x \in S\}$ and $K = \{(x, x) : x \in S\}$ we have disjoint closed subsets of X. It can be shown that $\{X - H, X - K\}$ is an open cover which has no countable closed refinement. It follows from Theorem 4.1 (iv) that X is not countably subparacompact.

4. A new characterization of countably subparacompact spaces. Let \mathscr{B} be a cover of a space X. A cover \mathscr{U} is said to be a *cushioned refinement* of \mathscr{B} if to each $U \in \mathscr{U}$ we can assign a $B(U) \in \mathscr{B}$ such that

 $\overline{\bigcup \{U: U \in \mathscr{U}'\}} \subset \bigcup \{B(U): U \in \mathscr{U}'\}$

for every subcollection \mathscr{U}' of \mathscr{U} .

In [3] Burke asks the following question: Is X subparacompact if every open cover of X has a σ -cushioned refinement? Although this question seems to remain open we show the corresponding result holds for countably subparacompact spaces.

THEOREM 4.1. For a space X, the following are equivalent.

(i) Every countable open cover of X has a σ -discrete closed refinement (i.e., X is countably subparacompact).

(ii) Every countable open cover of X has a σ -locally finite closed refinement.

(iii) Every countable open cover of X has a σ -closure preserving closed refinement.

(iv) Every countable open cover of X has a countable closed refinement.

(v) Every countable open cover of X has a σ -cushioned refinement.

Proof. That (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) is obvious, as is (iv) \Rightarrow (i). Thus it suffices to show that (v) \Rightarrow (iv). Suppose $\mathscr{U} = \{U_n : n = 1, 2, ...\}$ is any countable open cover of X and let $\mathscr{F} = \bigcup_{n=1}^{\infty} \mathscr{F}_n$ be a σ -cushioned refinement of \mathscr{U} . Then, for each *n*, there exists a mapping $\phi_n : \mathscr{F}_n \to \mathscr{U}$ such that if $F \in \mathscr{F}_n, \phi_n(F) \in \mathscr{U}, F \subset \phi_n(F)$ and

 $\overline{\bigcup \{F: F \in \mathscr{F}_n'\}} \subset \bigcup \{\phi_n(F): F \in \mathscr{F}_n'\}$

for any $\mathscr{F}_n' \subset \mathscr{F}_n$. Define

 $G_{ij} = \bigcup \{F: F \in \mathscr{F}_i, \phi_i(F) = U_j\}.$

Since \mathscr{F}_i is a cushioned refinement, $\overline{G_{ij}} \subset U_j$. Thus $\{\overline{G_{ij}}: i = 1, 2, \ldots, j = 1, 2, \ldots\}$ is a countable closed refinement of \mathscr{U} and the proof is complete.

We remark that the equivalence of (i) - (iv) is not new although (v) seems to be a new characterization. In fact, the equivalence of (i) - (iii) appears in [11] and the equivalence of (i) - (iv) is stated in [9].

Definition 4.2. A space X is called countably σ -paracompact if given a countable open cover \mathscr{U} of X, there is a sequence $\{\mathscr{U}_n : n \in N\}$ of open covers of X such that, if $x \in X$, there is an $n(x) \in N$ and $U \in \mathscr{U}$ with $\operatorname{St}(x, \mathscr{U}_{n(x)}) \subset U$.

RAYMOND F. GITTINGS

Kramer [9] introduced countably σ -paracompact spaces and proved the following.

THEOREM 4.3. A space X is countably subparacompact if and only if X is countably σ -paracompact.

It is worth noting that Burke [2] obtained the equivalence of (i), (ii), (iii) and Definition 4.2 for arbitrary open covers (i.e. for subparacompact spaces).

References

- 1. Carlos J. R. Borges, On metrizability of topological spaces, Can. J. Math. 20 (1968), 795-804.
- 2. D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- 4. C. H. Dowker, On countably paracompact spaces, Can. J. Math 3 (1951), 219-224.
- 5. R. E. Hodel, A note on subparacompact spaces, Proc. Amer. Math. Soc. 25 (1970), 842-845.
- 6. —— Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-262.
- 7. T. Ishii, On wM-spaces. I, Proc. Japan Acad. 46 (1970), 5-10.
- 8. F. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687.
- 9. T. R. Kramer, Countably subparacompact spaces (to appear).
- 10. M. J. Mansfield, On countably paracompact normal spaces, Can. J. Math. 9 (1957), 443-449.
- M. K. Singal and P. Jain, On subparacompact and countably subparacompact spaces, Bull. Austral. Math. Soc. 5 (1971), 289-304.
- 12. T. Shiraki, A note on M-spaces, Proc. Japan Acad. 43 (1967), 873-875.
- J. M. Worrell, Jr., and H. H. Wicke, *Characterizations of developable spaces*, Can. J. Math. 17 (1965), 820–830.

University of Pittsburgh, Pittsburgh, Pennsylvania; Brooklyn College, Brooklyn, New York

1156