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Two-dimensional (2-D) and three-dimensional (3-D) direct numerical simulations are
conducted for flow past rectangular cylinders with various cross-sectional aspect ratios.
The primary focuses are the interactions between the 2-D wake transitions in the
spanwise vortex street (with distance downstream) and the 3-D wake transitions in the
streamwise vortices, and the influence of both 2-D and 3-D wake transitions on the
hydrodynamic forces on the cylinder. The 2-D wake transitions generally move upstream
with increasing Reynolds number and decreasing aspect ratio. The corresponding reasons
are explained. The 2-D wake transitions emerging close to the cylinder may directly alter
the hydrodynamic forces on the cylinder, e.g. the Strouhal number, time-averaged drag
coefficient and root-mean-square lift coefficient. By using specifically designed numerical
cases to decompose the effects of the two 2-D transitions, it is found that the first 2-D
transition from the primary to the two-layered vortex street results in reductions in the
hydrodynamic forces, while the second 2-D transition to the secondary vortex street
results in increases in the forces. The reduction/increase in the hydrodynamic forces
becomes more significant when the transition location moves closer to the cylinder. The
physical mechanisms for the influence on the hydrodynamic forces are elucidated. The
upstream movement of the 2-D wake transitions also induces complex interactions between
the 2-D and 3-D wake transitions (which also depends on the type of the 3-D mode).
Correspondingly, the 3-D hydrodynamic forces may be governed by both 2-D and 3-D
wake transitions (and their mutual influence).
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1. Introduction

Steady incoming flow past a long cylindrical structure is a classical topic in fluid
mechanics owing to its fundamental and practical significance (Zdravkovich 1997). Of
particular interest are the wake structures induced by the presence of the cylinder and
their influence on the hydrodynamic forces on the cylinder, e.g. the drag and lift forces,
and the vortex shedding frequency. In particular, an apparent change in the pattern of
the wake structure, namely a wake transition, may result in considerable variations in the
hydrodynamic forces on the cylinder.

Over relatively low to moderate Reynolds numbers (Re = UD/ν, defined based on the
incoming flow velocity U, transverse length scale of the cylinder D and kinematic viscosity
of the fluid ν), complex wake transitions may be observed. The wake structures are
commonly visualised by the spanwise vorticity (ωz) and streamwise vorticity (ωx) fields,
where ωz and ωx are defined in a non-dimensional form:

ωz =
(

∂uy

∂x
− ∂ux

∂y

)
D
U

, (1.1)

ωx =
(

∂uz

∂y
− ∂uy

∂z

)
D
U

, (1.2)

where (x, y, z) and (ux, uy, uz) are Cartesian coordinates and velocity components in the
streamwise, transverse (cross-flow) and spanwise directions, respectively. In addition to
the well-known wake transition from a steady flow to the classical Kármán vortex street at
a relatively small Re, further wake transitions can be categorised into two broad types:
(i) two-dimensional (2-D) transitions in the ωz field, which develop with distance
downstream (Vorobieff, Georgiev & Ingber 2002; Kumar & Mittal 2012; Thompson et al.
2014) and (ii) three-dimensional (3-D) transitions in the ωx field, which evolve with
increasing Re (Williamson 1996).

The 2-D wake transitions in the ωz field are illustrated in figure 1(a) based on the
present 2-D direct numerical simulation (DNS) result of a fully developed instantaneous
ωz field for flow past a rectangular cylinder at (AR, Re) = (0.375, 200), where AR is the
cross-sectional aspect ratio of the cylinder (i.e. the ratio between the streamwise length
and transverse length of the body). Figure 1(a) shows that the primary (Kármán) vortex
street in the near wake of the cylinder may transition into a two-layered vortex street (called
the first transition hereafter) in the intermediate wake, followed by another transition into
a secondary vortex street (called the second transition) further downstream. The physical
mechanisms for the first and second transitions have been discussed by a number of studies,
e.g. Durgin & Karlsson (1971), Karasudani & Funakoshi (1994) and Dynnikova, Dynnikov
& Guvernyuk (2016) for the former, and Cimbala, Nagib & Roshko (1988), Williamson &
Prasad (1993), Kumar & Mittal (2012) and Jiang (2021) for the latter. At the first transition,
the spanwise vortices (figure 1a) and the velocity components (figure 1b,c) are diverted
away from the wake centreline, creating a ‘calm region’ (Durgin & Karlsson 1971) between
the two rows of vortices, where the velocity is extremely small (figure 1b,c). At the second
transition, the vortices reoccupy the wake centreline (figure 1a), and the calm region is
terminated (figure 1b,c). Based on Jiang & Cheng (2019), the streamwise locations for
the first and second transitions are determined at the local maxima in the time-averaged
transverse velocity field (figure 1c; highlighted by the vertical dashed lines), because the
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Figure 1. Characteristics of the fully developed flow for the 2-D case (AR, Re) = (0.375, 200):
(a) instantaneous spanwise vorticity field at a fully developed time instant; (b) time-averaged streamwise
velocity field; and (c) time-averaged transverse velocity field. The two transition locations are marked by the
vertical dashed lines.

local maxima represent the locations where the flow diversions in the transverse direction
are most pronounced.

Unlike the 2-D wake transitions which follow the same route (i.e. first and second
transitions with distance downstream) for different bluff bodies (e.g. Vorobieff et al. 2002;
Saha 2007; Thompson et al. 2014; Ng et al. 2016), the 3-D wake transitions, which may
consist of a series of transitions from 2-D laminar up to 3-D fully turbulent flow with
increasing Re, may take different routes. For a circular or square cylinder, the 3-D wake
transition follows the route of ‘mode A → mode swapping between modes A and B →
mode B’ with increasing Re (Williamson 1996; Luo, Chew & Ng 2003; Luo, Tong & Khoo
2007; Jiang et al. 2016, Jiang, Cheng & An 2018), where modes A and B are different
types of 3-D modes with relatively large- and small-scale spanwise periods, respectively
(Williamson 1996; Barkley & Henderson 1996). However, for e.g. a circular cylinder with
a small wire placed in the separating shear layer, the 3-D wake transition is limited to a
subharmonic mode C only (Zhang et al. 1995; Yildirim, Rindt & van Steenhoven 2013;
Jiang & Cheng 2020), while for the 3-D wake transition of a circular ring, the transition
route may follow either ‘mode C → A → B’, ‘mode A → C → B’ or ‘mode A → B →
C’, depending on the aspect ratio of the ring (Sheard, Thompson & Hourigan 2004, 2005).
For some other bluff bodies where experimental or 3-D DNS results may be too scarce to
form a complete picture on the 3-D wake transition route (e.g. a rectangular cylinder),
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new 3-D wake instability modes predicted by the Floquet stability analysis (e.g. modes A2
and QP2 predicted by Choi & Yang (2014) for a rectangular cylinder with AR = 0–0.25)
indicate the likelihood of new transition routes.

For canonical bluff bodies such as circular and square cylinders, the hydrodynamic
forces on the cylinder are influenced by the 3-D wake transition only, while the influence
of the 2-D wake transition can be neglected. This is because over the 3-D wake transition
regimes of Re below 300 (Williamson 1996; Jiang et al. 2016, 2018), the first and second
2-D transitions develop well beyond x/D = 25 and 50, respectively (Jiang & Cheng 2019).
Therefore, the 2-D wake transition hardly induces any influence on the hydrodynamic
forces on the cylinder through either direct influence or interaction with the 3-D wake
transition.

However, if the 2-D wake transition emerges close to the cylinder over the range of Re
corresponding to the 3-D wake transition (e.g. the case of a rectangular cylinder shown
in figure 1), the 2-D wake transition may alter the hydrodynamic forces on the cylinder
through both direct influence and interaction with the 3-D wake transition. In the literature,
the 2-D wake transition close to the cylinder has been observed in the wake of e.g. a
rectangular cylinder (Saha 2007; Mizushima et al. 2014), an elliptical cylinder (Johnson,
Thompson & Hourigan 2004; Thompson et al. 2014), a triangular cylinder (Ng et al.
2016), etc. However, to the best knowledge of the authors, the direct influence of the 2-D
wake transition on the hydrodynamic forces has not been studied before. Alternatively,
the influence of the 2-D wake transition close to the cylinder on the 3-D wake transition
has been illustrated by e.g. a re-stabilisation from mode A to the 2-D flow for rectangular
and elliptical cylinders with AR ∼ 0.25 and increasing Re, and a complete suppression of
the mode A instability for rectangular and elliptical cylinders with AR � 0.1 (Choi et al.
2014; Thompson et al. 2014), as the 2-D wake transition moves closer to the cylinder
with decreasing AR (Mizushima et al. 2014; Thompson et al. 2014). However, since the
influence of the 2-D wake transition on the 3-D wake transition has been discovered mostly
via the Floquet stability analysis, the corresponding influence on the hydrodynamic forces
is rarely investigated.

Motivated by the above-mentioned knowledge gaps, the present study aims at
exploring:

(i) the direct influence of the 2-D wake transition on the hydrodynamic forces;
(ii) the mutual influence between the 2-D and 3-D wake transitions, and the

corresponding influence on the hydrodynamic forces.

The two aims are studied based on 2-D and 3-D DNS of flow past rectangular cylinders.
The use of a series of rectangular cylinders with AR = 0.01–0.625 (with a particular focus
on AR ≤ 0.375) for the present study is because the importance of the 2-D wake transition
is expected to vary with AR (with stronger influence at smaller AR values, as the 2-D wake
transition moves closer to the cylinder with decreasing AR (Mizushima et al. 2014)), which
allows for a systematic investigation. Nevertheless, the aims and outcomes of this study are
also of relevance to other bluff-body flows (e.g. elliptical and triangular cylinders) where
the 2-D wake transition emerges relatively close to the cylinder.

The remainder of the paper is organised as follows. First, the numerical method and
computational model are introduced in § 2. In § 3, the direct influence of the 2-D wake
transition on the hydrodynamic forces (Aim 1) is analysed quantitatively. The 2-D DNS is
conducted up to Re = 200, which covers the 2-D regimes for all AR values. The consistent
use of Re = 50–200 for all AR values allows for a systematic investigation of the variation
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trends over the (AR, Re) parameter space and thus a comprehensive understanding of the
physical mechanisms at play. Subsequently, § 4 examines the mutual influence between
the 2-D and 3-D wake transitions, and the corresponding influence on the hydrodynamic
forces (Aim 2). The 3-D DNS is performed up to Re = 280, which covers the 3-D wake
transition to chaos/turbulence. Finally, major conclusions are drawn in § 5.

2. Numerical model

2.1. Numerical method
In the present study, the flow was solved by DNS using the open-source software packages
OpenFOAM (www.openfoam.org) and Nektar++ (Cantwell et al. 2015). The governing
equations were the continuity and incompressible Navier–Stokes equations:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (2.2)

where (x1, x2, x3) = (x, y, z) are Cartesian coordinates, ui is the velocity component in the
direction xi, t is time, ρ is fluid density, p is pressure and ν is kinematic viscosity.

For the OpenFOAM model, (2.1)–(2.2) were solved by the finite volume method (FVM)
and the Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa 1986). The
convection, diffusion and time derivative terms were discretized respectively using a
fourth-order cubic scheme, a second-order linear scheme, and a blended scheme consisting
of the second-order Crank–Nicolson scheme and a first-order Euler implicit scheme.
Specifically, since the fully centred and second-order Crank–Nicolson scheme is often
unstable for complex flows (as was the case for a square cylinder studied by Jiang and
Cheng (2018)), it is necessary to ‘off-centre’ the scheme to stabilize it while retaining
greater temporal accuracy than the first-order Euler-implicit scheme (Vukčević, Jasak
& Malenica 2016; Pedersen et al. 2017; Seng, Monroy & Malenica 2017). Following
Jiang & Cheng (2018), an off-centring coefficient of 0.5 (a value of 1.0 represents the
Crank–Nicolson scheme while 0 represents the Euler-implicit scheme) was used in this
study as a compromise between accuracy and stability. To solve the linear algebraic
equations, the generalised geometric-algebraic multi-grid (GAMG) solver was used to
solve the pressure, while the Gauss–Seidel smooth solver was used to solve the velocity
components. For each time step, the tolerance for the pressure and velocity components
was set to 10−7. More details on the above-mentioned schemes and solvers can be found
from Moukalled, Mangani & Darwish (2015).

For the Nektar++ model, (2.1) and (2.2) were solved by the unsteady incompressible
Navier–Stokes solver embedded in the code. A velocity-correction splitting scheme
(Karniadakis, Israeli & Orszag 1991) was used to decouple the pressure and velocity
fields. The time discretisation was achieved using a second-order implicit–explicit
time-stepping scheme described by Vos et al. (2011). A high-order continuous Galerkin
projection (Karniadakis & Sherwin 2005) was used. The global linear system was solved
by using a parallel Cholesky factorisation based on the XXT library, and the static
condensation technique was applied repeatedly to reduce the system size and to improve
the computational efficiency (Karniadakis & Sherwin 2005). For each time step, the
tolerance for the pressure and velocity components was set to 10−8. More details on the
Nektar++ approach can be found from Karniadakis & Sherwin (2005), Cantwell et al.
(2015) and Moxey et al. (2020).
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The present 2-D DNS was mainly conducted using the OpenFOAM model. An
advantage of the OpenFOAM model is that, by deliberately coarsening the mesh at a
specific streamwise location in the wake, the wake structure beyond this location is quickly
annihilated and its effect on the flow upstream of this location is eliminated artificially,
which is beneficial to the analysis in § 3.2. In addition to the OpenFOAM simulations,
some of the 2-D cases were also simulated using Nektar++, for the purposes of
(i) cross-checking the numerical results predicted by the two models (reported in § 2.3)
and (ii) obtaining the 2-D base flow for the Floquet stability analysis (to be performed
under the framework of Nektar++ in § 4.1).

The present 3-D DNS was conducted using the Nektar++ model only. Specifically,
a high-order spectral/hp element method (Karniadakis & Sherwin 2005) was used for
the x–y plane perpendicular to the spanwise (z-) direction, while a Fourier expansion
(Karniadakis 1990) was used in the spanwise direction owing to the spanwise homogeneity
of the cylinder. This approach offers a greater computational efficiency than conventional
FVM and similar approaches (Cantwell et al. 2015; Moxey et al. 2020), as illustrated by
e.g. a comparison of Nektar++ and OpenFOAM in the simulation of flow past a circular
cylinder (Jiang & Cheng 2021).

2.2. Computational domain and mesh
For both the OpenFOAM and Nektar++ models, a rectangular computational domain was
used in the x–y plane, with the centre of the cylinder located at (x, y) = (0, 0) (figure 2a).
The computational domain size from the cylinder centre to the inlet and each of the
transverse sides was 60D, while the domain size in the wake was extended to 200D to
resolve the far-wake patterns.

The boundary conditions for the computational domain were specified as follows. The
velocity boundary conditions included a uniform velocity U in the x-direction for the
inlet, a Neumann condition (i.e. zero normal gradient) for the outlet, symmetry boundary
conditions for the top and bottom boundaries, and a no-slip condition on the cylinder
surface. The pressure boundary conditions included a reference value of zero at the
outlet, and a Neumann condition for all other boundaries. For the Nektar++ model,
the Neumann condition for the pressure employed a high-order form (Karniadakis et al.
1991). For the 3-D DNS, periodic boundary conditions were applied to the two lateral
boundaries perpendicular to the spanwise direction. At the beginning of a simulation,
the internal flow followed an impulsive start. The time step size was chosen based on a
Courant–Friedrichs–Lewy (CFL) limit of 0.5.

For the OpenFOAM model, the computational meshes for flow past rectangular
cylinders with various AR values were modified from the one used by Jiang et al. (2018) for
a square cylinder (i.e. AR = 1.0). Specifically, the cell size at the two leading edges of the
cylinder (where largest pressure gradients took place) was 0.005D × 0.005D, the number
of cells along the front/rear side of the cylinder was 52, while the number of cells along
the top/bottom side varied from 2 for AR = 0.01 to 46 for AR = 0.625. The cell expansion
ratio in the whole domain was kept below 1.1. To capture detailed near-wake and far-wake
flow structures, a relatively high mesh resolution was used in the entire wake region by
specifying the streamwise mesh sizes along the wake centreline (y = 0) varying linearly
from �x = 0.05D at 0.5D downstream of the rear surface of the cylinder to �x = 0.125D
at x/D = 200. The total number of cells in the computational domain varied from 516,006
for AR = 0.01 to 521,798 for AR = 0.625. Figure 2(b) shows a close-up view of the mesh
near the cylinder for AR = 0.375.
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Figure 2. Computational domain and mesh for AR = 0.375. (a) Schematic model of the computational domain
(not to scale), (b) close-up view of the OpenFOAM mesh near the cylinder and (c) close-up view of the
Nektar++ macro-element mesh near the cylinder.

For the Nektar++ model, the general topological pattern of the computational mesh
in the x–y plane remained similar to that for the OpenFOAM model, but the resolution
of the macro-element mesh was coarsened (figure 2c versus figure 2b). Specifically, the
macro-element size at the two leading edges of the cylinder was 0.03D × 0.03D, the
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number of cells along the front/rear side of the cylinder was 16, while the number of
cells along the top/bottom side varied from 2 for AR = 0.0625 to 12 for AR = 0.625.
The expansion ratio of the macro-elements was kept below 1.25. For the 2-D DNS, the
macro-element sizes along the wake centreline increased linearly from �x = 0.2D at 1D
downstream of the rear surface of the cylinder to �x = 0.7D at x/D = 200. For the 3-D
DNS, the outlet was truncated at x/D = 40, while the cell expansion ratio was unchanged.
The reason for the truncation at x/D = 40 was that the 3-D DNS focused on (i) the
interaction between the 2-D and 3-D wake transitions, which occurred at the immediate
near wake, and (ii) the corresponding influence on the hydrodynamic forces, where the
present 2-D DNS found that the 2-D wake transition induced less than 1 % influence on the
hydrodynamic forces when the transition occurred at x/D > 39 (§ 3.2), and the interaction
between the 2-D and 3-D wake transitions may further weaken the influence on the
hydrodynamic forces (§ 4), such that the wake length up to x/D = 40 was sufficient for an
accurate determination of the hydrodynamic forces. The total number of macro-elements
in the computational domain was ∼40,000 for the 2-D DNS (up to x/D = 200) and was
reduced to ∼15 000 for the 3-D DNS (up to x = 40D). Each macro-element was then
subdivided using 4th-order Lagrange polynomials on the Gauss–Lobatto–Legendre points
for the quadrilateral expansion (denoted Np = 4). The 3-D mesh used 128 Fourier planes
over a spanwise domain length Lz/D = 15 to resolve the 3-D wake structures. The Lz/D
followed that used by Jiang et al. (2018) for AR = 1.0 (as the largest spanwise wavelength
for the 3-D wake instability modes does not vary strongly with AR; see figure 15b), while
the adequacy of the spanwise resolution will be examined in § 2.3.

2.3. Mesh convergence study
First, the 2-D mesh used by the OpenFOAM model (called the standard mesh) was
examined with two variations: (i) a mesh refined in both the x- and y-directions with
doubled numbers of cells in both directions (i.e. four times the number of cells compared
with the standard mesh) and a halved time step size to satisfy the same CFL limit, and
(ii) a mesh with an enlarged domain size from the cylinder centre to the inlet, top and
bottom boundaries (from 60D to 120D). Table 1 lists the cases and numerical results
obtained with the three meshes. The mesh convergence check was mainly conducted at
Re = 200, the largest Re simulated by the OpenFOAM model. The numerical results listed
in table 1 included the Strouhal number St, the time-averaged drag coefficient CD and the
root-mean-square lift coefficient C′

L, which are calculated as

St = fLD
U

, (2.3)

CD = FD
1
2ρU2DLz

, (2.4)

CL = FL
1
2ρU2DLz

, (2.5)

where FD and FL are the drag and lift forces on the cylinder, respectively, and fL is
the frequency of the fluctuating lift force. The time-averaged drag and lift coefficients
are denoted as CD and CL, respectively. The root-mean-square lift coefficient C′

L is
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Wake transition of a rectangular cylinder

AR Re Case St CD C′
L xtr1/D xtr2/D

0.01 200 Standard mesh 0.137 2.551 0.181 2.17 12.86
Refined mesh 0.137 2.563 0.184 2.18 12.90
Enlarged domain size 0.136 2.522 0.183 2.17 12.95

0.375 200 Standard mesh 0.173 2.059 0.132 3.29 19.51
Refined mesh 0.174 2.073 0.134 3.30 18.98
Enlarged domain size 0.172 2.037 0.130 3.31 20.06

0.125 200 Standard mesh 0.151 2.320 0.376 2.36 11.92
Refined mesh 0.151 2.329 0.380 2.36 11.81
Enlarged domain size 0.150 2.300 0.373 2.36 11.98
Nektar++, Np = 3 0.150 2.335 0.377 2.36 11.84
Nektar++, Np = 4 0.150 2.329 0.379 2.36 11.81

0.125 130 Standard mesh 0.155 2.093 0.308 3.35 42.55
Refined mesh 0.155 2.100 0.311 3.35 41.23
Enlarged domain size 0.155 2.069 0.304 3.37 43.20
Nektar++, Np = 3 0.155 2.106 0.310 3.32 40.60
Nektar++, Np = 4 0.155 2.102 0.311 3.32 40.88

Table 1. Mesh convergence check of several 2-D cases.

calculated as

C′
L =

√√√√ 1
N

N∑
i=1

(CL,i − CL)
2
, (2.6)

where N is the number of values in the time history of CL. Table 1 also summarises the
streamwise locations for the first transition (xtr1/D) and second transition (xtr2/D) in the
wake.

As shown in table 1, for each case, the hydrodynamic forces and the transition locations
predicted by the two variation meshes were very close to those predicted by the standard
mesh (the relative differences in the hydrodynamic forces, the first and the second
transition locations were generally within 1.5 %, 1 % and 3 %, respectively). The two cases
with AR = 0.125 were also simulated by the Nektar++ model, and the numerical results
are also listed in table 1. The close agreement in the results predicted with Np = 3 and 4
suggested that mesh convergence was reached. The close agreement in the results predicted
by Nektar++ and OpenFOAM suggested that both numerical models were reliable.

The present results were also validated against those reported in the literature. As shown
later on in figure 7(g,h), the entire St–Re and CD − Re relationships for AR = 0.01 and
Re = 50–200 calculated with the standard mesh were within 2 % of those calculated by
Thompson et al. (2014) for AR = 0.

For the 3-D mesh, the spanwise mesh resolution used by the Nektar++ model was
examined based on the case (AR, Re) = (0.125, 280), where Re = 280 was the largest Re
examined in this study, and the 3-D vortex structures were expected to be the finest. Table 2
shows that, after increasing the number of Fourier planes from 128 to 192, the relative
differences in the hydrodynamic forces were well within 1 %.

Based on the mesh convergence study reported in this section, the standard meshes
introduced in § 2.2 were considered adequate and were used in the present study.
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Case Fourier planes St CD C′
L

Standard mesh 128 0.156 1.900 0.0794
Refined in the spanwise direction 192 0.158 1.910 0.0799

Table 2. Mesh convergence check for the 3-D case of (AR, Re) = (0.125, 280).
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AR = 0.375

AR = 0.25

AR = 0.125

AR = 0.0625

AR = 0.01

The first transition

Figure 3. Streamwise locations of the two transitions for the cases with various AR and Re combinations.

3. Two-dimensional results

3.1. Two-dimensional wake transition
The 2-D wake transitions and their direct influence on the hydrodynamic forces on the
cylinder are investigated first. Figure 3 summarises the streamwise locations for the first
and second transitions for the cases with various AR and Re combinations. In general,
the two transition locations move closer to the cylinder with increasing Re and decreasing
AR. The results for AR > 0.5 are not shown in figure 3, since the transition locations are
relatively far away from the cylinder. For example, for AR = 0.625 and Re ≤ 200, the first
transition occurs at x/D ≥ 17, while the second transition occurs well beyond x/D = 70.

Based on the assumptions of inviscid flow and point vortex, Durgin & Karlsson (1971)
and Karasudani & Funakoshi (1994) showed that the first transition in the wake of a
circular cylinder occurred when the spacing ratio of the vortices, defined as the vertical
distance (h) to the horizontal distance (a) between the adjacent vortices (see the inset
of figure 4a) exceeded a critical value of 0.365. Thompson et al. (2014) showed that
this criterion was also broadly applicable to an elliptical cylinder. In the present study,
this criterion is re-examined for the case of a rectangular cylinder. Figure 4 shows the
streamwise variation of the spacing ratio h/a for the cases with various AR and Re
combinations. The vortex centre of each vortex is determined at the location of peak
vorticity. Jiang & Cheng (2019) showed based on the laminar wake of a circular cylinder
that prior to the second transition, the centres of positive and negative vortices follow two
clear trajectories on the two sides of the wake centreline. Therefore, the vortex trajectories
and thus the streamwise variation of h/a can be determined by an instantaneous vortex field
at an arbitrary phase. In figure 4, the solid dot on each curve marks the streamwise location
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Wake transition of a rectangular cylinder
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Figure 4. Streamwise variation of the spacing ratio h/a for the cases with various AR and Re combinations:
(a) Re = 60; (b) Re = 100; and (c) Re = 140. The horizontal dashed line marks the critical value of 0.365 given
by Durgin & Karlsson (1971) and Karasudani & Funakoshi (1994). For the case (Re, AR) = (60, 0.5), it is
difficult to determine the location of the first transition based on the method illustrated in figure 1, so the solid
dot is omitted.

for the first transition determined in figure 3. The corresponding h/a values span a range of
0.33 to 0.50. The moderate discrepancies between the present h/a values and the critical
condition of h/a = 0.365 (marked by the horizontal dashed line in figure 4) proposed
by Durgin & Karlsson (1971) and Karasudani & Funakoshi (1994) may be attributed to
the two assumptions used for the determination of h/a = 0.365. For example, Karasudani
& Funakoshi (1994) suggested that for vortices of fairly large areas (in contrast to the
assumption of point vortex), the critical h/a may be larger than 0.365 (consistent with the
present results of Re = 100 and 140 shown in figure 4b,c). Regardless of the exact critical
value of h/a, the h/a–x/D relationships shown in figure 4 suggest that h/a increases with
increasing Re and decreasing AR, which physically explains the upstream movement of the
first transition with increasing Re and decreasing AR (figure 3).

The above analysis shows that the streamwise location of the first transition is governed
by the spatial arrangement of the vortices. However, the influence of the strengths of the
vortices is minor. For example, figure 5 shows the strengths of the vortices for the cases
with Re = 100 and various AR values, quantified using both the peak vorticity (figure 5a)
and circulation (figure 5b) within each vortex. The circulation within each vortex is
calculated as

Γ =
∫

Ω

ωz dΩ, (3.1)

where Ω is the area of the vortex, determined as the region within which the vorticity
is larger than 30 % of the peak vorticity of the vortex. As shown in figure 5, prior to the
first transition, the vortex strengths for different AR values are similar, which suggests
that vortex strength is not a major factor governing the streamwise location of the first
transition.

As the wake transitions to the two-layered pattern, the significant difference in the
streamwise velocity between the outer and calm regions forms a strong shear layer at each
side of the wake centreline, which results in strong convective instability of the flow and
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Figure 5. Strengths of the vortices for the cases with Re = 100 and various AR values, quantified by (a) the
peak vorticity in a vortex and (b) the circulation within a vortex.

consequently the transition, further downstream, to the secondary vortex street through
flapping/waviness of the two shear layers (Kumar & Mittal 2012; Jiang 2021). Figure 6
quantifies the streamwise variation of the maximum shear rate of the shear layers for
various cases. The maximum shear rate at a specific streamwise location is determined
using the time-averaged streamwise velocity profile sampled along the transverse direction.
The maximum shear rate displays a gradual increase near the location of the first transition
(as the transition is a gradual process), followed by a mild decrease over the two-layered
wake region, and a steeper decrease near the location of the second transition as the calm
region is terminated. With the increase in Re and decrease in AR, the first transition occurs
closer to the cylinder (figures 3 and 6), and so does the increase in the maximum shear
rate (figure 6). In addition, figure 6(a) shows that with the increase in Re, the maximum
shear rate increases to a higher level over the two-layered wake region. Therefore, with
increasing Re and decreasing AR, the shear-induced convective instability is stronger and
the transient growth of the disturbance develops faster over the same range of downstream
distance, such that the second transition also occurs closer to the cylinder (figures 3 and 6).
An exception is the cases with AR = 0.5 and Re ≥ 170, where the maximum shear rate over
the two-layered wake region reaches higher levels than that of AR ≤ 0.375 (also observed
in figure 6b), such that the transient growth of the disturbance may develop faster to allow
for an earlier second transition than that for AR = 0.375 (figure 3).

3.2. Direct influence of 2-D wake transition on the hydrodynamic forces
For the cases with various AR and Re combinations, the St, CD and C′

L values determined
from the fully developed 2-D flows are summarised in figure 7 (curve I in each panel).
Figure 7( j,k) also shows the St and CD values for a flat plate (i.e. AR = 0) predicted
by Thompson et al. (2014), which agreed well the present results of AR = 0.01. An
interesting phenomenon observed in figure 7 is that the variation in the hydrodynamic
forces with Re contains a downward bend and subsequently an upward bend over the
range of Re = 50–200. It is suspected that the first and second bends are induced by the
first and second transitions, respectively. However, the possible link between one wake
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Figure 6. Streamwise variation of the maximum shear rate of the shear layers for (a) the cases with AR = 0.125
and various Re values, and (b) the cases with Re = 160 and various AR values. The downstream end of each
curve is the location of the second transition.

transition and one bend is not straightforward, since both wake transitions are at play
and the hydrodynamic forces are influenced as a whole. Therefore, specifically designed
numerical cases are used in the present study to decompose the influence of the first and
second transitions.

First, the influence of the second transition is quantified by additional numerical cases
with an artificial horizontal slip plate (with slip boundary conditions ∂ux/∂y = 0, uy = 0
and ∂p/∂y = 0) of zero-thickness placed at the wake centreline and x/D ≥ 10.5. The use of
such a slip plate would not affect the first transition that occurs at x/D � 10, but would
eliminate potential interaction between the upper and lower shear layers (and the two
rows of vortices) further downstream. Without such interaction, the convective instability
and transient growth of perturbation energy with distance downstream are significantly
weakened (Jiang 2021), and therefore the second transition is suppressed (figure 12c versus
figure 12a in § 3.3). It was also tested based on the case (AR, Re) = (0.125, 150) that by
changing the starting point of the slip plate from x/D = 10.5 to x/D = 15.5, the variations in
the hydrodynamic forces were within 0.2 %, i.e. the results were unaffected by the starting
point of the slip plate, as long as the vortex merging event was eliminated. The DNS results
with the slip plate are shown in figure 7 as curve II. The influence of the second transition
on the hydrodynamic forces is thus isolated as the upward bend from curve II to curve I
(figure 7).
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Figure 7. St–Re, CD − Re and C′
L − Re relationships for flow past a rectangular cylinder.
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Figure 8. Relationship between the location of the second transition and the increase in (a) St, (b) CD and
(c) C′

L due to the second transition.

For the cases with various AR and Re combinations, the relationship between the
location of the second transition (figure 3) and the increase in St, CD and C′

L due to the
second transition (from curve II to curve I in figure 7) is plotted in figure 8. The increase
in St, CD and C′

L is calculated as

Increase (%) = Result on curve I − Result on curve II
Result on curve II

× 100 %. (3.2)

As shown in figure 8, the results of AR = 0.01–0.375 collapse well onto exponential
fittings. Noticeable increases in the hydrodynamic forces on the cylinder are observed
even when the second transition occurs relatively far away from the cylinder. For example,
the hydrodynamic forces increase by 1 % and 10 % when the second transition occurs at
x/D = 39 and 16, respectively.

To further exclude the first transition (and naturally also the second transition), the
following two methods are used. Method 1 eliminates potential development of the
first transition, while method 2 records the results prior to the development of the first
transition.

(i) Method 1. Section 3.1 shows that the first transition arises from the downstream
evolution of the spatial arrangement of the vortices until h/a exceeds a critical
value. To exclude the first transition that develops downstream of the critical h/a,
the computational mesh is modified to preserve a high wake resolution for only
x/D = 0–3. For x/D > 3, the cell expansion ratio in the horizontal direction is
modified from 1.000377 to 1.1 so as to phase out the vortices rapidly. In this way, the
first transition that could have occurred at x/D � 3 is eliminated (figure 12e versus
figure 12a,c in § 3.3). For the cases with AR = 0.375, the converged hydrodynamic
forces calculated by method 1 are shown in figure 7(a–c) as curve IV.

(ii) Method 2. Because the development of ‘regular Kármán vortex street → the first
transition → the second transition’ is sequential and irreversible, this method should
start from an initial condition which allows for natural development of the regular
Kármán vortex street (prior to the first and second transitions). To this purpose, an
impulsive start is used as the initial condition, for which a regular Kármán vortex
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street always develops first. As an example, figure 9 illustrates the time evolution
of the vorticity field over different stages for a typical case (AR, Re) = (0.375, 200).
With the evolution in time, the wake displays a regular Kármán vortex street in
figure 9(b), followed by the emergence of the two-layered pattern at t* (= tU/D) ∼ 82
and x/D ∼ 10 (figure 9c), and the emergence of vortex merging and the second
transition at t* ∼ 110 and x/D ∼ 10 (figure 9d). Figure 10 shows the corresponding
time evolution of the St, CD and C′

L values. Each point in figure 10 is determined by
calculating the quantity based on one vortex shedding period. As shown in figure 10,
the three quantities peak at t* ∼ 70, which corresponds to the regular Kármán vortex
street in figure 9(b) and prior to the emergence of the first and second transitions
in figure 9(c,d). Therefore, the largest St, CD and C′

L values over the time evolution
are considered as the results without the influence of the first and second transitions.
These results are shown in figure 7 as curve III.

As shown in figure 7(a–c), curve III predicted by method 2 and curve IV predicted
by method 1 agree well, although curve III is slightly lower than curve IV. The slight
difference is because in method 2, the transient state prior to the emergence of the first
transition persists for only a short period of time, and the largest St, CD and C′

L values
captured over the time evolution may not be as large as the theoretical values for a fully
developed Kármán vortex street (as predicted by method 1).

Nevertheless, for the cases with AR ≤ 0.125, method 1 may not be applicable because the
first transition occurs increasingly closer to the cylinder with decreasing AR (figure 3), and
consequently the first transition cannot be excluded in the simulation, since a relatively
fine mesh is still required in the immediate neighbourhood of the cylinder and the cell
expansion ratio is finite (generally less than 1.1). Therefore, only method 2 is used in
figure 7(d–i) to show approximately the results excluding the first transition. The influence
of the first transition on the hydrodynamic forces is thus isolated as the downward bend
from curve III to curve II (figure 7).

For the cases with various AR and Re combinations, the relationship between the
location of the first transition (figure 3) and the reduction in St, CD and C′

L due to the
first transition (from curve III to curve II in figure 7) is plotted in figure 11. The reduction
in St, CD and C′

L is calculated as

Reduction (%) = Result on curve III − Result on curve II
Result on curve III

× 100 %. (3.3)

As shown in figure 11, the results of AR = 0.01–0.375 collapse well onto logistic fittings.
The reductions in the hydrodynamic forces become noticeable, e.g. >1 %, when the first
transition occurs within x/D ∼ 12. As the first transition moves closer to the cylinder,
considerable reductions (up to ∼35 %) in the hydrodynamic forces on the cylinder may
be observed.

The above findings have implications on the choice of the wake resolution for numerical
studies, because it is demonstrated that even relatively far-wake flow patterns may affect
the hydrodynamic forces on the cylinder. For the simulation of flow past a circular/square
cylinder, a high wake resolution of only a few cylinder diameters may be sufficient (e.g.
Jiang et al. 2016, 2018), because the 2-D wake transitions are sufficiently far away from
the cylinder (e.g. x/D = 28 and 75 for the first and second transitions in the wake of a
circular cylinder at Re = 250, and x/D = 51 for the first transition in the wake of a square
cylinder at Re = 250) and would not induce noticeable influence on the hydrodynamic
forces on the cylinder. However, for bluff-body flows with the first transition occurring at
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Figure 9. Time evolution of the vorticity field for the case (AR, Re) = (0.375, 200): (a) t* = 28; (b) t* = 72;
(c) t* = 82; and (d) t* = 114. The two transition locations for the fully developed flow are marked by the vertical
dashed lines.

x/D � 12 and/or the second transition occurring at x/D � 39, the 2-D transition needs to
be incorporated to produce correct hydrodynamic forces and near-wake flow patterns.

3.3. Physical mechanisms for the variations in the hydrodynamic forces
The case (AR, Re) = (0.375, 200) is used here again to explain the physical mechanisms
for the variations in the hydrodynamic forces by the two transitions. In addition to the
standard case with a high wake resolution for x/D = 0–200 (figure 12a), two variation
cases are considered.
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Figure 11. Relationship between the location of the first transition and the reduction in (a) St, (b) CD and
(c) C′

L due to the first transition.

(i) Variation case 1: A wake slip plate is used for x/D = 10.5–200 to exclude the second
transition (figure 12c).

(ii) Variation case 2: A high wake resolution is used for only x/D = 0–3 to exclude both
the first and second transitions (figure 12e).

The drag and lift forces on the cylinder consist of pressure and viscous components. By
separating the pressure and viscous components of the CD and C′

L values, it is found that
the reductions in the CD and C′

L values from variation case 2 to case 1 (i.e. due to the first
transition) are 100 % and 87 % contributed by the pressure component, respectively, while
the increases in the CD and C′

L values from variation case 1 to the standard case (i.e. due
to the second transition) are also 100 % and 87 % contributed by the pressure component,
respectively.
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Figure 12. Flow characteristics for the case (AR, Re) = (0.375, 200): (a) fully developed instantaneous
vorticity field for the standard case; (b) time-averaged pressure field for the standard case; (c) fully developed
instantaneous vorticity field for variation case 1; (d) time-averaged pressure field for variation case 1; (e) fully
developed instantaneous vorticity field for variation case 2; and ( f ) time-averaged pressure field for variation
case 2. The vertical dashed lines in panels (a–d) mark the locations for the first and second transitions.

Since the variations in the forces are primarily contributed by the pressure
component, the pressure distributions of the above-mentioned three cases are examined.
Figure 12(b,d, f ) shows the time-averaged pressure fields for the three cases. A comparison
between variation case 1 (figure 12d) and case 2 (figure 12f ) shows that the occurrence of
the first transition induces a significant reduction in the magnitude of the negative pressure
at the location of the first transition, especially near the wake centreline, which is because
the occurrence of the first transition induces a ‘calm region’ near the wake centreline.

Figure 13(a,b) shows the variations of the time-averaged pressure coefficient along the
wake centreline and on the cylinder surface. The pressure coefficient is defined as

Cp = p − p∞
1
2ρU2

, (3.4)

where p is the pressure at a specific point and p∞ is the reference pressure sampled at the
location of the inlet boundary. A comparison between the variation cases 1 and 2 shows
that the reduction in the magnitude of the negative pressure (i.e. reduction in |Cp|) at the
location of the first transition extends its effect back to the cylinder surface (figure 13a), in
particular on the upper, rear and lower surfaces of the cylinder (figure 13b). The reduction
in |Cp| on the upper, rear and lower surfaces of the cylinder is the direct cause for the
reduction in CD.

Similar to the reduction in CD due to the reduction in |Cp| in the wake as a result of
the first transition, the slight increase in CD as a result of the second transition is due to
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Figure 13. Pressure distribution for the case (AR, Re) = (0.375, 200): (a) time-averaged pressure coefficient
along the wake centreline; and (b) time-averaged pressure coefficient on the cylinder surface.

the slight increase in |Cp| at the location of the second transition (the standard case versus
variation case 1 in figure 13a), owing to the termination of the calm region (figure 1b,c)
as the flow reoccupies the wake centreline in the secondary vortex street (figure 12a).
A comparison of variation case 1 (figure 12c) and the standard case (figure 12a) shows
that without the second transition, the calm region extends further downstream. A longer
calm region would have a stronger effect in reducing |Cp| in the wake.

The reduction in |Cp| in the wake also reduces the strength of the vortices in the wake,
which is quantified in figure 14 by the streamwise evolution of the peak vorticity of the
vortices. The reduction in the vortex strength as a result of the first transition would
reduce the fluctuating lift on the cylinder, since the alternate formation of the vortices
and low-pressure regions on the two sides of the cylinder is the cause of fluctuating lift.

As for the variation in St, Roshko (1955) suggested that the Strouhal number of a bluff
body scaled better on the velocity at separation (Us) and the wake width (D′), rather than
simply on U and D. For the three cases examined here, the variations in the wake width (as
defined by Jiang & Cheng (2017)) are less than 2 %. However, the velocity at separation, as
approximately represented by the largest velocity in the time-averaged streamwise velocity
profile sampled along the y-direction at x/D = 0.1875 (the rear surface of the cylinder),
displays an 11.7 % reduction from case 2 to case 1 (i.e. due to the first transition) and a
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Figure 14. Streamwise evolution of the peak vorticity of the vortices for the case (AR, Re) = (0.375, 200).

3.4 % increase from case 1 to the standard case (i.e. due to the second transition), which
are proportional to the variations in St shown in figure 7(a), namely an 18.9 % reduction
and a 5.8 % increase, respectively. The increase/decrease in the velocity at separation is
consistent with the increase/decrease in |Cp| in the near wake (figure 13).

4. Three-dimensional results

4.1. Summary of the 3-D wake instability modes
In the 3-D flow regimes, the interactions between the 2-D and 3-D wake
transitions/structures may further alter the hydrodynamic forces on the cylinder. In the
literature, the critical Re values for the 3-D wake transition of a bluff body have been
routinely determined by the Floquet stability analysis. However, the Floquet analysis for
a rectangular cylinder differs from the conventional Floquet analysis for e.g. a circular
or a square cylinder, in that the 2-D base flow for a thin rectangular cylinder may not
be time-periodic, because the aperiodic emergence of the secondary vortices may occur
relatively close to the cylinder (see figure 3), which restricts the applicability of the Floquet
analysis. Although Choi & Yang (2014) reported the critical Re and the corresponding
spanwise wavelength (λ/D) for the 3-D wake instability modes of rectangular cylinders
based on the Floquet analysis (figure 15), they did not report whether and how they took
into account the aperiodic emergence of the secondary vortices in the base flow. Therefore,
the Floquet analysis for the rectangular cylinders is re-examined here, with a particular care
on the periodicity of the base flow.

In the present study, a time-periodic base flow is established by performing phase
average of the aperiodic 2-D flow over 80 primary vortex shedding periods (T). The
adequacy of 80T for the phase average is confirmed by testing 40T, 80T and 160T for
the Floquet analysis of the case (AR, Re) = (0.5, 200) at a spanwise wavenumber β (=
2π/λ) of 1.4 (within the range of a conventional mode A instability), where the Floquet
multiplier μ predicted by the three time ranges differ by less than 0.01 %. Based on
the phase-averaged time-periodic base flow, the present Floquet analysis results are also
summarised in figure 15. The critical Re and λ/D are determined by a linear interpolation
of the Floquet analysis results with an Re interval of 3, while the critical λ/D for each Re
is determined by a fourth-order polynomial interpolation of the |μ| − β relationship. As
shown in figure 15, the present Floquet analysis results agree well with those reported by
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Figure 15. Floquet analysis results for various AR values: (a) critical Re for the 3-D wake instability modes;
and (b) critical λ/D for these modes.

Choi & Yang (2014). Although figure 15 seems to be a mere reproduction of the previous
results of Choi & Yang (2014), a strict Floquet analysis with a time-periodic base flow
is a requisite for determining the wake instability modes accurately, which then helps to
determine the (AR, Re) values for the expensive 3-D DNS cases.

According to the Floquet analysis results shown in figure 15, two AR values, 0.5 and
0.125, are of particular interest.

(i) The conventional sequence of wake instability modes ‘A → B → QP (a
quasi-periodic mode)’ observed for a square cylinder (Blackburn & Lopez 2003;
Sheard, Fitzgerald & Ryan 2009) and a rectangular cylinder with AR = 0.625–1
(figure 15) is not observed for AR ≤ 0.5. In particular, for AR = 0.5, mode A
is the only instability mode identified by the Floquet analysis up to Re = 300.
With the absence of the modes B and QP instabilities for AR = 0.5, it would be
interesting to examine through 3-D DNS if the actual 3-D wake transition route to
chaos/turbulence would be different from the conventional wake transition process
‘mode A → mode swapping between modes A and B → increasingly chaotic mode
B’ for a square cylinder (Jiang et al. 2018).

(ii) For AR = 0.125 and increasing Re, the flow is first unstable to a mode A instability,
followed by a re-stabilisation to a 2-D regime and subsequently an emergence of
two new instability modes QP2 and A2 (with spatio-temporal symmetry similar to
the conventional modes QP and A, respectively, but significant difference in the
spanwise wavenumber (figure 15b)). The sequence of 3-D wake instability modes
for AR = 0.125 is highly different from that for AR ≥ 0.625, which signifies strong
influence from the 2-D wake transition (Thompson et al. 2014). By performing 3-D
DNS, nonlinear interactions between the 2-D and 3-D wake transitions and the actual
3-D wake transition route can be revealed.

Therefore, 3-D DNS is used in §§ 4.2 and 4.3 to examine the actual 3-D wake transition
processes for AR = 0.5 and 0.125, respectively, and to examine the influence of both 2-D
and 3-D wake transitions/structures on the hydrodynamic forces on the cylinder. Each 3-D
case is first calculated for at least 400 non-dimensional time units (defined as t* = tU/D)
to ensure that the flow has become fully developed. Since the fully developed 3-D flow
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Figure 16. Instantaneous vorticity fields for AR = 0.5: (a) Re = 130 (ordered mode A structure before time
evolution to vortex dislocations); (b) Re = 130 (mode A with vortex dislocations in the fully developed flow);
(c) Re = 200 (finer-scale structures); and (d) Re = 280 (increasingly disordered finer-scale structures). The
translucent iso-surfaces represent spanwise vortices with |ωz| = 1.0, while the opaque iso-surfaces represent
streamwise vortices with |ωx| = 0.4, 0.4, 0.8 and 1.5 for panels (a–d), respectively. Dark grey and light yellow
denote positive and negative vorticity values, respectively. The flow is from left to right past the blue cylinder
on the left. For Re = 130 (slightly beyond the onset of three-dimensionality), the Lz value is set to three times
the critical λ/D for mode A.

may be aperiodic, each case is run for at least another 500 time units to obtain statistically
stationary hydrodynamic forces on the cylinder.

4.2. Three-dimensional wake transition for AR = 0.5
For AR = 0.5, although the Floquet analysis identifies the mode A instability only
(figure 15), the present 3-D DNS demonstrate that the actual 3-D wake transition process is
similar to that for a square cylinder. Specifically, beyond the onset of three-dimensionality
at Re = 125.7, the 3-D wake for Re = 130 and 140 is initialised with the time evolution in
strength of several spanwise periods of ordered mode A structure (figure 16a), followed
by a spontaneous evolution to vortex dislocations for the fully developed flow (figure 16b).
With the increase in Re to 160 and 180, the wake is represented by a swapping between
mode A with vortex dislocations and the finer-scale mode B structures. For Re ≥ 200,
the wake is dominated by increasingly disordered mode B structures with increasing Re
(figure 16c,d).

989 A6-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.476


X. Ju and H. Jiang

4

0y/D

y/D

–4
0 4 8 12 16 20 24

2

1

0

–1

–2

4

0

–4
0 4 8 12 16 20 24

2

1

0

–1

–2

x/D

(a)

(b)

Figure 17. Spanwise vorticity fields for the case (AR, Re) = (0.5, 200): (a) an instantaneous spanwise vorticity
field obtained from 2-D DNS; and (b) a phase- and span-averaged spanwise vorticity field obtained from 3-D
DNS. Both vorticity fields are shown at the phase when the lift coefficient reaches a local maximum.

The discrepancy between the Floquet analysis and 3-D DNS in the identification of
mode B is explained below. For the Floquet analysis, the absence of the mode B instability
for AR ≤ 0.5 (figure 15a) is because the 2-D base flow pattern is significantly affected
by the transition to the two-layered and secondary vortex streets relatively close to the
cylinder, e.g. xtr1/D = 5.4 and xtr2/D = 16 for the case (AR, Re) = (0.5, 200) (figure 17a).
This effect is significantly diminished at AR ≥ 0.625, e.g. xtr1/D = 17 and xtr2/D = 70
for (AR, Re) = (0.625, 200), and therefore the development of the mode B instability
at AR ≥ 0.625 and Re ∼ 200 is hardly affected by the transition to the two-layered and
secondary vortex streets which develop much further downstream.

For the 3-D DNS, the development of the mode A structures significantly alters the
pattern of the spanwise vorticity field and diminishes the effect of transition to the
two-layered and secondary vortex streets in the 2-D plane (figure 17b versus figure 17a),
which allows for the development of the mode B structures.

Figure 18 shows the St–Re, CD − Re and C′
L − Re relationships for AR = 0.5. The 2-D

results are shown in a similar manner to that of figure 7, where the effects of the two
transitions are decomposed. For the 3-D results, a sudden decrease in the value from
its 2-D counterpart is observed at the onset of three-dimensionality, which signifies a
subcritical 3-D wake transition (Jiang et al. 2018). The subcritical nature of the 3-D wake
transition is further confirmed by an analysis of the growth of mode A amplitude over time
at Re = 130 (slightly beyond the onset of three-dimensionality) using the Landau equation
(Landau & Lifshitz 1976; Henderson & Barkley 1996). Details of the Landau equation and
its identification of subcritical or supercritical transition can be found in e.g. Jiang et al.
(2018) for a square cylinder, and are omitted here for simplicity. Apart from the sudden
decrease at the onset of three-dimensionality, the 3-D curve generally follows the trend of
the 2-D curve without the two transitions (i.e. curve III). The downward bend for the first
transition and the upward bend for the second transition are hardly reflected on the 3-D
curve. This is consistent with the spanwise vorticity pattern shown in figure 17(b), where

989 A6-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.476


Wake transition of a rectangular cylinder

50 100 150 200 250 300
0.12

0.14

0.16

0.18

0.20

0.22

50 100 150 200 250 300
1.6

1.7

1.8

1.9

2.0

2.1

2.2

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1.0

(b)

St

Re

2-D, Curve I: Actual result with both transitions

2-D, Curve II: With the first transition but with out the second transition (by using a wake slip plate)

2-D, Curve III: With out the first transition (by using largest value for a transient vortex shedding cycle)

3-D DNS
(a) (c)

2-D 3-D2-D 3-D

Re

CD

2-D 3-D

C ′
L

Re
Figure 18. St–Re, CD − Re and C′

L − Re relationships for AR = 0.5.

the two transitions are significantly diminished (in terms of both the streamwise location
and vortex strength) by the development of the 3-D wake structures.

4.3. Three-dimensional wake transition for AR = 0.125
For AR = 0.125, the 3-D wake transition process is as follows. Beyond the onset of
three-dimensionality at Re = 81.5, the 3-D wake for Re = 85 and 100 is initialised with
the ordered mode A structure, followed by an evolution to vortex dislocations (figure 19a),
which is similar to that for AR = 0.5. However, a major difference to AR = 0.5 is that,
for AR = 0.125, the 3-D wake re-stabilises to a 2-D wake at Re = 122 (figure 15a).
A similar re-stabilisation was also observed in the wake of an elliptical cylinder at
AR = 0.25 (Thompson et al. 2014) and 0.26 (Radi et al. 2013), and was attributed to
the influence of the transition to the two-layered vortex street close to the cylinder
(Thompson et al. 2014).

Slightly prior to the re-stabilisation, the 3-D wake at Re = 120 is represented by ordered
mode A structures (figure 19b) with periodic time evolution. This phenomenon is also
confirmed by an additional case with a doubled Lz/D of 30, where six ordered spanwise
periods of the mode A structures are observed. The regular and periodic mode A structures
in the fully developed flow (without evolving into vortex dislocations) are not commonly
observed in bluff-body flows. The reason for the suppression of vortex dislocation is that
the strength of the mode A structures is limited (here by a gradual reduction of the strength
of the mode A instability towards the re-stabilisation with increasing Re).

Beyond the 3-D mode A regime for Re = 81.5–122, the flow becomes 3-D again at
Re ≥ 167.5 (figure 15a). For Re = 170, 180 and 200, the present 3-D DNS show that the
wake is governed by the large-scale mode QP2 (figure 19c), which is consistent with the
prediction by the Floquet analysis (figure 15). For Re ≥ 210, the wake is dominated by
small-scale structures (figure 19d), which, according to the Floquet analysis results shown
in figure 15, are mode A2 structures.

For AR = 0.125, the wake transition process predicted by the 3-D DNS is consistent
with the sequence of wake instability modes predicted by the Floquet analysis (both
following ‘mode A → 2-D → mode QP2 → mode A2’). This is because (i) although
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Figure 19. Instantaneous vorticity fields for AR = 0.125: (a) Re = 100 (mode A with vortex dislocations);
(b) Re = 120 (ordered mode A); (c) Re = 170 (large-scale mode QP2); and (d) Re = 210 (small-scale structures).
The translucent iso-surfaces represent spanwise vortices with |ωz| = 1.0, while the opaque iso-surfaces
represent streamwise vortices with |ωx| = 0.5, 0.5, 0.7 and 1.5 for panels (a–d), respectively. Dark grey and
light yellow denote positive and negative vorticity values, respectively. The flow is from left to right past the
blue cylinder on the left.

the development of the mode A structures may alter the pattern of the spanwise vorticity
field, the alteration is ceased at the re-stabilisation to the 2-D flow and cannot influence
subsequent 3-D modes (in contrast to the scenario of AR = 0.5 where mode A destabilises
mode B), and (ii) unlike mode A, the mode QP2 structures do not alter the pattern of
the spanwise vorticity field (i.e. the base flow) noticeably, such that both 3-D DNS and
Floquet analysis predict the same subsequent mode A2. For example, figure 20(a) shows
that the mode QP2 streamwise vortices develop in between of the spanwise vortices and
thus induce minimal influence on the spanwise vortices. Therefore, the span-averaged
spanwise vorticity field (figure 20b) is very similar to that predicted by the 2-D DNS
(figure 20c).

Quantitatively, owing to the slight interactions between the streamwise and spanwise
vortices, and the nonlinear competition between the modes QP2 and A2, the critical Re for
the wake transition from mode QP2 to mode A2 predicted by the 3-D DNS (Re = 200–210)
is somewhat larger than that predicted by the Floquet analysis (Re = 174.7). A similar
phenomenon is also observed for the case of a zero-thickness flat plate, where additional
3-D DNS performed in the present study identify the wake transition from mode QP2 to
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Figure 20. Vorticity fields for the case (AR, Re) = (0.125, 200): (a) an instantaneous streamwise vorticity
(black and yellow for ωx =±1.5) and spanwise vorticity (red and blue for ωz =±1) field obtained from 3-D
DNS; (b) the corresponding span-averaged spanwise vorticity field; and (c) an instantaneous spanwise vorticity
field obtained from 2-D DNS. All vorticity fields are shown at the phase when the lift coefficient reaches a
local maximum.

mode A2 at Re = 160–180, while the Floquet analysis by Choi & Yang (2014) predicted
the mode A2 instability at a smaller Re of 139.1.

Figure 21 shows the St–Re, CD − Re and C′
L − Re relationships for AR = 0.125. The 2-D

results are reproduced from figure 7(d–f ). For the 3-D results, the negligible deviations
of the 3-D results from their 2-D counterparts at Re = 85 (close to the onset of the first
three-dimensionality at Re = 81.5) suggests that the 3-D wake transition is supercritical,
which is different from the subcritical mode A transition for AR = 0.5. The supercritical
mode A transition for AR = 0.125 is confirmed by using the Landau equation for the
case Re = 85. The supercritical nature of the 3-D transition suggests that, as Re > 81.5,
the 3-D hydrodynamic forces gradually deviate from their 2-D counterparts (although
due to limited data points, it looks as if there was a sudden drop at Re = 100). With
the re-stabilisation over Re = 122–167.5, the hydrodynamic forces follow back the 2-D
trend (with the 3-D symbols omitted for clarity). Beyond the onset of the second
three-dimensionality, the 3-D results remain close to their 2-D counterparts over the mode
QP2 regime of Re = 167.5–200, because the mode QP2 streamwise vortices are scarcely
distributed along the spanwise direction (figure 19c) and also induce minimal influence
on the spanwise vortices (figure 20). Because the two 2-D wake transitions still exist in
the 3-D flow (figure 20a,b), the 3-D hydrodynamic forces largely follow the 2-D curve
with both transitions. Subsequently, the 3-D results deviate significantly from their 2-D
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Figure 21. St–Re, CD − Re and C′

L − Re relationships for AR = 0.125.

counterparts in the mode A2 regime of Re ≥ 210, because the mode A2 streamwise vortices
are intensively developed in the immediate near wake of the cylinder (figure 19d), and the
two 2-D wake transitions are significantly altered by the disordered mode A2 structures
(figure 22 for Re = 210 versus figure 20 for Re = 200). In summary, the hydrodynamic
forces for AR = 0.125 are governed by both 2-D and 3-D wake transitions (and their mutual
influence, which also depends on the type of the 3-D mode).

5. Conclusions

This study examines the influence of both 2-D and 3-D wake transitions on the
hydrodynamic forces on rectangular cylinders with various AR values. When the 2-D
wake transitions occur close to the cylinder, they may alter the hydrodynamic forces on
the cylinder through both direct influence and interaction with the 3-D wake transition.

The 2-D wake transitions generally move upstream with increasing Re and decreasing
AR. The upstream movement of the first transition is because the vortex trajectory moves
away from the wake centreline with increasing Re and decreasing AR, such that the
spatial arrangement of vortices is more likely to reach the critical condition of h/a for
the transition. The upstream movement of the first transition also gives rise to an increased
shear rate downstream, which amplifies the convective instability to allow for an upstream
movement of the second transition as well.

When the 2-D wake transitions move close to the cylinder, the hydrodynamic forces
on the cylinder (e.g. St, CD and C′

L) may be altered directly. The effects of the first and
second transitions are decomposed by specifically designed numerical cases. It is found
that the first transition results in noticeable (>1 %) reductions in the hydrodynamic forces
when the transition occurs at x/D � 12, while the second transition results in noticeable
(>1 %) increases in the hydrodynamic forces when the transition occurs at x/D � 39. The
influence on the hydrodynamic forces magnifies as the transition location moves towards
the cylinder. Physically, the influence on the hydrodynamic forces originates from the
formation of the calm region between the first and second transitions. The calm region
results in the reduction in the magnitude of the negative pressure in the wake.
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Figure 22. Vorticity fields for the case (AR, Re) = (0.125, 210): (a) an instantaneous streamwise vorticity
(black and yellow for ωx =±2) and spanwise vorticity (red and blue for ωz =±1.5) field obtained from 3-D
DNS; (b) the corresponding span-averaged spanwise vorticity field; and (c) an instantaneous spanwise vorticity
field obtained from 2-D DNS.

When the 2-D wake transitions move closer to the cylinder with decreasing AR, the
interactions between the 2-D and 3-D wake transitions/structures become stronger. With
the decrease in AR from 0.625 to 0.5, the 2-D wake transitions quickly move close
to the cylinder and significantly alter the 2-D base flow pattern, which suppresses the
conventional mode B instability predicted by the Floquet analysis. Nevertheless, full
3-D DNS show that the development of the mode A structures significantly diminishes
the 2-D wake transitions, which allows for the development of the mode B structures.
Consequently, the 3-D hydrodynamic forces are hardly affected by the influence of the
2-D wake transitions.

With the further decrease in AR to e.g. 0.125, however, the mode A structures cannot
destabilise mode B or other 3-D modes, because prior to that, mode A itself is suppressed
by the 2-D wake transition. After a re-stabilised 2-D regime, the flow becomes 3-D again
through the mode QP2 structures. Unlike mode A, the mode QP2 structures develop in
between of the spanwise vortices and thus induce minimal influence on the 2-D wake
transition, such that both 3-D DNS and Floquet analysis predict the same subsequent
mode A2. For the re-stabilised 2-D regime (Re = 122–167.5) and the mode QP2 regime
(Re = 167.5–200), the 3-D hydrodynamic forces follow closely their 2-D counterparts,
because the 2-D wake transitions remain intact. This trend ceases at Re ≥ 210 as the
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flow enters the more disordered mode A2 regime with significantly altered 2-D wake
transitions.
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