Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T13:17:37.354Z Has data issue: false hasContentIssue false

Chapter 14 - Subarachnoid Hemorrhage in the Neurocritical Care Unit

Published online by Cambridge University Press:  24 July 2019

Michel T. Torbey
Affiliation:
Ohio State University
Get access

Summary

Subarachnoid hemorrhage (SAH) is an acute cerebrovascular event with profound effects on the central nervous system and several other organs, and is defined by bleeding into the subarachnoid space between the arachnoid layer and pia mater. SAH occurs with an incidence of 2–22.5 per 100,000 [1,2]. The highest reported incidences of aneurysmal SAH (aSAH) come from Japan and Finland and occur at a rate of 16–22.5 per 100,000 per year. In the United States, SAH occurs at approximately 6 per 100,000, or a total of 18,000 events per year. The incidence of aSAH peaks in the 55–60-year-old age group. Additionally, subarachnoid hemorrhage is a consequence of traumatic brain injury in 12–53%, which corresponds to approximately 240,000 persons per year in the United States.

Type
Chapter
Information
Neurocritical Care , pp. 154 - 175
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sandvei, MS, Mathiesen, EB, Vatten, LJ, et al. (2011). Incidence and mortality of aneurysmal subarachnoid hemorrhage in two Norwegian cohorts, 1984–2007. Neurology 77(20): 18331839.CrossRefGoogle ScholarPubMed
Ingall, T, Asplund, K, Mahonen, M, Bonita, R (2000). A multinational comparison of subarachnoid hemorrhage epidemiology in the WHO MONICA stroke study. Stroke 31(5): 10541061.CrossRefGoogle ScholarPubMed
Huang, AP, Arora, S, Wintermark, M, et al. (2010). Perfusion computed tomographic imaging and surgical selection with patients after poor-grade aneurysmal subarachnoid hemorrhage. Neurosurgery 67(4): 964974; discussion 975.Google Scholar
Wartenberg, KE, Schmidt, JM, Claassen, J, et al. (2006). Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med 34(3): 617623; quiz 624.CrossRefGoogle ScholarPubMed
Haug, T, Sorteberg, A, Finset, A, et al. (2010). Cognitive functioning and health-related quality of life 1 year after aneurysmal subarachnoid hemorrhage in preoperative comatose patients (Hunt and Hess Grade V patients). Neurosurgery 66(3): 475484; discussion 484–485.CrossRefGoogle ScholarPubMed
Bailes, JE, Spetzler, RF, Hadley, MN, Baldwin, HZ (1990). Management morbidity and mortality of poor-grade aneurysm patients. J Neurosurg 72(4): 559566.CrossRefGoogle ScholarPubMed
Laidlaw, JD, Siu, KH (2002). Ultra-early surgery for aneurysmal subarachnoid hemorrhage: outcomes for a consecutive series of 391 patients not selected by grade or age. J Neurosurg 97(2): 250258; discussion 247–249.CrossRefGoogle ScholarPubMed
Le Roux, PD, Elliott, JP, Newell, DW, Grady, MS, Winn, HR (1996). Predicting outcome in poor-grade patients with subarachnoid hemorrhage: a retrospective review of 159 aggressively managed cases. J Neurosurg 85(1): 3949.Google Scholar
Shirao, S, Yoneda, H, Kunitsugu, I, et al. (2010). Preoperative prediction of outcome in 283 poor-grade patients with subarachnoid hemorrhage: a project of the Chugoku-Shikoku Division of the Japan Neurosurgical Society. Cerebrovasc Dis 30(2): 105113.CrossRefGoogle ScholarPubMed
Taylor, CJ, Robertson, F, Brealey, D, et al. (2011). Outcome in poor grade subarachnoid hemorrhage patients treated with acute endovascular coiling of aneurysms and aggressive intensive care. Neurocrit Care 14(3): 341347.CrossRefGoogle ScholarPubMed
Berman, MF, Solomon, RA, Mayer, SA, Johnston, SC, Yung, PP (2003). Impact of hospital-related factors on outcome after treatment of cerebral aneurysms. Stroke 34(9): 22002207.CrossRefGoogle ScholarPubMed
Cross, DT 3rd, Tirschwell, DL, Clark, MA, et al. (2003). Mortality rates after subarachnoid hemorrhage: variations according to hospital case volume in 18 states. J Neurosurg 99(5): 810817.CrossRefGoogle ScholarPubMed
Cowan, JA Jr., Dimick, JB, Wainess, RM, Upchurch, GR Jr., Thompson, BG (2003). Outcomes after cerebral aneurysm clip occlusion in the United States: the need for evidence-based hospital referral. J Neurosurg 99(6): 947952.CrossRefGoogle ScholarPubMed
Nuño, M, Patil, CG, Lyden, P, Drazin, D (2012). The effect of transfer and hospital volume in subarachnoid hemorrhage patients. Neurocrit Care. 17(3): 312323.CrossRefGoogle ScholarPubMed
Rinkel, GJ, Djibuti, M, Algra, A, van Gijn, J (1998). Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 29(1): 251256.CrossRefGoogle ScholarPubMed
van Gijn, J, Rinkel, GJ (2001). Subarachnoid haemorrhage: diagnosis, causes and management. Brain 124(Pt 2): 249278.CrossRefGoogle ScholarPubMed
Okamoto, K, Horisawa, R, Kawamura, T, et al. (2001). Menstrual and reproductive factors for subarachnoid hemorrhage risk in women: a case-control study in nagoya, Japan. Stroke 32(12): 28412844.CrossRefGoogle ScholarPubMed
Broderick, JP, Brott, T, Tomsick, T, Huster, G, Miller, R (1992). The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. N Engl J Med 326(11): 733736.Google Scholar
Qureshi, AI, Suri, MF, Yahia, AM, et al. (2001). Risk factors for subarachnoid hemorrhage. Neurosurgery 49(3): 607612; discussion 612–613.Google ScholarPubMed
Kubota, M, Yamaura, A, Ono, J (2001). Prevalence of risk factors for aneurysmal subarachnoid haemorrhage: results of a Japanese multicentre case control study for stroke. Br J Neurosurg 15(6): 474478.CrossRefGoogle ScholarPubMed
Taylor, CL, Yuan, Z, Selman, WR, Ratcheson, RA, Rimm, AA (1995). Cerebral arterial aneurysm formation and rupture in 20,767 elderly patients: hypertension and other risk factors. J Neurosurg 83(5): 812819.CrossRefGoogle Scholar
Teunissen, LL, Rinkel, GJ, Algra, A, van Gijn, J (1996). Risk factors for subarachnoid hemorrhage: a systematic review. Stroke 27(3): 544549.CrossRefGoogle ScholarPubMed
van der Schaaf, IC, Ruigrok, YM, Rinkel, GJ, Algra, A, van Gijn, J (2002). Study design and outcome measures in studies on aneurysmal subarachnoid hemorrhage. Stroke 33(8): 20432046.Google Scholar
Juvela, S, Hillbom, M, Numminen, H, Koskinen, P (1993). Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke 24(5): 639646.CrossRefGoogle ScholarPubMed
Knekt, P, Reunanen, A, Aho, K, et al. (1991). Risk factors for subarachnoid hemorrhage in a longitudinal population study. J Clin Epidemiol 44(9): 933939.Google Scholar
Kernan, WN, Viscoli, CM, Brass, LM, et al. (2000). Phenylpropanolamine and the risk of hemorrhagic stroke. N Engl J Med 343(25): 18261832.CrossRefGoogle ScholarPubMed
Nanda, A, Vannemreddy, PS, Polin, RS, Willis, BK (2000). Intracranial aneurysms and cocaine abuse: analysis of prognostic indicators. Neurosurgery 46(5): 10631067; discussion 1067–1069.Google Scholar
Oyesiku, NM, Colohan, AR, Barrow, DL, Reisner, A (1993). Cocaine-induced aneurysmal rupture: an emergent negative factor in the natural history of intracranial aneurysms? Neurosurgery 32(4): 518525; discussion 525–526.CrossRefGoogle ScholarPubMed
David, CA, Vishteh, AG, Spetzler, RF, et al. (1999). Late angiographic follow-up review of surgically treated aneurysms. J Neurosurg 91(3): 396401.CrossRefGoogle ScholarPubMed
Kissela, BM, Sauerbeck, L, Woo, D, et al. (2002). Subarachnoid hemorrhage: a preventable disease with a heritable component. Stroke 33(5): 13211326.Google Scholar
Schievink, WI (1997). Genetics of intracranial aneurysms. Neurosurgery 40(4): 651662; discussion 662–663.CrossRefGoogle ScholarPubMed
Schievink, WI (1997). Intracranial aneurysms. N Engl J Med 336(1): 2840.CrossRefGoogle ScholarPubMed
Bassi, P, Bandera, R, Loiero, M, Tognoni, G, Mangoni, A (1991). Warning signs in subarachnoid hemorrhage: a cooperative study. Acta Neurol Scand 84(4): 277281.CrossRefGoogle ScholarPubMed
Juvela, S (1992). Minor leak before rupture of an intracranial aneurysm and subarachnoid hemorrhage of unknown etiology. Neurosurgery 30(1): 711.Google Scholar
Fountas, KN, Kapsalaki, EZ, Lee, GP, et al. (2008). Terson hemorrhage in patients suffering aneurysmal subarachnoid hemorrhage: predisposing factors and prognostic significance. J Neurosurg 109(3): 439444.CrossRefGoogle ScholarPubMed
Sundaram, MB, Chow, F (1986). Seizures associated with spontaneous subarachnoid hemorrhage. Can J Neurol Sci 13(3): 229231.CrossRefGoogle ScholarPubMed
Kowalski, RG, Claassen, J, Kreiter, KT, et al. (2004). Initial misdiagnosis and outcome after subarachnoid hemorrhage. JAMA 291(7): 866869.CrossRefGoogle ScholarPubMed
Teasdale, G, Jennett, B (1974). Assessment of coma and impaired consciousness: a practical scale. Lancet 2(7872): 8184.CrossRefGoogle ScholarPubMed
Hunt, WE, Hess, RM (1968). Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 28(1): 1420.CrossRefGoogle ScholarPubMed
World Federation of Neurological Surgeons (1988). Report of World Federation of Neurological Surgeons Committee on a universal subarachnoid hemorrhage grading scale. J Neurosurg 68(6):985986.Google Scholar
Connolly, ES Jr., Rabinstein, AA, Carhuapoma, JR, et al. (2012). Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43(6): 17111737.Google Scholar
Kassell, NF, Torner, JC, Haley, EC Jr., et al. (1990). The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: overall management results. J Neurosurg 73(1): 1836.CrossRefGoogle Scholar
Morgenstern, LB, Luna-Gonzales, H, Huber, JC Jr., et al. (1998). Worst headache and subarachnoid hemorrhage: prospective, modern computed tomography and spinal fluid analysis. Ann Emerg Med 32(3 Pt 1): 297304.Google ScholarPubMed
Sames, TA, Storrow, AB, Finkelstein, JA, Magoon, MR (1996). Sensitivity of new-generation computed tomography in subarachnoid hemorrhage. Acad Emerg Med 3(1): 1620.CrossRefGoogle ScholarPubMed
Sidman, R, Connolly, E, Lemke, T (1996). Subarachnoid hemorrhage diagnosis: lumbar puncture is still needed when the computed tomography scan is normal. Acad Emerg Med 3(9): 827831.CrossRefGoogle Scholar
van der Wee, N, Rinkel, GJ, Hasan, D, van Gijn, J (1995). Detection of subarachnoid haemorrhage on early CT: is lumbar puncture still needed after a negative scan? J Neurol Neurosurg Psychiatry 58(3): 357359.CrossRefGoogle ScholarPubMed
van Gijn, J, van Dongen, KJ (1982). The time course of aneurysmal haemorrhage on computed tomograms. Neuroradiology 23(3): 153156.Google Scholar
Perry, JJ, Stiell, IG, Sivilotti, ML, et al. (2011). Sensitivity of computed tomography performed within six hours of onset of headache for diagnosis of subarachnoid haemorrhage: prospective cohort study. BMJ 343: d4277.CrossRefGoogle ScholarPubMed
Fisher, CM, Kistler, JP, Davis, JM (1980). Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery 6(1): 19.Google Scholar
Frontera, JA, Claassen, J, Schmidt, JM, et al. (2006). Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified Fisher scale. Neurosurgery 59(1): 2127; discussion -7.Google ScholarPubMed
Claassen, J, Bernardini, GL, Kreiter, K, et al. (2001). Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke 32(9): 20122020.Google Scholar
Mitchell, P, Wilkinson, ID, Hoggard, N, et al. (2001). Detection of subarachnoid haemorrhage with magnetic resonance imaging. J Neurol Neurosurg Psychiatry 70(2): 205211.Google Scholar
Chao, CY, Florkowski, CM, Fink, JN, Southby, SJ, George, PM (2007). Prospective validation of cerebrospinal fluid bilirubin in suspected subarachnoid haemorrhage. Ann Clinical Biochem 44(Pt 2): 140144.Google Scholar
Perry, JJ, Sivilotti, ML, Stiell, IG, et al. (2006). Should spectrophotometry be used to identify xanthochromia in the cerebrospinal fluid of alert patients suspected of having subarachnoid hemorrhage? Stroke 37(10): 24672472.Google Scholar
Anzalone, N, Triulzi, F, Scotti, G (1995). Acute subarachnoid haemorrhage: 3D time-of-flight MR angiography versus intra-arterial digital angiography. Neuroradiology 37(4): 257261.Google Scholar
Horikoshi, T, Fukamachi, A, Nishi, H, Fukasawa, I (1994). Detection of intracranial aneurysms by three-dimensional time-of-flight magnetic resonance angiography. Neuroradiology 36(3): 203207.CrossRefGoogle ScholarPubMed
Huston, J 3rd, Nichols, DA, Luetmer, PH, et al. (1994). Blinded prospective evaluation of sensitivity of MR angiography to known intracranial aneurysms: importance of aneurysm size. Am J Neuroradiol 15(9): 16071614.Google Scholar
Bosmans, H, Wilms, G, Marchal, G, Demaerel, P, Baert, AL (1995). Characterisation of intracranial aneurysms with MR angiography. Neuroradiology 37(4): 262266.Google Scholar
Schuierer, G, Huk, WJ, Laub, G (1992). Magnetic resonance angiography of intracranial aneurysms: comparison with intra-arterial digital subtraction angiography. Neuroradiology 35(1): 5054.Google Scholar
Alberico, RA, Ozsvath, R, Casey, S, Patel, M (1996). Helical CT angiography for the detection of intracranial aneurysms. Am J Neuroradiol 17(5): 10021003.Google Scholar
Alberico, RA, Patel, M, Casey, S, et al. (1995). Evaluation of the circle of Willis with three-dimensional CT angiography in patients with suspected intracranial aneurysms. Am J Neuroradiol 16(8): 15711578; discussion 1579–1580.Google ScholarPubMed
Hope, JK, Wilson, JL, Thomson, FJ (1996). Three-dimensional CT angiography in the detection and characterization of intracranial berry aneurysms. Am J Neuroradiol 17(3): 439445.Google ScholarPubMed
Ogawa, T, Okudera, T, Noguchi, K, et al. (1996). Cerebral aneurysms: evaluation with three-dimensional CT angiography. Am J Neuroradiol 17(3): 447454.Google Scholar
Wilms, G, Guffens, M, Gryspeerdt, S, et al. (1996). Spiral CT of intracranial aneurysms: correlation with digital subtraction and magnetic resonance angiography. Neuroradiology 38 Suppl 1: S20–25.Google Scholar
Velthuis, BK, Van Leeuwen, MS, Witkamp, TD, et al. (1999). Computerized tomography angiography in patients with subarachnoid hemorrhage: from aneurysm detection to treatment without conventional angiography. J Neurosurg 91(5): 761767.Google Scholar
Velthuis, BK, van Leeuwen, MS, Witkamp, TD, et al. (2001). Surgical anatomy of the cerebral arteries in patients with subarachnoid hemorrhage: comparison of computerized tomography angiography and digital subtraction angiography. J Neurosurg 95(2): 206212.Google Scholar
Agid, R, Lee, SK, Willinsky, RA, Farb, RI, terBrugge, KG (2006). Acute subarachnoid hemorrhage: using 64-slice multidetector CT angiography to “triage” patients’ treatment. Neuroradiology 48(11): 787794.Google Scholar
Diringer, MN, Bleck, TP, Claude Hemphill, J 3rd, et al. (2011). Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15(2): 211240.Google Scholar
Romijn, M, Gratama van Andel, HA, van Walderveen, MA, et al. (2008). Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography. Am J Neuroradiol 29(1): 134139.Google Scholar
Zhang, LJ, Wu, SY, Niu, JB, et al. (2010). Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography. Am J Roentgenol 194(1): 2330.CrossRefGoogle ScholarPubMed
Forster, DM, Steiner, L, Hakanson, S, Bergvall, U (1978). The value of repeat pan-angiography in cases of unexplained subarachnoid hemorrhage. J Neurosurg 48(5): 712716.CrossRefGoogle ScholarPubMed
Naval, NS, Chang, T, Caserta, F, et al. (2013). Improved aneurysmal subarachnoid hemorrhage outcomes: a comparison of 2 decades at an academic center. J Crit Care 28(2): 182188.CrossRefGoogle ScholarPubMed
Feigin, VL, Lawes, CM, Bennett, DA, Barker-Collo, SL, Parag, V (2009). Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 8(4): 355369.Google Scholar
Lichtman, JH, Jones, SB, Leifheit-Limson, EC, Wang, Y, Goldstein, LB (2011). 30-day mortality and readmission after hemorrhagic stroke among Medicare beneficiaries in Joint Commission primary stroke center-certified and noncertified hospitals. Stroke. 42(12): 33873391.Google Scholar
Ingall, TJ, Whisnant, JP, Wiebers, DO, O’Fallon, WM (1989). Has there been a decline in subarachnoid hemorrhage mortality? Stroke 20(6): 718724.Google Scholar
Johnston, SC, Selvin, S, Gress, DR (1998). The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 50(5): 14131418.Google Scholar
Truelsen, T, Bonita, R, Duncan, J, Anderson, NE, Mee, E (1998). Changes in subarachnoid hemorrhage mortality, incidence, and case fatality in New Zealand between 1981–1983 and 1991–1993. Stroke 29(11): 22982303.Google Scholar
Mayer, SA, Kreiter, KT, Copeland, D, et al. (2002). Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 59(11): 17501758.Google Scholar
Springer, MV, Schmidt, JM, Wartenberg, KE, et al. (2009). Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage. Neurosurgery 65(6): 10431050; discussion 1050–1051.Google Scholar
Claassen, J, Carhuapoma, JR, Kreiter, KT, et al. (2002). Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33(5): 12251232.CrossRefGoogle ScholarPubMed
Claassen, J, Vu, A, Kreiter, KT, et al. (2004). Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med 32(3): 832838.Google Scholar
Frontera, JA, Fernandez, A, Schmidt, JM, et al. (2008). Impact of nosocomial infectious complications after subarachnoid hemorrhage. Neurosurgery 62(1): 8087; discussion 87.Google Scholar
Nornes, H (1973). The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg 39(2): 226234.CrossRefGoogle ScholarPubMed
Hadeishi, H, Suzuki, A, Yasui, N, Hatazawa, J, Shimosegawa, E (2002). Diffusion-weighted magnetic resonance imaging in patients with subarachnoid hemorrhage. Neurosurgery 50(4): 741747; discussion 747–748.Google Scholar
Wartenberg, KE, Sheth, SJ, Michael Schmidt, J, et al. (2011). Acute ischemic injury on diffusion-weighted magnetic resonance imaging after poor grade subarachnoid hemorrhage. Neurocrit Care 14(3): 407415.CrossRefGoogle ScholarPubMed
Sato, K, Shimizu, H, Fujimura, M, et al. (2010). Acute-stage diffusion-weighted magnetic resonance imaging for predicting outcome of poor-grade aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 30(6): 11101120.Google Scholar
Fujii, Y, Takeuchi, S, Sasaki, O, et al. (1996). Ultra-early rebleeding in spontaneous subarachnoid hemorrhage. J Neurosurg 84(1): 3542.Google Scholar
Hillman, J, Fridriksson, S, Nilsson, O, et al. (2002). Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg 97(4): 771778.CrossRefGoogle ScholarPubMed
Starke, RM, Connolly, ES Jr. (2011). Rebleeding after aneurysmal subarachnoid hemorrhage. Neurocrit Care 15(2): 241246.Google Scholar
Mehta, V, Holness, RO, Connolly, K, Walling, S, Hall, R (1996). Acute hydrocephalus following aneurysmal subarachnoid hemorrhage. Can J Neurol Sci 23(1): 4045.Google Scholar
Sheehan, JP, Polin, RS, Sheehan, JM, Baskaya, MK, Kassell, NF (1999). Factors associated with hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery 45(5): 11201127; discussion 1207–1208.Google Scholar
Suarez-Rivera, O (1998). Acute hydrocephalus after subarachnoid hemorrhage. Surg Neurol 49(5): 563565.Google Scholar
Hasan, D, Vermeulen, M, Wijdicks, EF, Hijdra, A, van Gijn, J (1989). Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke 20(6): 747753.Google Scholar
Hasan, D, Lindsay, KW, Vermeulen, M (1991). Treatment of acute hydrocephalus after subarachnoid hemorrhage with serial lumbar puncture. Stroke 22(2): 190194.CrossRefGoogle ScholarPubMed
Murad, A, Ghostine, S, Colohan, AR (2011). Role of controlled lumbar CSF drainage for ICP control in aneurysmal SAH. Acta Neurochir Suppl 110(Pt 2): 183187.Google Scholar
Gruber, A, Reinprecht, A, Bavinzski, G, Czech, T, Richling, B (1999). Chronic shunt-dependent hydrocephalus after early surgical and early endovascular treatment of ruptured intracranial aneurysms. Neurosurgery 44(3): 503509; discussion 509–512.CrossRefGoogle ScholarPubMed
Guresir, E, Schuss, P, Vatter, H, et al. (2009). Decompressive craniectomy in subarachnoid hemorrhage. Neurosurg Focus 26(6): E4.Google Scholar
Al-Rawi, PG, Zygun, D, Tseng, MY, et al. (2005). Cerebral blood flow augmentation in patients with severe subarachnoid haemorrhage. Acta Neurochir Suppl 95: 123127.Google Scholar
Tseng, MY, Al-Rawi, PG, Pickard, JD, Rasulo, FA, Kirkpatrick, PJ (2003). Effect of hypertonic saline on cerebral blood flow in poor-grade patients with subarachnoid hemorrhage. Stroke 34(6): 13891396.Google Scholar
Bijlenga, P, Czosnyka, M, Budohoski, KP, et al. (2010). “Optimal cerebral perfusion pressure” in poor grade patients after subarachnoid hemorrhage. Neurocrit Care 13(1): 1723.Google Scholar
Hasan, D, Wijdicks, EF, Vermeulen, M (1990). Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol 27(1): 106108.Google Scholar
Wijdicks, EF, Vermeulen, M, Hijdra, A, van Gijn, J (1985). Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 17(2): 137140.Google Scholar
Hasan, D, Vermeulen, M, Wijdicks, EF, Hijdra, A, van Gijn, J (1989). Effect of fluid intake and antihypertensive treatment on cerebral ischemia after subarachnoid hemorrhage. Stroke 20(11): 15111515.Google Scholar
Solomon, RA, Post, KD, McMurtry, JG 3rd. (1984). Depression of circulating blood volume in patients after subarachnoid hemorrhage: implications for the management of symptomatic vasospasm. Neurosurgery 15(3): 354361.Google Scholar
Egge, A, Waterloo, K, Sjoholm, H, et al. (2001). Prophylactic hyperdynamic postoperative fluid therapy after aneurysmal subarachnoid hemorrhage: a clinical, prospective, randomized, controlled study. Neurosurgery 49(3): 593605; discussion 605–606.Google Scholar
Lennihan, L, Mayer, SA, Fink, ME, et al. (2000). Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke 31(2): 383391.Google Scholar
Muench, E, Horn, P, Bauhuf, C, et al. (2007). Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med 35(8): 18441851; quiz 1852.Google Scholar
Mutoh, T, Ishikawa, T, Suzuki, A, Yasui, N (2010). Continuous cardiac output and near-infrared spectroscopy monitoring to assist in management of symptomatic cerebral vasospasm after subarachnoid hemorrhage. Neurocrit Care 13(3):331338.CrossRefGoogle ScholarPubMed
Claassen, J, Peery, S, Kreiter, KT, et al. (2003). Predictors and clinical impact of epilepsy after subarachnoid hemorrhage. Neurology 60(2): 208214.Google Scholar
Molyneux, AJ, Kerr, RS, Yu, LM, et al. (2005). International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366(9488): 809817.Google Scholar
Naidech, AM, Kreiter, KT, Janjua, N, et al. (2005). Phenytoin exposure is associated with functional and cognitive disability after subarachnoid hemorrhage. Stroke 36(3): 583587.Google Scholar
Rosengart, AJ, Huo, JD, Tolentino, J, et al. (2007). Outcome in patients with subarachnoid hemorrhage treated with antiepileptic drugs. J Neurosurg 107(2): 253260.Google Scholar
Claassen, J, Mayer, SA, Hirsch, LJ (2005). Continuous EEG monitoring in patients with subarachnoid hemorrhage. J Clin Neurophysiol 22(2): 9298.Google Scholar
Dennis, LJ, Claassen, J, Hirsch, LJ, et al. (2002). Nonconvulsive status epilepticus after subarachnoid hemorrhage. Neurosurgery 51(5): 11361143; discussion 1144.Google Scholar
Little, AS, Kerrigan, JF, McDougall, CG, et al. (2007). Nonconvulsive status epilepticus in patients suffering spontaneous subarachnoid hemorrhage. J Neurosurg 106(5): 805811.Google Scholar
Kassell, NF, Torner, JC (1983). Aneurysmal rebleeding: a preliminary report from the Cooperative Aneurysm Study. Neurosurgery 13(5): 479481.Google Scholar
Raaymakers, TW, Rinkel, GJ, Ramos, LM (1998). Initial and follow-up screening for aneurysms in families with familial subarachnoid hemorrhage. Neurology 51(4): 11251130.Google Scholar
Gruber, DP, Zimmerman, GA, Tomsick, TA, et al. (1999). A comparison between endovascular and surgical management of basilar artery apex aneurysms. J Neurosurg 90(5): 868874.Google Scholar
Johnston, SC, Higashida, RT, Barrow, DL, et al. (2002). Recommendations for the endovascular treatment of intracranial aneurysms: a statement for healthcare professionals from the Committee on Cerebrovascular Imaging of the American Heart Association Council on Cardiovascular Radiology. Stroke 33(10): 25362544.Google Scholar
Johnston, SC, Wilson, CB, Halbach, VV, et al. (2000). Endovascular and surgical treatment of unruptured cerebral aneurysms: comparison of risks. Ann Neurol 48(1): 1119.Google Scholar
Regli, L, Dehdashti, AR, Uske, A, de Tribolet, N (2002). Endovascular coiling compared with surgical clipping for the treatment of unruptured middle cerebral artery aneurysms: an update. Acta Neurochir Suppl 82: 4146.Google Scholar
Regli, L, Uske, A, de Tribolet, N (1999). Endovascular coil placement compared with surgical clipping for the treatment of unruptured middle cerebral artery aneurysms: a consecutive series. J Neurosurg 90(6): 10251030.Google Scholar
Guglielmi, G, Vinuela, F, Dion, J, Duckwiler, G (1991). Electrothrombosis of saccular aneurysms via endovascular approach. Part 2: Preliminary clinical experience. J Neurosurg 75(1): 814.Google Scholar
Guglielmi, G, Vinuela, F, Sepetka, I, Macellari, V (1991). Electrothrombosis of saccular aneurysms via endovascular approach. Part 1: Electrochemical basis, technique, and experimental results. J Neurosurg 75(1): 17.Google Scholar
Brilstra, EH, Rinkel, GJ (2002). Treatment of ruptured intracranial aneurysms by embolization with controlled detachable coils. Neurologist 8(1): 3540.Google Scholar
Molyneux, A, Kerr, R, Stratton, I, et al. (2002). International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360(9342): 12671274.Google Scholar
Frontera, JA, Fernandez, A, Schmidt, JM, et al. (2009). Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition? Stroke 40(6): 19631968.Google Scholar
Vergouwen, MD, Vermeulen, M, van Gijn, J, et al. (2010). Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 41(10): 23912395.Google Scholar
Fisher, CM, Roberson, GH, Ojemann, RG (1977). Cerebral vasospasm with ruptured saccular aneurysm--the clinical manifestations. Neurosurgery 1(3): 245248.CrossRefGoogle ScholarPubMed
Heros, RC, Zervas, NT, Varsos, V (1983). Cerebral vasospasm after subarachnoid hemorrhage: an update. Ann Neurol 14(6): 599608.Google Scholar
Brott, T, Adams, HP Jr., Olinger, CP, et al. (1989). Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20(7): 864870.Google Scholar
Carrera, E, Schmidt, JM, Oddo, M, et al. (2009). Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 65(2): 316323; discussion 323–324.Google Scholar
Lysakowski, C, Walder, B, Costanza, MC, Tramer, MR (2001). Transcranial Doppler versus angiography in patients with vasospasm due to a ruptured cerebral aneurysm: a systematic review. Stroke 32(10): 22922298.Google Scholar
Sloan, MA, Alexandrov, AV, Tegeler, CH, et al. (2004). Assessment: transcranial Doppler ultrasonography. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 62(9): 14681481.Google Scholar
Lindegaard, KF, Bakke, SJ, Sorteberg, W, Nakstad, P, Nornes, H (1986). A non-invasive Doppler ultrasound method for the evaluation of patients with subarachnoid hemorrhage. Acta Radiol Suppl 369: 9698.Google Scholar
Lindegaard, KF, Nornes, H, Bakke, SJ, Sorteberg, W, Nakstad, P (1988). Cerebral vasospasm after subarachnoid haemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien) 42: 8184.Google Scholar
Chaudhary, SR, Ko, N, Dillon, WP, et al. (2008). Prospective evaluation of multidetector-row CT angiography for the diagnosis of vasospasm following subarachnoid hemorrhage: a comparison with digital subtraction angiography. Cerebrovasc Dis 25(1–2): 144150.Google Scholar
Yoon, DY, Choi, CS, Kim, KH, Cho, BM (2006). Multidetector-row CT angiography of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: comparison of volume-rendered images and digital subtraction angiography. Am J Neuroradiol 27(2): 370377.Google ScholarPubMed
Wintermark, M, Dillon, WP, Smith, WS, et al. (2008). Visual grading system for vasospasm based on perfusion CT imaging: comparisons with conventional angiography and quantitative perfusion CT. Cerebrovasc Dis 26(2): 163170.CrossRefGoogle ScholarPubMed
Wintermark, M, Ko, NU, Smith, WS, et al. (2006). Vasospasm after subarachnoid hemorrhage: utility of perfusion CT and CT angiography on diagnosis and management. Am J Neuroradiol 27(1): 2634.Google Scholar
Claassen, J, Hirsch, LJ, Kreiter, KT, et al. (2004). Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol 115(12): 26992710.CrossRefGoogle ScholarPubMed
Vespa, PM, Nuwer, MR, Juhasz, C, et al. (1997). Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 103(6): 607615.Google Scholar
Dreier, JP, Woitzik, J, Fabricius, M, et al. (2006). Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain 129(Pt 12): 32243237.Google Scholar
Vath, A, Kunze, E, Roosen, K, Meixensberger, J (2002). Therapeutic aspects of brain tissue pO2 monitoring after subarachnoid hemorrhage. Acta Neurochir Suppl 81: 307309.Google ScholarPubMed
Nilsson, OG, Saveland, H, Boris-Moller, F, Brandt, L, Wieloch, T (1996). Increased levels of glutamate in patients with subarachnoid haemorrhage as measured by intracerebral microdialysis. Acta Neurochir Suppl 67: 4547.Google Scholar
Sarrafzadeh, A, Haux, D, Kuchler, I, Lanksch, WR, Unterberg, AW (2004). Poor-grade aneurysmal subarachnoid hemorrhage: relationship of cerebral metabolism to outcome. J Neurosurg 100(3): 400406.Google Scholar
Saveland, H, Nilsson, OG, Boris-Moller, F, Wieloch, T, Brandt, L (1996). Intracerebral microdialysis of glutamate and aspartate in two vascular territories after aneurysmal subarachnoid hemorrhage. Neurosurgery 38(1): 1219; discussion 19–20.Google Scholar
Allen, GS, Ahn, HS, Preziosi, TJ, et al. (1983). Cerebral arterial spasm--a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med 308(11): 619624.Google Scholar
Wong, GK, Poon, WS, Chan, MT, et al. (2010). Intravenous Magnesium sulphate for Aneurysmal Subarachnoid Hemorrhage (IMASH): a randomized, double-blinded, placebo-controlled, multicenter phase III trial. Stroke 41(5): 921926.Google Scholar
Westermaier, T, Stetter, C, Vince, GH, et al. (2010). Prophylactic intravenous magnesium sulfate for treatment of aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, clinical study. Crit Care Med 38(5): 12841290.Google Scholar
Suarez, JI (2011). Magnesium sulfate administration in subarachnoid hemorrhage. Neurocrit Care 15(2): 302307.Google Scholar
Tseng, MY (2011). Summary of evidence on immediate statins therapy following aneurysmal subarachnoid hemorrhage. Neurocrit Care 15(2): 298301.Google Scholar
Zabramski, JM, Spetzler, RF, Lee, KS, et al. (1991). Phase I trial of tissue plasminogen activator for the prevention of vasospasm in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 75(2): 189196.CrossRefGoogle ScholarPubMed
Kawamoto, S, Tsutsumi, K, Yoshikawa, G, et al. (2004). Effectiveness of the head-shaking method combined with cisternal irrigation with urokinase in preventing cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 100(2): 236243.Google Scholar
Macdonald, RL, Higashida, RT, Keller, E, et al. (2011). Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10(7): 618625.Google Scholar
Mori, K, Arai, H, Nakajima, K, Tajima, A, Maeda, M (1995). Hemorheological and hemodynamic analysis of hypervolemic hemodilution therapy for cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 26(9): 16201626.Google Scholar
Kassell, NF, Peerless, SJ, Durward, QJ, et al. (1982). Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 11(3): 337343.Google Scholar
Brown, FD, Hanlon, K, Mullan, S (1978). Treatment of aneurysmal hemiplegia with dopamine and mannitol. J Neurosurg 49(4): 525529.Google Scholar
Kosnik, EJ, Hunt, WE (1976). Postoperative hypertension in the management of patients with intracranial arterial aneurysms. J Neurosurg 45(2): 148154.Google Scholar
Otsubo, H, Takemae, T, Inoue, T, Kobayashi, S, Sugita, K (1990). Normovolaemic induced hypertension therapy for cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochir (Wien) 103(1–2): 1826.Google Scholar
Muizelaar, JP, Becker, DP (1986). Induced hypertension for the treatment of cerebral ischemia after subarachnoid hemorrhage: direct effect on cerebral blood flow. Surg Neurol 25(4): 317325.Google Scholar
Miller, JA, Dacey, RG Jr., Diringer, MN (1995). Safety of hypertensive hypervolemic therapy with phenylephrine in the treatment of delayed ischemic deficits after subarachnoid hemorrhage. Stroke 26(12): 22602266.Google Scholar
Arakawa, Y, Kikuta, K, Hojo, M, et al. (2001). Milrinone for the treatment of cerebral vasospasm after subarachnoid hemorrhage: report of seven cases. Neurosurgery 48(4): 723728; discussion 728–730.Google Scholar
Fraticelli, AT, Cholley, BP, Losser, MR, Saint Maurice, JP, Payen, D (2008). Milrinone for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 39(3): 893898.Google Scholar
Levy, ML, Rabb, CH, Zelman, V, Giannotta, SL (1993). Cardiac performance enhancement from dobutamine in patients refractory to hypervolemic therapy for cerebral vasospasm. J Neurosurg 79(4): 494499.Google Scholar
Ekelund, A, Reinstrup, P, Ryding, E, et al. (2002). Effects of iso- and hypervolemic hemodilution on regional cerebral blood flow and oxygen delivery for patients with vasospasm after aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 144(7): 703712; discussion 712–713.Google Scholar
Bejjani, GK, Bank, WO, Olan, WJ, Sekhar, LN (1998). The efficacy and safety of angioplasty for cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery 42(5): 979986; discussion 986–987.Google Scholar
Hoh, BL, Ogilvy, CS (2005). Endovascular treatment of cerebral vasospasm: transluminal balloon angioplasty, intra-arterial papaverine, and intra-arterial nicardipine. Neurosurg Clin N Am 16(3): 501516, vi.Google Scholar
Rosenwasser, RH, Armonda, RA, Thomas, JE, et al. (1999). Therapeutic modalities for the management of cerebral vasospasm: timing of endovascular options. Neurosurgery 44(5): 975979; discussion 979–980.CrossRefGoogle ScholarPubMed
Feng, L, Fitzsimmons, BF, Young, WL, et al. (2002). Intraarterially administered verapamil as adjunct therapy for cerebral vasospasm: safety and 2-year experience. Am J Neuroradiol 23(8): 12841290.Google Scholar
McGirt, MJ, Blessing, R, Nimjee, SM, et al. (2004). Correlation of serum brain natriuretic peptide with hyponatremia and delayed ischemic neurological deficits after subarachnoid hemorrhage. Neurosurgery 54(6): 13691373; discussion 1373–1374.Google Scholar
Qureshi, AI, Suri, MF, Sung, GY, et al. (2002). Prognostic significance of hypernatremia and hyponatremia among patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 50(4): 749755; discussion 755–756.Google Scholar
Fisher, LA, Ko, N, Miss, J, et al. (2006). Hypernatremia predicts adverse cardiovascular and neurological outcomes after SAH. Neurocrit Care 5(3): 180185.Google Scholar
Audibert, G, Steinmann, G, de Talance, N, et al. (2009). Endocrine response after severe subarachnoid hemorrhage related to sodium and blood volume regulation. Anesth Analg 108(6): 19221928.Google Scholar
Zheng, B, Qiu, Y, Jin, H, et al. (2010). A predictive value of hyponatremia for poor outcome and cerebral infarction in high-grade aneurysmal subarachnoid haemorrhage patients. J Neurol Neurosurg Psychiatry 82(2): 213217.Google Scholar
Hasan, D, Lindsay, KW, Wijdicks, EF, et al. (1989). Effect of fludrocortisone acetate in patients with subarachnoid hemorrhage. Stroke 20(9): 11561161.Google Scholar
Katayama, Y, Haraoka, J, Hirabayashi, H, et al. (2007). A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke 38(8): 23732375.Google Scholar
Mori, T, Katayama, Y, Kawamata, T, Hirayama, T (1999). Improved efficiency of hypervolemic therapy with inhibition of natriuresis by fludrocortisone in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 91(6): 947952.Google Scholar
Moro, N, Katayama, Y, Kojima, J, Mori, T, Kawamata, T (2003). Prophylactic management of excessive natriuresis with hydrocortisone for efficient hypervolemic therapy after subarachnoid hemorrhage. Stroke 34(12): 28072811.Google Scholar
Woo, MH, Kale-Pradhan, PB (1997). Fludrocortisone in the treatment of subarachnoid hemorrhage-induced hyponatremia. Ann Pharmacother 31(5): 637639.Google Scholar
Suarez, JI, Qureshi, AI, Parekh, PD, et al. (1999). Administration of hypertonic (3%) sodium chloride/acetate in hyponatremic patients with symptomatic vasospasm following subarachnoid hemorrhage. J Neurosurg Anesthesiol 11(3): 178184.Google Scholar
Zeltser, D, Rosansky, S, van Rensburg, H, Verbalis, JG, Smith, N (2007). Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 27(5): 447457.Google Scholar
Wright, WL, Asbury, WH, Gilmore, JL, Samuels, OB (2009). Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care 11(1): 613.Google Scholar
Naidech, AM, Bendok, BR, Tamul, P, et al. (2009). Medical complications drive length of stay after brain hemorrhage: a cohort study. Neurocrit Care 10(1): 1119.Google Scholar
Dorhout Mees, SM, Luitse, MJ, van den Bergh, WM, Rinkel, GJ (2008). Fever after aneurysmal subarachnoid hemorrhage: relation with extent of hydrocephalus and amount of extravasated blood. Stroke 39(7): 21412143.Google Scholar
Fernandez, A, Schmidt, JM, Claassen, J, et al. (2007). Fever after subarachnoid hemorrhage: risk factors and impact on outcome. Neurology 68(13): 10131019.Google Scholar
Naidech, AM, Bendok, BR, Bernstein, RA, et al. (2008). Fever burden and functional recovery after subarachnoid hemorrhage. Neurosurgery 63(2): 212217; discussion 217–218.Google Scholar
Todd, MM, Hindman, BJ, Clarke, WR, et al. (2009). Perioperative fever and outcome in surgical patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 64(5): 897908; discussion 908.Google Scholar
Kilpatrick, MM, Lowry, DW, Firlik, AD, Yonas, H, Marion, DW (2000). Hyperthermia in the neurosurgical intensive care unit. Neurosurgery 47(4): 850855; discussion 855–856.Google Scholar
Badjatia, N, Fernandez, L, Schmidt, JM, et al. (2010). Impact of induced normothermia on outcome after subarachnoid hemorrhage: a case-control study. Neurosurgery 66(4): 696700; discussion 700–701.Google Scholar
Kruyt, ND, Biessels, GJ, de Haan, RJ, et al. (2009). Hyperglycemia and clinical outcome in aneurysmal subarachnoid hemorrhage: a meta-analysis. Stroke 40(6): e424–430.CrossRefGoogle ScholarPubMed
Lanzino, G, Kassell, NF, Germanson, T, Truskowski, L, Alves, W (1993). Plasma glucose levels and outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 79(6): 885891.Google Scholar
Alberti, O, Becker, R, Benes, L, Wallenfang, T, Bertalanffy, H (2000). Initial hyperglycemia as an indicator of severity of the ictus in poor-grade patients with spontaneous subarachnoid hemorrhage. Clin Neurol Neurosurg 102(2): 7883.Google Scholar
Schlenk, F, Vajkoczy, P, Sarrafzadeh, A (2009). Inpatient hyperglycemia following aneurysmal subarachnoid hemorrhage: relation to cerebral metabolism and outcome. Neurocrit Care 11(1): 5663.Google Scholar
Frontera, JA, Fernandez, A, Claassen, J, et al. (2006). Hyperglycemia after SAH: predictors, associated complications, and impact on outcome. Stroke 37(1): 199203.Google Scholar
Lanzino, G (2005). Plasma glucose levels and outcome after aneurysmal subarachnoid hemorrhage. J Neurosurg 102(6): 974975; discussion 975–976.Google Scholar
Bell, DA, Strong, AJ (2005). Glucose/insulin infusions in the treatment of subarachnoid haemorrhage: a feasibility study. Br J Neurosurg 19(1): 2124.Google Scholar
Bilotta, F, Spinelli, A, Giovannini, F, et al. (2007). The effect of intensive insulin therapy on infection rate, vasospasm, neurologic outcome, and mortality in neurointensive care unit after intracranial aneurysm clipping in patients with acute subarachnoid hemorrhage: a randomized prospective pilot trial. J Neurosurg Anesthesiol 19(3): 156160.Google Scholar
Latorre, JG, Chou, SH, Nogueira, RG, et al. (2009). Effective glycemic control with aggressive hyperglycemia management is associated with improved outcome in aneurysmal subarachnoid hemorrhage. Stroke 40(5): 16441652.Google Scholar
Thiele, RH, Pouratian, N, Zuo, Z, et al. (2009). Strict glucose control does not affect mortality after aneurysmal subarachnoid hemorrhage. Anesthesiology 110(3): 603610.CrossRefGoogle Scholar
Naidech, AM, Levasseur, K, Liebling, S, et al. (2010). Moderate hypoglycemia is associated with vasospasm, cerebral infarction, and 3-month disability after subarachnoid hemorrhage. Neurocrit Care 12(2): 181187.Google Scholar
Schlenk, F, Graetz, D, Nagel, A, Schmidt, M, Sarrafzadeh, AS (2008). Insulin-related decrease in cerebral glucose despite normoglycemia in aneurysmal subarachnoid hemorrhage. Crit Care 12(1): R9.Google Scholar
Schlenk, F, Sarrafzadeh, AS (2008). Is continuous insulin treatment safe in aneurysmal subarachnoid hemorrhage? Vasc Health Risk Manag 4(4): 885891.Google Scholar
Oddo, M, Schmidt, JM, Carrera, E, et al. (2008). Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med 36(12): 32333238.Google Scholar
Kramer, AH, Gurka, MJ, Nathan, B, et al. (2008). Complications associated with anemia and blood transfusion in patients with aneurysmal subarachnoid hemorrhage. Crit Care Med 36(7): 20702075.Google Scholar
Kurtz, P, Schmidt, JM, Claassen, J, et al. (2010). Anemia is associated with metabolic distress and brain tissue hypoxia after subarachnoid hemorrhage. Neurocrit Care 13(1): 1016.Google Scholar
Naidech, AM, Shaibani, A, Garg, RK, et al. (2010). Prospective, randomized trial of higher goal hemoglobin after subarachnoid hemorrhage. Neurocrit Care 13(3): 313320.Google Scholar
Broessner, G, Lackner, P, Hoefer, C, et al. (2009). Influence of red blood cell transfusion on mortality and long-term functional outcome in 292 patients with spontaneous subarachnoid hemorrhage. Crit Care Med 37(6): 18861892.Google Scholar
Wartenberg, KE, Schmidt, JM, Fernandez, A, et al. (2007). Impact of red blood cell transfusion on outcome after subarachnoid hemorrhage. Crit Care Med 34(12): A124.Google Scholar
Mayer, SA, Fink, ME, Homma, S, et al. (1994). Cardiac injury associated with neurogenic pulmonary edema following subarachnoid hemorrhage. Neurology 44(5): 815820.Google Scholar
Banki, NM, Kopelnik, A, Dae, MW, et al. (2005). Acute neurocardiogenic injury after subarachnoid hemorrhage. Circulation 112(21): 33143319.Google Scholar
Lee, VH, Oh, JK, Mulvagh, SL, Wijdicks, EF (2006). Mechanisms in neurogenic stress cardiomyopathy after aneurysmal subarachnoid hemorrhage. Neurocrit Care 5(3): 243249.Google Scholar
Deibert, E, Barzilai, B, Braverman, AC, et al. (2003). Clinical significance of elevated troponin I levels in patients with nontraumatic subarachnoid hemorrhage. J Neurosurg 98(4): 741746.Google Scholar
Hravnak, M, Frangiskakis, JM, Crago, EA, et al. (2009). Elevated cardiac troponin I and relationship to persistence of electrocardiographic and echocardiographic abnormalities after aneurysmal subarachnoid hemorrhage. Stroke 40(11): 34783484.Google Scholar
van der Bilt, IA, Hasan, D, Vandertop, WP, et al. (2009). Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: a meta-analysis. Neurology 72(7): 635642.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×