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Abstract
Continuum robots offer unique advantages in performing tasks within extremely confined environments due to
their exceptional dexterity and adaptability. However, their soft materials and elastic structures inherently introduce
nonlinearity and shape instability, especially when the robot encounters external contact forces. To address these
challenges, this paper presents a comprehensive model and experimental study to estimate the shape deformation
of a switchable rigid-continuum robot (SRC-Bot). The kinematic analysis is first conducted to specify the degrees
of freedom (DoF) and basic motions of SRC-Bot, including motion of bending, rotating, and elongating. This
analysis assumes that the curvature varies along the central axis and maps the relationship between joint space
and driven space. Subsequently, an equivalence concept is proposed to unify the stiffness addressing each DoF,
which is then utilized in the establishment of the dynamic model. According to the mechanical structural design,
the deformed posture of SRC-Bot is discretized into five segments, corresponding to the distribution of the guiders.
The dynamics model is then derived using Newton’s second law and Euler’s method to simulate the deformation
under gravity, friction, and external forces. Additionally, the stiffness in three directions is quantified through an
identification process to complete the theoretical model. Furthermore, a series of experiments are conducted and
compared with simulated results to validate the response and deformed behavior of SRC-Bot. The comparative
results demonstrate that the proposed model-based simulation accurately captures the deformable characteristics
of the robot, encompassing both static deformed postures and dynamic time-domain responses induced by external
and actuation forces.

1. Introduction
Continuum robots seek superior motion performance with unique flexibility, adaptability, and dexterity
by taking advantage of soft material and smart compliant mechanisms [1, 2]. Increasing research efforts
are being devoted to the mechanical design, precise modeling approach, and efficient control strategies
to promote the deployment of continuum robots in diverse applications, particularly in extreme environ-
ments characterized by confined, narrow and harmless space [3, 4], for example, surgery in the human
body [5, 6], and grasping soft objects [7].

An accurate model provides a significant way to comprehend the motion principle and behavior
of continuum robots. Kinematics is commonly employed for analyzing shape deformation, disregard-
ing the force [8], with the prevailing approach assuming constant curvature of continuum robots [9].
Furthermore, kinematic characteristics, for example, displacement, velocity, and acceleration, can be
derived for mapping specific motion parameters through analytical geometry [10]. However, pure
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kinematics, assuming a single constant curvature, fails to accurately capture the deformable feature
of the continuum robot, especially in the presence of gravity and external loads.

Therefore, mechanics plays a crucial role in the behavior analysis of a dynamic continuum robot
by incorporating various force factors in addition to kinematics. Hence, an effective dynamic mod-
eling approach essentially influences the precise analysis and control of continuum robots [11, 12],
whereas the nonlinearity and instability arising from the soft materials and flexible structures challenge
the improvement of modeling [13].

Thus, various approaches were presented based on different discretization methods and mechanics
theorem in order to acquire an accurate and efficient model that be deployed into simulating and control-
ling the deformation of continuum robots [14, 15]. From the discretization perspective, the piecewise
constant curvature assumption is widely used in the basic deformation analysis of continuum robots
[16–18]. It characterizes the shape of the robot as a series of mutually tangent circular arcs and can
effectively simplify the modeling, which has been successfully applied to the workspace analysis and
trajectory-tracking [19]. However, challenges become more obvious when the global shape of contin-
uum robots needs to be accurately specified and controlled. To address this, the Bezier curve is applied
to achieve the shape reconstruction for wire-driven continuum robots [20]. Similarly, an approach based
on the piecewise cubic Bézier curve has been proposed for the shape control of a cable-driven soft
manipulator by using a visual servoing technique [21].

From the perspective of the analysis method, low-fidelity lumped parameters and high-fidelity
distributed parameters are commonly deployed in model establishment [22]. Low-fidelity lumped
parameter models assume that each actuated segment of the robot is capable of being characterized
by a single circular arc, and the high-fidelity distributed model represents the continuum robot with a
spatial parameterized curve or a 3-D volume. A typical lumped method that uses the Euler–Lagrange
method to formulate a Lagrangian in terms of the kinetic energy contributed by robotic motion and
potential energy extracted from the gravity effect and elastic potential [23, 24]. The distributed mod-
els previously studied are known for their high fidelity, as they enable the continuum robots to adopt an
arbitrary shape in response to applied loading. For example, Cosserat theory is explored to acquire a pre-
cise dynamics model, considering the external load [25, 26]. To address the difficulties of computation,
a real-time numerical framework is proposed for solving the Cosserat-based dynamic models [27]. In
addition, Hamilton’s principle could be employed to derive a discrete model of continuum robots using
a helicoidal shape function to achieve higher computational efficiency [28]. Moreover, a high-fidelity
dynamic model is presented using the principle of virtual power considering the cable constraint and
friction effect [29].

The contributions of this work are summarized as follows:

1. A novel design of a continuum robot capable of switching its configuration to achieve various
levels of stiffness.

2. A modeling approach with variable curvature-torsion-length for a switchable rigid-continuum
robot, specifying the deformation response and behavior under different actuations and external
forces. The proposed model considers external forces acting not only on the robot’s tip but also
on its body, allowing for a comprehensive analysis of the robot’s deformable behavior.

3. A dynamics model formulated using Newton’s second law and Euler’s principle, incorporat-
ing the influences of gravity, friction, and external forces. This model integrates an equivalent
concept to determine stiffness parameters.

4. Validation of the model through both numerical simulations and experiments, with results effec-
tively demonstrating the model’s ability to reflect the dynamic shape characteristics of the
proposed robot.

The content is structured as follows: Section 2 introduces the concept and structural design of
SRC-Bot. In Section 3, a discretization method is proposed for establishing the kinematics with the
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Figure 1. Schematic diagram of structure design and brief introduction of SRC-Bot: (a) Concept,
structure, and potential scenario; (b) switchable principle of SRC-Bot.

assumption of constant and variable curvature. A dynamics model with an equivalent stiffness concept
is established in Section 4 by considering the gravity, friction, and external force based on the discretiza-
tion approach. Furthermore, the proposed dynamics model is integrated into SIMULINK for simulating
various motions in Section 5. Consequently, several experiments were conducted to identify the stiffness
and validate the deformation response and behavior by comparing them with the simulation results in
Section 6. Finally, the conclusion and the future work are discussed in Section 7.

2. Basic concept and motion principle
The compliant structure of continuum robots is an inherent feature that enables versatile motion in con-
fined and unstructured environments [30]. Previous research has demonstrated that continuum robots
exhibit superior manipulation performance in extreme circumstances compared to traditional rigid-link
robots. However, the majority of deployed continuum robots are designed at micro or small scales to
maintain high stiffness and constrain their shape, allowing them to align more closely with theoretical
models [31, 32]. As the dimensions of a continuum robot increase to the order of one meter, the shape
deformation becomes increasingly nonlinear, significantly decreasing controllability due to large deflec-
tions and vibrations. This effect is particularly pronounced when external forces are applied to the robot.
One approach to enhancing controllability is to reinforce the structural stiffness; however, this method
often results in a trade-off between dexterity and flexibility.

To address the challenges of maintaining both stiffness and softness in continuum robots, our previ-
ous work proposed a hybrid concept called the “switchable rigid-continuum robot” (SRC-Bot) [33]. The
SRC-Bot can transition between rigid and continuum configurations by locking or unlocking its guiders,
as illustrated in Figure 1. While it is theoretically possible to configure a functional robot or manipula-
tor using a single SRC-Bot, practical limitations arise due to insufficient degrees of freedom (DoF) and
restricted motion range. Consequently, the SRC-Bot is envisioned as a potential dexterous end effec-
tor that can be integrated with various industrial robots, such as articulated, SCARA, or delta robots,
depending on the specific task requirements (Figure 1(a)). The integration of an SRC-Bot with indus-
trial robots offers several advantages. It can enhance compliance and flexibility, enabling these robots
to overcome challenges and perform tasks in narrow, confined spaces or extremely limited dimensional
environments. This hybrid approach combines the precision and strength of traditional industrial robots
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with the adaptability and dexterity of continuum robots, potentially expanding the application range of
robotic systems in complex environments.

2.1. Structure design and scenarios
Figure 1(a) illustrates the global design of the SRC-Bot, which comprises three main components
arranged in series: guiders, elastic chambers, and driven cables. The elastic chamber, the core element,
is constructed using thermoplastic polyurethane material via 3D printing technology, imparting excep-
tional deformability and softness to the SRC-Bot. A standard unit consists of two guiders and a chamber,
with five such units interconnected by three cables to form a complete assembly.

This structural design enables the SRC-Bot to operate in two distinct configurations, each offering
unique advantages:

1. Continuum Status: when the guiders are unlocked from adjacent units, the SRC-Bot functions
as a continuum robot. This configuration provides favorable compliance and flexibility, allowing
for deformability and enhanced interaction with objects in complex environments. However, this
mode results in reduced load-bearing capacity.

2. Rigid Status: by locking the guiders together, the SRC-Bot transforms into a rigid body. This
configuration significantly enhances stiffness, enabling more stable handling of heavier objects.
The trade-off in this mode is reduced deformability.

The ability to switch between these two operational modes allows the SRC-Bot to adapt to specific
task demands, facilitating dexterous manipulation of objects in confined spaces. This dual-mode func-
tionality combines the advantages of both continuum and rigid robots, potentially expanding the range
of applications in complex and constrained environments.

2.2. Switchable motion principle
The SRC-Bot has been designed and implemented to address more complex tasks in unstructured
environments. Its key feature is the ability to switch configurations, allowing it to acquire higher
deformability or load capacity as required by specific tasks. The most distinctive design element
is the skewed slot structure at the edge of each guider. This innovative feature enables the upside
edge of one guider to lock with the downside edge of another when the cable is tensioned, result-
ing in two adjacent guiders being completely locked together to form a rigid status, as illustrated
in Figure 1(b). Furthermore, the axial rotation of adjacent guiders is constrained by the cables and
skewed slot structure, enhancing the stability of the rigid configuration. Conversely, the SRC-Bot
can transition from a rigid to a continuum status by releasing the cable and separating the adjacent
guiders.

This switchable status confers two distinct features to the SRC-Bot: higher deformability in the soft
(continuum) body configuration and greater load capacity in the rigid body configuration. The advantage
of this switchable status lies in its versatility, allowing the robot to adapt to various task requirements.
However, it is important to note that when the SRC-Bot is configured for increased stiffness to carry
heavier objects, there is a corresponding reduction in the number of DoF.

3. Kinematics
The field of kinematics of continuum robots has seen significant advancement in the past decade, with
a particular focus on the fundamental deformation behavior. In this context, the posture of continuum
robots is typically approximated as a circular arc shape with constant curvature. However, the condition
for holding constant curvature assumes that the stiffness of continuum robots is large enough to prevent
the deflection caused by the gravity effect, otherwise, the shape of continuum robots cannot be assumed
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Figure 2. Kinematic analysis of SRC-Bot: (a) Constant curvature posture, where Lc is the total length,
ϕc and θc are the rotation and bending angle of the tip, θcs is the bending angle of each segment;
(b) variable curvature posture, where Lvi, ϕvi, and θvi are the length, rotation angle, and bending angle
of each segment, respectively, i is from 1 to 5, θv is the bending angle of the tip, ϕv is the rotation angle
of the bottom guider.

as an arc with constant curvature. Hence, a suitable way to acquire an accurate kinematic model is
by utilizing the variable curvature assumption. In this section, the kinematics of continuum robots is
established by combining the method of constant and variable curvature.

3.1. Constant curvature shape
Figure 2 illustrates two schematic diagrams of the kinematic shape by using constant and variable cur-
vature configurations for identifying the deformed shape of continuum robots kinematically. As shown
in Figure 2(a), the most general method is to assume the posture (dark blue central curve) of continuum
robots as a constant circular arc, in which the bending angle θcs between each cable guider is the same,
and there is no relative rotational motion between each guider, therefore, the basic kinematic translation
Pc ∈R

3×1 is expressed as

Pc =
⎡
⎢⎣

xc

yc

zc

⎤
⎥⎦=

⎡
⎢⎣

Lc
θc

(1 − cos (θc)) cos (ϕc)
Lc
θc

(1 − cos (θc)) sin (ϕc)
Lc
θc

sin (θc)

⎤
⎥⎦ (1)

where (xc, yc, zc) is the coordinate of end position, and θc, ϕc, and Lc are the bending angle, rotation
angle, and length of the shape of continuum robot as shown in Figure 2(a). The special case for SRC-bot
is that the length is capable of changing to switch the configuration from rigid status to continuum
status, and vice versa. The central coordinates of each guider can be calculated by discretizing the
continuum robot with the same bending angle, rotation angle, and length based on the number of the
guiders.

The revolute motion matrix Mci ∈R
3×3 contributed by bending angle and rotation angle could be

expressed as

Mci =Rcz(ϕci)Rcy(θc) (2)

where Rcz and Rcy are the rotation matrix with respect to the z-axis and y-axis, respectively, which could
be constituted by
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rcz (ϕc) =
⎡
⎢⎣

cos (ϕc) − sin (ϕc) 0

sin (ϕc) cos (ϕc) 0

0 0 1

⎤
⎥⎦

Rcy (θc) =
⎡
⎢⎣

cos (θc) 0 sin (θc)

0) 1 0

− sin (θc) 0 cos (θc)

⎤
⎥⎦

(3)

3.2. Variable curvature shape
In accordance with the kinematics of constant curvature, the fundamental motion behavior of SRC-Bot
can be reflected only when the stuffiness of the continuum robot is sufficiently large to eliminate the
greatest deflection. Nevertheless, the shape approximation of the constant curvature method becomes
increasingly inaccurate as the dimensional scale of the continuum robot is increased, or as the deflection
caused by gravity and external forces becomes more significant.

Therefore, a discretization method is proposed in this section to acquire a more precise kinematic
model by assuming the deformation of the continuum robot as a variable curvature shape as shown
in Figure 2(b). Apart from the constant curvature method, the bending angle θvi between each adja-
cent guider, the rotation angle ϕvi of each guider, and the discretized arc length Lvi are defined as a
variable for obtaining a deformed shape, in which the curvature evenly changes along the central axis.
Consequently, the kinematics with variable curvature can be derived and established based on the series
system configuration by employing the transformation matrix that incorporates translation and revolute
motion.

The relative translation Pvi ∈R
3×1 of each discretized segment in local cartesian coordinate system

is

Pvi =
⎡
⎢⎣

xvi

yvi

zvi

⎤
⎥⎦=

⎡
⎢⎣

Lvi
θvi

(1 − cos(θvi)) cos(ϕvi)
Lvi
θvi

(1 − cos(θvi)) sin(ϕvi)
Lvi
θvi

sin(θvi)

⎤
⎥⎦ (4)

The revolute motion matrixMvi ∈R
3×1 is as

Mvi =Rz
vi(ϕc)Ry

vi(θc) (5)

where Rz
vi and Ry

vi are the rotation matrix with respect to z-axis and y-axis, respectively, hence, the
homogeneous transformation matrix Tvi could be constituted as

Tvi =
[
Mvi Pvi

0 1

]
(6)

According to the discretization method, the global translation Pi ∈R
3×1 of each guider respect to base

coordinate system is

[
Pi

1

]
=

⎡
⎢⎢⎣

xi

yi

zi

1

⎤
⎥⎥⎦=

(
i−1∏

1

Tvi

) [
Pvi

1

]
, (i = 1, 2, 3 · · · n) (7)

where n is the total number of the guiders, as a result, the deformed shape of the whole body with
variable curvature could be expressed based on Eq. (7).

Although the kinematics model with the assumption of variable curvature is able to accurately
describe the behavior of deformation of the continuum robot, the discretized parameters, such as angle
and length changing caused by external force and gravity effect need to be specified in terms of the
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Figure 3. Driven space analysis of SRC-Bot, where Ldi is the length of each driven cable, i is from 1 to
3. θv is the bending angle of the tip, ϕv is the rotation angle of the bottom guider.

mechanics analysis. Moreover, the controllable DoF is still three, two orientations and one translation of
the tip guider, denoted by (θv, ϕv, Lv) which is the sum of the discretized bending angle, rotation angle,
and the arc length.

3.3. Driven kinematics
By involving the bending angle, rotation angle, and length, the relationship between workspace (xv, yv, zv)
and joint space (θv, ϕv, Lv) is established based on the variable curvature kinematic model. However, the
implementation of driving the orientation and length depends on the control of each cable length through
the actuation motors. Hence, the kinematic mapping between the joint space (θv, ϕv, Lv) and the driving
space Ldi needs to be modeled.

In this paper, the continuum robot is driven by three cables distributed around the center of the guider
at 120 degrees as shown in Figure 3. Driven space {Ldj, j = 1, 2, 3} refers to the relation between the cable
length and the joint space parameters, which can be expressed as Eq. (8).⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ld1 = Lv + Dc
2
θv cos (ϕv)

Ld2 = Lv + Dc
2
θv cos

(
ϕv + 2π

3

)
Ld3 = Lv + Dc

2
θv cos

(
ϕv − π

3

)
(8)

where Dc is the diameter of the circle where the cable holes are located. The length of each cable is
calculated when the joint space parameters are specified. Similar to the computation of driven space
parameters, the shape coordinate (xvi, yvi, zvi) in workspace can be obtained when (θv, ϕv, Lv) are given.
In addition, the simultaneous kinematics, such as the relationship of velocity or angular velocity, could
be established by using the Jacobian matrix based on the partial differential equation derived from the
basic kinematic model, as Eqs. (1), (4) and (8).

4. Dynamics of SRC-Bot
Dynamic behavior represents the most significant intrinsic property, as it significantly reflects and influ-
ences the movability, stability, and controllability of the robot, particularly in the case of continuum
robots comprising soft/elastic and structural components. This section presents a comprehensive dynam-
ics modeling approach for analyzing the dynamic response of SRC-Bot, which involves external forces,
gravity, and actuation friction. The shape deformation and motion are described through a discretization
method based on Newton’s second law in a spatial dimension.
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Figure 4. Structure equivalence and dynamics analysis of SRC-Bot: (a) Equivalence of the segment
of SRC-Bot, where EI is the bending stiffness, GA is the torsional stiffness, and K is the linear motion
stiffness; (b) moment contributed by external load and gravity, where

−→
Mϕevi and

−→
Mθevi are the moment

generated by the external force Fevj in bending and rotation direction, respectively.
−→
Mθgvi is the moment

caused by gravity,
−→
Mθ invi is the moment owing to the inertia force; (c) mechanics analysis of the segment

of SRC-Bot, where Fi is the force actuated on cables.

4.1. Structure equivalence and discretization
The variable curvature method in kinematics employs the discretized segments along SRC-Bot as the
fundamental unit for analysis. This is illustrated in Figure 4(b), in which the bending angle, rotating
angle, and length of each segment undergo dynamic changes due to the combined effects of actuation
force, gravity, and external force. Furthermore, the flexibility and compliance of each discretized seg-
ment of SRC-Bot originated from the design of an elastic chamber; therefore, the bending, rotating, and
elongating motion are all significantly influenced by the stiffness property of the chamber. However,
the elastic chamber is an irregularly shaped structure with a corrugated shell, and it is difficult to the-
oretically calculate the stiffness with respect to bending, rotating, and elongating motion. Hence, an
equivalence method is supposed to be used for replacing the elastic chamber with an equivalent elastic
beam by defining three equivalent stiffnesses: bending stiffness EI, torsional stiffness GA, and linear
motion stiffness K as shown in Figure 4(a). It is observed that the direction of the linear motion stiffness
is assumed to be aligned with the chordal direction of the bending curve, while the torsional stiffness is
situated around the central axis along the shape of the segments.

For analyzing the dynamics behavior, SRC-Bot is considered to be a series system that is discretized
into multiequivalent beam segments connected. Consequently, the spatial shape of each segment is
deformed by internal interaction and external force. The internal interaction indicates that the force
and moment are mutually transmitted between each adjacent discretized segment, for example, bending
moment, torsional moment, and linear force contributed by the most adjacent segments. The external
force including the gravity effect, actuation force, and the external load are all involved in acquiring
a comprehensive dynamics model as shown in Figure 4(b). In particular, previous research has pre-
dominantly focused on external loads acting at the end of continuum robots. In contrast, this paper
considers the external load acting on the body (each guider) in order to analyze the deformable behavior
of SRC-Bot when in contact with external objects.

https://doi.org/10.1017/S0263574724001735 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001735


Robotica 9

In addition, the generalized actuation forces with respect to bending, rotating, and linear motion,
respectively, are applied to the end guider of SRC-Bot, which could be calculated by utilizing the force
actuated from the cables based on the Jacobian matrix.

4.2. Bending, elongating, and rotating motion equation
SRC-Bot has three DoF, namely bending, rotating, and elongating, which enable the tip end to reach a
specific spatial position within the workspace. In the context of kinematics, the discretization concept
allows for the analysis of each discretized segment to have three DoF. This implies that the dynamic spa-
tial motion, including bending, rotation, and elongation, of each segment should be specifically analyzed
in terms of the equivalent method as previously mentioned.

In this work, three assumptions lead to the deduction of the dynamics model: 1) the curvature of each
discretized segment is constant but different from each other; 2) the elastic chamber is simplified as a
beam with the corresponding structural property; and 3) the stiffness and damping are independently
separated into three dimensions in joint space related to bending, elongation, and rotation.

Bending is the most significant DoF and basic behavior of continuum robots that influence the per-
formance and shape deformability of SRC-Bot. As illustrated in Figure 4(c), the orientation in bending
direction of the guider i where i = {1, 2, . . . , n − 1} could be described as

Jθviω̇θvi = Mθvi + Mθevi + Mθgvi + Mθ invi (9)

where Jθvi is the moment of inertia of the guider relative to the y axis in bending plane, ωθvi is the
bending angular acceleration relative to the base coordinates, Mθvi is the internal moment caused by
upper adjacent segment due to the elastic bending deformation, and Mθevi and Mθgvi are the moments
in bending axis direction generated by the external load and gravity, respectively. In addition, Mθ invi is
the moment caused by the inertia force. According to the pure bending and damping, Mθvi could be
expressed as

Mθvi = EI (θvi+1 − θvi)

Lvi

+ dθ

(
θ̇vi+1 − θ̇vi

)
(10)

where dθ is the damping coefficient respected to bending motion. From Eq. (10), the internal moment is
generated by the difference of bending angle and angular velocity between two adjacent guiders. In this
model, the external load Fθevi is not only acting on the tip of SRC-Bot but also acting on other guiders.
Therefore, the total moment Mtevi generated by the external load could be calculated as

−→
M tevi =

n∑
j=i+1

−→r j × −→
F evj (11)

where −→r is the vector from central point of guider i to guider j, which is expressed by Eq. (12) based
on the kinematics, and Fevj is the external load acting on the guider j.{−→r j = −→P j − −→P i =

(
xj − xi

)
I + (

yj − yi

)
J + (

zj − zi

)
K

−→
F evj = Fx−evjI + Fy−evjJ + Fz−evjK

(12)

Fx−evj, Fy−evj, and Fz−evj are the external load in x, y, and z directions respected to global coordinates.
Hence, the total moment Mtevi contributed by the external load is derived by substituting Eq. (12) into
Eq. (11) as

−→
M tevi =

n∑
j=i+1

⎛
⎜⎝
∣∣∣∣∣∣∣

I J K

xj − xi yj − yi zj − zi

Fx−evj Fy−evj Fz−evj

∣∣∣∣∣∣∣
⎞
⎟⎠ (13)
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Subsequently, the moment Mθevi is the projection of Mtevi on bending axis −→y i of ith guider as

−→
Mθevi = −→

M tevi · −→y i = −→
M tevi ·

⎛
⎝ i∏

1

Mvi

⎡
⎣0

1
0

⎤
⎦
⎞
⎠ (14)

Furthermore, the gravity effect generates another moment Mtgvi acting on ith guider is

−→
M tgvi =

n∑
j=i+1

−→r j × −→
G gvj (15)

where
−→
G gvj is the gravity of jth guider and could be computed as

−→
G gvj = mjgK (16)

Hence, the total moment caused by the gravity of each guider is obtained by substituting Eq. (16)
into Eq. (15) as

−→
M tevi =

n∑
j=i+1

⎛
⎝
∣∣∣∣∣∣

I J K
xj − xi yj − yi zj − zi

0 0 mjg

∣∣∣∣∣∣
⎞
⎠ (17)

Furthermore, the moment
−→
Mθgvi is the projection of

−→
M tgvi that could be derived as

−→
Mθgvi = −→

M tgvi · −→y i = −→
M tgvi ·

⎛
⎝ i∏

1

Mvi

⎡
⎣0

1
0

⎤
⎦
⎞
⎠ (18)

Besides the external load, the inertia force
−→
F invi generated by the linear acceleration −→a i, including

tangential −→a ti and centripetal acceleration −→a ci of each guider influences the dynamic behavior, which
could be derived as

�Finvi = −mi(�ati + �a⊥i) = −mi

(( �̇ωθ i + �̇ωϕi

)
× �ri +

∣∣�ωθ i + �ωϕi

∣∣2 · �ri

)
(19)

Similar to moment derivation of external load, the total moment
−→
M tinvi acting on guider i could be

expressed as

−→
Mθ invi =

(
n∑

j=i+1

−→r j × −→
F invj

)
·
⎛
⎝ i∏

1

Mvi

⎡
⎣0

1
0

⎤
⎦
⎞
⎠ (20)

Consequently, the angular acceleration of bending motion is completely expressed by

ω̇θvi + EI

JθviLνi

(θvi − θvi+1) + dθ

Jθvi

(θ̇vi − θ̇vi+1) = τθegvi

Jθvi

(21)

where τθegvi is the absolute value of the sum of
−→
Mθgvi,

−→
Mθevi, and

−→
Mθ invi.

As the mechanical design of the actuation system, three cables are fixed with the top guider n and
steer SRC-Bot through the motors, which means the actuation force is only acting on the top guider.
Therefore, a generalized actuation moment τθ relative to bending motion is applied to the dynamic
motion equation of guider n, and the final motion equation of bending is as⎧⎪⎨

⎪⎩
ω̇θvi + EI

JθviLvi
(θvi − θvi+1) + dθ

Jθvi

(
θ̇vi − θ̇vi+1

)= τθegvi

Jθvi

ω̇θvn + EI
JθvnLvn

θvn + dθ

Jθvn
θ̇vn = τθegvn+τθ

Jθvn

, i = 1, 2, · · · , n − 1 (22)

Equation (21) and (22) are the complete dynamics equation of bending motion, in which the θvi, θvn,
θ̇vi, and θ̇vn are relative value reference to ith the coordinates, and ω̇θvi, ω̇θvn, ati, and aci are global value
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reference to the base coordinates. Linear motion is an essential DoF of SRC-Bot, with which the robot
could elongate and stretch to a specific length, especially for locking and unlocking each adjacent guider
to switch configuration from continuum status to rigid status.

The linear motion assumes that the motion direction is along the chordal direction of the bending
curve, and is described as

miaLvi = −K(Cvi − C0) − bLĊvi + K(Cvi+1 − C0) + dLĊvi+1 + GLgvi + FLevi (23)

where aLvi is the acceleration along the chordal direction, C0 is the chord length with a natural arc length
of the elastic chamber, and Cvi is the actual chord length between i − 1th and ith guider. The relation
between the chord length and arc length is as

Cvi = 2Lvi

θvi

sin

(
θvi

2

)
(24)

Moreover, Cvi is the changing rate of the chord length, dL is the damping coefficient of the linear motion.
Similar to bending motion, the gravity effect �GLevj and external force �FLevi are involved into the

dynamic equation. Hence, the external force acting on ith guider is expressed as the projection of �FLevi

along the chordal direction as

�FLevi =
�Fevi · (�Pi+1 − �Pi)∥∥∥�Pi+1 − �Pi

∥∥∥
�Pi+1 − �Pi∥∥∥�Pi+1 − �Pi

∥∥∥ (25)

Furthermore, the gravity effect projected on the chordal direction is derived as

�GLgvj =
�Ggvj · (�Pi+1 − �Pi)∥∥∥�Pi+1 − �Pi

∥∥∥
�Pi+1 − �Pi∥∥∥�Pi+1 − �Pi

∥∥∥ (26)

The generalized actuation force fL is only acting on the top guider, thus the dynamic equation of nth

guider is

mnaLvn = −K(CLvn − C0) − dLĊLvn + GLgvn + FLevn + fL (27)

⎧⎪⎨
⎪⎩

aLvi + K(Cvi−Cvi+1)
mi

+ dL(Ċvi−Ċvi+1)
mi

= fLegvi

mi

aLvn + K(CLvn−C0)

mn
+ dLĊLvn

mn
= fLegvn+fL

mn

, i = 1, 2 · · · n − 1 (28)

where fLegvi is the absolute value of sum of gravity effect �GLgvj and external force �FLevi.
Except for the bending and linear motion, rotating motion endows SRC-Bot with spatial movability.

The general dynamic equation of rotation is described as

Jϕviω̇ϕvi = Mϕvi + Mϕevi + Mϕgvi + Mϕinvi (29)

where Jϕvi is the moment of inertia of the guider relative to the z axis, ω̇ϕvi is the rotation angular accel-
eration referred to the base coordinates, Mϕvi is the internal moment caused by upper adjacent segment
due to the torsional deformation, and Mϕevi and Mϕgvi are the moments in rotation axis direction gener-
ated by the external load and gravity effect, respectively. In addition, Mϕinvi is the moment caused by the
inertia force. The internal moment Mϕvi could be described as

Mϕvi = GA(ϕvi+1 − ϕvi)

Lvi

+ dϕ(ϕ̇vi+1 − ϕ̇vi) (30)
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where dϕ is the damping coefficient of rotation motion. Subsequently, the moment generated by the
external force and gravity is derived similarly to the bending motion as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−→
Mϕevi = −→

M tevi · �zi = −→
M tgvi ·

⎛
⎜⎝ i∏

1

Mvi

⎡
⎢⎣0

0

1

⎤
⎥⎦
⎞
⎟⎠

−→
Mϕgvi = −→

M tgvi · �zi = −→
M tgvi ·

⎛
⎜⎝ i∏

1

Mvi

⎡
⎢⎣0

0

1

⎤
⎥⎦
⎞
⎟⎠

(31)

The moment
−→
Mϕevi and

−→
Mϕgvi are the projection of

−→
M tevi and

−→
M tgvi on z axis, respectively. The inertia

force impacted on the rotation is considered in the dynamic equation by using Eqs. (19) and (20), but
the revolute axis is z as

�Mϕinvi =
(

n∑
j=i+1

�rj × �Finvj

)
·
⎛
⎝ i∏

1

Mvi

⎡
⎣0

0
1

⎤
⎦
⎞
⎠ (32)

For the nth guider, the generalized actuation moment τϕ is added into the dynamic equation, therefore
the complete motion equations relative to the rotation are⎧⎨

⎩
ω̇ϕvi + GA

JϕviLvi
(ϕvi − ϕvi+1) + dϕ

Jϕvi
(ϕ̇vi − ϕ̇vi+1) = τϕegvi

Jϕvi

ω̇ϕvn + GA
JϕvnLvn

ϕvn + dϕ

Jϕvn
ϕ̇vn = τϕegvn+τϕ

Jϕvn

, i = 1, 2, . . . , n − 1 (33)

where τϕegvi is the sum of absolute value of
−→
Mϕevi and

−→
Mϕgvi.

Finally, by using Eqs. (22), (28), and (33), the dynamic motion of SRC-Bot relative to bending,
elongation, and rotation could be described and established with corresponding actuation moment and
force.

4.3. Generalized force and friction
In the above section, the dynamic motion is derived by using Newton’s second law, in which the defor-
mation is described in three dimensions as a joint space, bending, elongation, and rotation actuated by
three generalized forces and moment.

In driven kinematics, the relationship between the joint space parameters (θv, ϕv, Lv) and driving space
parameters {Ldj, j = 1, 2, 3} is expressed as Eq. (8). Thus, the generalized actuation force and moment
could be derived as

⎡
⎢⎣

τθ

τϕ

fL

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
i=0

∂Ldi
∂θv

nFi

3∑
i=0

∂Ldi
∂θv

nFi

3∑
i=0

∂Ldi
∂θv

nFi

⎤
⎥⎥⎥⎥⎥⎥⎦

= Jd

⎡
⎢⎣

nF1

nF2

nF3

⎤
⎥⎦ (34)

where Jd is the Jacobian matrix derived by differentiating Eq. (8) respective to θv, ϕv, and Lv, nFi is the
actuation force transmitted from the motor acting on the nth guider. Inversely, the required actuation
force nFi is calculated by defining the generalized actuation force and moment.⎡

⎢⎣
nF1

nF2

nF3

⎤
⎥⎦= J−1

d

⎡
⎢⎣

τθ

τϕ

fL

⎤
⎥⎦ (35)

As the configuration and the actuation mode of SRC-Bot, the cables slide inside the hole of the
guiders, the friction is unavoidably generated by the actuation force due to the contact between cables
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Figure 5. Fricton force between the cable and guider of SRC-Bot, where jFi is the actuation force, jFni

is the normal force, and jfi is the friction force.

and guiders. Thus, in this paper, coulomb friction is established into the equation of generalized actuation
force as shown in Figure 5. The actuation force is decreased due to the friction when the cable slides
across one guider, the force acting on the top guider is decreased by the friction between the cable and
other guiders.

To derive the friction function, the mechanics analysis is shown in Figure 5, a normal force jFni that is
exerted by the surface of the guider on the cables, directed perpendicular to the guider surface, which is
contributed from the actuation force jFi through the cables across each guider. Therefore, the expression
of the friction and the transmitted actuation force could be derived as

jfi = η ·j Fni = jFi · η · sin
θvj

2
, i = 1, 2, 3; j = 1, 2, 3, · · · , n (36)

where η is the friction coefficient between cable and guider. Hence, the force acting on the top guider
could be calculated as

nFi = Fi

n∏
j=1

(
1 − η · sin θvj

2

)2

(
1 − η · sin θvn

2

) , i = 1, 2, 3 (37)

where Fi is the output force from the motor to the cable. Finally, the generalized force fL and moment
(τθ , τϕ) could be obtained by defining the value of Fi and bending angle of each segment based on
Eqs. (33) and (36).

In summary, the dynamics model is established as Eqs. (22), (28), and (32), in which the gravity
and external force are involved in deducing the dynamic deformation and response of SRC-Bot under
the actuation force transmitted through the cables from the motors. Moreover, the generalized force and
moment in joint space that acts on the top guider are analyzed and derived based on the instantaneous
driven kinematics and take account of the corresponding friction generated by the contact between the
cables and the guiders.

Consequently, the deformational behavior of bending, elongation, and rotation of SRC-Bot under
actuation force and gravity external force has been fully described. This enables the forward and inverse
dynamics to be obtained in accordance with the requisite specifications, including behavior validation,
motion control, and path planning. It is noted that the equivalent parameters, for example, stiffness
(EI, GA, and K), damping coefficients (dθ , dϕ , and dL), and friction coefficient η are difficult to be
theoretically calculated due to the complexity of the assembled structure and geometric shape, hence
a series experiments will conduct to identify the parameter one by one. The structural properties, for

https://doi.org/10.1017/S0263574724001735 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001735


14 Yixiong Du et al.

Figure 6. SIMULATION of SRC-bot: (a) SIMULINK configuration of SRC-Bot based on the proposed
dynamics model. As a result, the bending angle, rotation angle, and length of each segment (θvi, ϕvi, Lvi)
are calculated and inputted to transform matrixMvi and Pvi for obtaining the coordinates (xvi, yvi, zvi),
(b) case for motion response by established simulation.

example, mass and moment inertia, could be obtained from the CAD model by defining the suitable
material parameters.

5. Numerical simulation
In order to verify the proposed theoretical model and clarify the dynamic response, a simulation is
carried out using SIMULINK. This involves implementing the mathematical formulas of dynamics
proposed in the previous section as a module for numerically simulating the motion of SRC-Bot.

5.1. Simulation and configuration
The proposed dynamics model equations, including motion, generalized force, gravity, and external
force, were implemented into the SIMULINK for simulating the dynamic deformation and response
of SRC-Bot as shown in Figure 6, which depicts the simulation flow. In accordance with the actuation
principle of SRC-Bot, the input is the actuation force of the cable, followed by the generalized force
in terms of bending, rotating, and elongating. Subsequently, the acceleration and angular acceleration
are calculated by feeding the generalized force and defining the external force, gravity, and property
parameters using the internal solver of ode45 or ode15. Thereafter, the bending angle, rotation angle, and
length of each discretized segment are integrated from the dynamic model, which is fed into kinematics
to obtain the coordinates of each guider in Cartesian space. Finally, a visualization module is established
to illustrate the shape deformation of SRC-Bot based on the output coordinates.

5.2. Dynamic simulation
The use of SIMULINK in conjunction with the proposed dynamics model enables the simulation of
motions, which can be specified by the user as a function of the actuation force and external force. The
resulting posture response includes the position and angle of each guider. Figure 6(b) depicts a typical
motion of SRC-Bot simulated based on the SIMULINK, the input actuation force is 7N, 15N, and 15N
that activated at 0s and 5s, respectively. Furthermore, a 5N external force acts on the top guider at 8s.
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Figure 7. Experiment setup for validating the model of SRC-Bot: (a) Layout of the experiment setup
and deformation tracking; (b) exert the external force by the UR-3 manipulator.

The total simulation time is 15s, and the computational duration is around 800 ms, after compiling the
model. The simulation results demonstrate the response of trajectory and angle changes of each guider.

6. Experiments
In this section, a prototype of SRC-Bot and an experimental setup were built to validate the theoretical
work proposed in the last section. In order to ascertain the precise properties of SRC-Bot, the stiff-
ness parameters were identified through experiments conducted with a single unit guider. Two types
of experiments were carried out based on the motion principle and structure characteristics of the con-
tinuum robot. First, the behavior response of the forward dynamics is validated by giving an actuation
force to each cable. Secondl, the shape deformation under external force is estimated by comparing the
results with theoretical predictions.

6.1. Experimental setup
As the illustration in Figure 7(a), the physical structure of SRC-Bot is constructed using 3D-printed
components. The rigid components are manufactured from PLA, while the soft components are made
from TPU. Three servo motors (RMD-X8 V2, MyActuator) were utilized to steer the robot through
three cables, and a controller (Raspberry Pi 4) was used for collaboratively driving the motors based
on the desired motion. A UR-3 manipulator is mounted on a platform along with an SRC-Bot, allow-
ing the manipulator to exert an external force on the physical robot and deform its posture as shown in
Figure 7(b). Additionally, a stereo vision camera (D435i, Intel) has been set up outside the platform
to capture the posture and deformation, including the position and angle of SRC-Bot by identify-
ing the particular label affixed on each guider. The parameters used in experiments are stated in
Table I.

6.2. Stiffness identification
In this work, the deformability is generated from the elastic chamber, which is designed with an irreg-
ular shape. This makes it challenging to calculate the stiffness in three directions (bending, rotating,
and elongation) theoretically. Therefore, a concept of equivalent stiffness is utilized in the dynamics
modeling process, which approximates the stiffness as a linear value. To identify the stiffness parame-
ters in 3 directions, a series of experiments were conducted using a single unit fixed on the platform.
Figure 8(a)(b)(c) depicts the method of identification experiments. The elongation and bending angle
were considered to be the translation and orientation of the end effector. The forces and torques were
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Table I. Results of overloading for 3 experimental setups.

Parameter Value
Initial length L0 of each segment 0.057m
Damping coefficients dθ 0.03
Damping coefficients dϕ 0.03
Damping coefficients dL 0.03
Moment inertia Jθ 7.4e−6kg · m2

Moment inertia Jϕ 13.1e−6kg · m2

Mass of guider m 0.042 kg

Figure 8. Equivalent stiffness identification: (a) bending stiffness; (b) linear stiffness; (c) rotation
stiffness; (d) identified stiffness curves.

obtained from the internal sensor of the UR-3 manipulator. Subsequently, the measured data were input
into Eq. (38) to obtain the equivalent stiffness of each direction.

⎡
⎢⎣

EI
GA
K

⎤
⎥⎦=

⎡
⎢⎣

τθ L0

θ

τϕL0


ϕ

fL

L

⎤
⎥⎦ (38)
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The identified results are illustrated in Figure 8(d), each stiffness curve was plotted by using 10
sets of measured data. As the results show, the average equivalent stiffness in the direction of bend-
ing, rotating, and elongating is 0.1006N·m2, 0.2106N·m2, and 5136 N/m, respectively. Hence, the
identified stiffness can be used in the theoretical model of dynamics for simulating the motion of
SRC-Bot.

6.3. Shape deformation with actuation force
This experiment examined the response of SRC-Bot under actuation force, comparing the results of sim-
ulations with those of experiments. The actuation forces were defined as a constant value with different
input times. The position and angle of each guider were then theoretically computed and compared with
the experimental results.

Experiments were first conducted to explore the posture deformation and motion of each guider in
the xoz plane by applying actuation forces at different times. Figure 9(a) and (b) illustrate a comparison
of two experimental cases. The graph depicts the initial and end postures for both experimental and sim-
ulated results. The black solid and dotted lines represent the experimental and simulated start postures,
respectively, while the dark orange solid and dotted lines represent the corresponding end postures.
The experimental coordinates in the xoz plane, including the bending angle and the trajectories of each
guider, are plotted with different colors corresponding to the time of measurement for comparison with
theoretical values. The notation “nth-e” and “nth-s” (where n = 1, 2, 3, 4, 5) represent the experimental
and simulated results, respectively, from the bottom guider to the top one.

In the first case, the robot transitioned from a vertical posture to a large negative angle and then
back to a small negative angle. The absolute errors (experimental results minus simulated results) are
presented in Figure 9(a). In x-direction, the majority of the theoretical outcomes exceed the experimental
results, with a maximum error of 12.3 mm. In z-direction, a portion of the theoretical z-positions are
less than the experimental outcomes. With respect to bending angles, the fifth guider exhibits the most
significant error, exceeding 7◦. The errors for the other four guiders predominantly fall within the range of
−6◦ to 2◦.

In the second case, the robot was actuated to start from vertical status and bent to a negative angle,
then back to a positive angle as shown in Figure 9(b). The maximum error was observed with 4th guider
in x direction and 5th in z direction. The bending angle errors are mainly smaller than 5◦, but few
significant errors were observed as 10◦ and 15◦ positively or negatively.

Second, the response of spatial motion under actuation force was both simulated and experimentally
tested, as illustrated in Figure 9(c) and (d). In these experiments, the robot initiated movement from a
vertical posture, with actuation forces applied sequentially to each cable. Two experimental cases were
conducted. Due to limitations of the stereo vision camera system, only the 3-D position of the top guider
was sampled. These experimental results were then compared with the simulation outcomes.

Figure 9(c) illustrates the robot’s spatial motion sequence. The robot initially exhibited bending with
a 0◦ rotation angle upon actuation of the first cable. Subsequently, the bending angle increased follow-
ing the actuation of the second and third cables. The maximum IQR error of 5.8 mm was observed in
the z-direction. Moreover, the robot initially exhibited a 120◦ rotation angle upon actuation of the sec-
ond cable, followed by the subsequent activation of the remaining two cables in a sequential manner.
Figure 9(d) shows that the trajectory errors are predominantly below 11.2 mm, indicating that the theo-
retical simulation effectively reflects the spatial deformation behavior, particularly in capturing changes
in the initial moving direction.

This experiment validated the dynamic response and compared it with the theoretical model.
Key findings from both in-plane and spatial response experiments include coordinate errors primar-
ily within ±15.1 mm over the experiment duration. Bending angle errors in the in-plane experi-
ments mainly fluctuate within −5◦ to 5◦, although rare results of upper guiders show deviations of
approximately 15◦.
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Figure 9. Illustration of deformation under actuation force, (a)-(d) show the trajectories of each guider
and the errors with different forces applied to the cables at specific times.

The primary sources of discrepancies between experimental and theoretical results are mainly caused
by inaccuracies of the stiffness, damping, and friction ratio. The equivalent stiffness used in the model
may not fully represent the actual physical value, leading to the deviations of experimental results.
Additionally, inaccuracies in damping and friction ratios contribute to discrepancies in the time-domain
response.
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Figure 10. Illustration of deformation under external force in different conditions: (a) and (b) show the
track, position, and bending angle comparison of the whole posture for 0◦, 30◦, and 60◦ with (−1N, −2N,
and −2N) on the top guider and (1N, 1N, 1N) on the middle guider, respectively; (c) shows the track
and position comparison of top guider for 30◦ with 1N; (d) shows the track and position comparison of
top guider for 60◦ with 1N.
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6.4. Shape deformation under external force
SRC-Bot exhibits low stiffness and is prone to deformation when subjected to external forces. Therefore,
in this section, a series of experimental validations were conducted by comparing the simulation under
external forces at various postures with different bending angles.

The initial stages of the experiment focused on the in-plane deflection, with bending angles set at 0◦,
30◦, and 60◦, and external forces of 1N or 2N applied to the top or middle guider within the xoz plane.
Figure 10(a) and (b) present a comparison of the position in the xoz plane and the bending angle of each
guider from the first to the fifth.

As illustrated in Figure 10(a), an external force in a negative direction along the x-axis was exerted
on the top guider, resulting in bending angles of 0◦, 30◦, and 60◦. The position errors in the x and z
directions of each guider with a 0◦ bending angle and an external force of −1N exhibited significant
fluctuation, ranging from −5.2 mm to 5.3 mm. Similarly, the errors in the bending angle of each guider
spanned a considerable range, from −2◦ to 3◦. The positional errors were more pronounced when the
initial bending angle was increased to 30◦ and the external force was increased to −2N. In this case,
the errors in the x direction and z direction were within ±9.7 mm and ±3.2 mm, respectively, while the
errors in the bending angle of each guider varied between -3.0◦ and 7.5◦.

Then the initial bending angle was set to 60◦, and the external force was −2N. Similarly, the errors
of position in the x and z direction were within ±2.8 mm and ±7.1 mm, respectively, and the errors of
bending angle for each guider were within −2.5◦ to 9.1◦. Conversely, the direction of external force was
changed to positive in the x direction and acting on the middle guider as shown in Figure 10(b). When
the bending angle initial posture was 0◦, the position errors were between −5.1 mm and 2.4 mm, and
the bending angle errors tended to be negative with a minimum value of −7.5◦.

Subsequently, the position errors became larger within the range from −8.9 mm to 5.1 mm, and the
bending angle errors floated in ±2.5◦ as the initial bending angle enlarged to 30◦. Thereafter, the bending
angle of the initial posture was set to 60◦, and a 1N external force was applied on the middle guider. The
results show that the position errors in both the x and z direction were between −9.8 mm and 5.0 mm,
and errors of bending angle were from 0.2◦ to 4.6◦. Upon comparing the deformation with external force
in-plane, it was observed that the position and angle errors of each guider remained minimal when the
posture deflected from the vertical status by 0◦. However, these errors progressively increase as the initial
bending angle rises to 30◦ and even 60◦. The simulation conducted using the proposed theoretical model
closely aligned with the experimental results overall. However, the simulated posture exhibited a slight
over-deformation compared to the physical robot, primarily due to stiffness inconsistencies.

The model’s validity was further assessed by incorporating spatial external forces in a comparative
experiment, as illustrated in Figure 10(c) and (d). In Figure 10(c), a horizontal external force along
the positive y-direction is applied to the top guider of the bent physical robot with an initial posture of
30◦. The 3-dimensional position errors are within ±10.0 mm, and the deformed trajectory of the top
guider closely matches the experimental results. Subsequently, with the initial bending angle set to 60◦,
the deformation comparisons demonstrate reasonable consistency, with 3-dimensional position errors
ranging from −15.1 mm to 19.3 mm.

In summary, the proposed dynamics model effectively captures the deformable behavior of SRC-Bot
under various actuation and external forces. However, minor discrepancies in the quantitative compar-
isons are observed, primarily due to differences between the actual robot’s stiffness and the identified
values. Furthermore, the deviations in theoretical damping ratio and friction coefficient contribute to
slight errors in the response and steady-state behavior over time.

7. Conclusions and future works
This work proposes a modeling approach with variable curvature-torsion-length for a switchable rigid-
continuum robot, aiming to specify the deformation response and behavior under various actuation
and external forces. An equivalence and discretization method is employed in motion analysis for both
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kinematics and dynamics, dividing the robot into multiple segments with corresponding stiffness based
on the number of internal guiders. The dynamics model is formulated by incorporating the influences
of gravity, friction, and external forces using Newton’s second law and Euler’s principle while inte-
grating an equivalent concept to determine stiffness parameters. The theoretical dynamics model is then
implemented in SIMULINK to simulate the deformable response under various input forces. Equivalent
stiffnesses, determined through a set of identification experiments, are employed in corresponding sim-
ulations. Finally, a series of experiments are conducted to validate the established dynamics model,
focusing on the trajectory of each guider and posture deformation under actuation and external forces.

The numerical comparisons reveal that the posture deformations observed in simulated and experi-
mental results generally exhibit consistency, albeit with slight deviations. These results clearly demon-
strate that the proposed dynamics model effectively captures the deformable behavior exhibited by the
physical SRC-Bot. Notably, properties such as stiffness, damping ratio, and friction coefficient require
manual identification or definition due to the robot’s irregular shape and assembled structure, leading to
discrepancies in static posture and temporal response. Future work will focus on enhancing the model’s
precision and exploring its application in controller design.
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Appendix
A. Nomenclature

θvi Bending angle of ith guider
θv Bending angle of top guider
ωθvi Bending angular velocity of the ith guider
ω̇θvi Bending angular acceleration of the ith guider
ϕvi Rotation angle of the ith guider
ϕv Rotation angle of the bottom guider
ωϕvi Rotation angular velocity of the ith guider
ω̇ϕvi Rotation angular acceleration of the ith guider
Lvi Length of the ith guider
Lv Total length of the robot
L0 Natural length of the chamber
aLvi Acceleration of the ith guider

https://doi.org/10.1017/S0263574724001735 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001735


Robotica 23

C0 Chord length with a natural arc length
L0 Natural length of the chamber
Cvi Chord length between the (i − 1)th and ith guider
Ċvi Change rate of chord length
Ldi Length of driven cable
(xvi, yvi, zvi) Coordinates of the ith guider
(xi, yi, zi) Coordinates of the top guider
Pvi Relative translation of ith guider
Pi translation of top guider
Mvi Revolute motion matrix of ith guider
Tvi Homogeneous transformation matrix of ith guider
Mtevi Total moment generated by the external force Fevi

Mtgvi Total moment generated by the gravity effect Ggvi

Mtinvi Total moment generated by inertia force Finvi

Finvi Inertia force of each guider
Fevi External force
Ggvi Gravity effect
jFi Actuation force transmitted from the motor acting on ith cable across jth guider
Fi Output force from the motor to the ith cable
jFni Normal force generated by the actuation force across each jth guider
jfi Friction force generated by the actuation force across each jth guider
τθ Generalized torque in the bending direction
τϕ Generalized torque in the rotation direction
fL Generalized force in linear motion direction
EI Equivalent bending stiffness
GA Equivalent torsional stiffness
K Equivalent linear stiffness
dθ Damping coefficient in the bending direction
dϕ Damping coefficient in the rotation direction
dL Damping coefficient in linear motion direction
Jθvi Moment inertia in the bending direction
Jϕvi Moment inertia in the rotation direction
H Friction coefficient
mi Mass of ith guider
Dc Diameter of the circle where the cable holes are located
Jd Jacobian matrix

Cite this article: Y. Du, S. Zhang, Z. Zhang and H. Wang, “Shape deformation analysis and dynamic modeling of a switchable
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