On the expansion of $\left(1+\frac{z}{\underline{\underline{2}}}+\frac{z^{2}}{\underline{\mid 3}}+\ldots\right)^{-n}$ in positive integral powers of \boldsymbol{z}, when \boldsymbol{n} is a positive integer.

By F. E. Edwardes.

(Received 14th March 1912. Read 8th November 1912).
§1. The radius of convergence of the puwer series is 2π.
The function $\left(1+\frac{z}{\underline{\underline{[}} \underline{z^{2}}}+\frac{z^{2}}{\underline{3}}+\ldots\right)^{-n}$ or $\frac{z^{n}}{\left(\epsilon^{2}-1\right)^{n}}$ is regular within a circle whose centre is the origin of the z plane and radius 2π, and can be expanded in a Taylor's series converging at all points within the circle.
§2. The coefficient of z^{n-1} in $\left(1+\frac{z}{\underline{\underline{2}}}+\frac{z^{2}}{\underline{3}}+\ldots\right)^{-n}$ is $(-1)^{n-1}$.
The coefficient of z^{n-1} is $\frac{1}{2 \pi i} \int_{\mathrm{C}} \frac{d z}{\left(e^{z}-1\right)^{n}}$, C being a closed contour surrounding the origin and lying within the circle of convergence.

$$
\begin{array}{r}
\text { Now }-\frac{1}{n-1} \frac{d}{d z} \frac{1}{\left(e^{z}-1\right)^{n-1}}=\frac{e^{z}}{\left(e^{z}-1\right)^{n}}=\frac{1}{\left(e^{z}-1\right)^{n}}+\frac{1}{\left(e^{x}-1\right)^{n-1}} . \\
\therefore \int_{\mathrm{C}} \frac{d z}{\left(e^{z}-1\right)^{n}}=-\int_{\mathrm{C}} \frac{d z}{\left(e^{z}-1\right)^{n-1}}=(-1)^{2} \int_{\mathrm{C}} \frac{d z}{\left(e^{z}-1\right)^{n-8}}=\ldots \\
=(-1)^{n-1} \int_{\mathrm{c}} \frac{d z}{e^{x}-1 .}
\end{array}
$$

But the residue of $\frac{1}{e^{2}-1}$ is 1 .

$$
\therefore \quad \int_{\mathrm{C}} \frac{d z}{\left(e^{z}-1\right)^{n}}=(-1)^{n-1} 2 \pi i .
$$

Hence the coefficient of ${x^{n-1}}^{n}(-1)^{n-1}$.
§3. If the coefficient of z^{r} in $\left(1+\frac{z}{\underline{\mid 2}}+\frac{z^{2}}{\underline{\mid 3}}+\ldots\right)^{-n}$ is denoted by ${ }_{n} a_{r}$, then

$$
{ }_{n} a_{r}=-{ }_{n-1} a_{r-1}+\frac{n-r-1}{n-1}{ }_{n-1} a_{r}
$$

n having any of the values $2,3,4 \ldots$, and r any of the values $1,2,3 \ldots$.

For ${ }_{n-1} a_{r-1}=\frac{1}{2 \pi i} \int \frac{z^{n-r-1}}{\left(e^{z}-1\right)^{n-1}} d z=\frac{1}{2 \pi i} \int \frac{z^{n-r-1} e^{z}-z^{n-r-1}}{\left(e^{z}-1\right)^{n}} d z$

$$
\begin{aligned}
& =-\frac{1}{2 \pi i} \int \frac{z^{n-r-1}}{\left(e^{z}-1\right)^{n}} d z-\frac{1}{2 \pi i} \frac{1}{n-1} \int z^{n-r-1} \frac{d}{d z} \frac{1}{\left(e^{z}-1\right)^{n-1}} d z \\
& =-{ }_{n} a_{r}+\frac{1}{2 \pi i} \frac{n-r-1}{n-1} \int_{\mathrm{C}} \frac{z^{n-r-2}}{\left(e^{z}-1\right)^{n-1}} d z \\
& =-{ }_{n} a_{r}+\frac{n-r-1}{n-1}{ }_{n-1} a_{r} .
\end{aligned}
$$

Hence ${ }_{n} a_{r}=-{ }_{n-1} a_{r-1}+\frac{n-r-1}{n-1}{ }_{n-1} a_{r}$, provided $n>1, r>0$.
It may be added that since the coefficient of z^{0} is unity for $n=1,2,3$,.. we have

$$
{ }_{n} a_{0}={ }_{x-1} a_{0}=\ldots={ }_{2} a_{0}={ }_{1} a_{0} .
$$

§4. The values of the suffixes at which we ultimately arrive are seen very clearly if we associate with each coefficient ${ }_{n} a_{r}$ a point whose ordinate is n and abscissa r : this point can be denoted by the same symbol ${ }_{n} a_{r}$ without any danger of confusion. Provided r is not equal to $n-1$, the reduction equation leads from the point ${ }_{n} a_{r}$ to the two points ${ }_{n-1} a_{r}$ and ${ }_{n-1} a_{r-1}$, that is, to those reached by a step one unit in length parallel to the axis of n and towards the axis of r, and then another parallel to the axis of r and towards the axis of n. If $r>$ or $=n$, the repeated application of the reduction equation will therefore determine ${ }_{n} a_{r}$ as the sum of multiples of ${ }_{1} a_{r 1} a_{r-1}, \ldots{ }_{1} a_{r-n+1}$, that is, as the sum of multiples of
certain of Bernoulli's numbers, since when $n=1$ the expansion becomes

$$
1-\frac{z}{2}+\frac{\mathrm{B}_{1}}{\underline{12}} z^{2}-\frac{\mathrm{B}_{2}}{\underline{14}} z^{4}+\ldots
$$

Fig. 1.
For powers of z lower than z^{n-1} the case is different. When the suffix r is less than the suffix n by unity, the reduction equation assumes the form

$$
{ }_{k} a_{k-1}=-{ }_{k-1} a_{k-2}
$$

and again when the suffix r is zero,

$$
{ }_{x} a_{0}={ }_{k-1} a_{0} .
$$

These discontinuities in the form of the reduction equation preclude the crossing of the lines $r=n-1$ and $r=0$, and lead to the determination of ${ }_{n} a_{r}$ when $r<n-1$, simply as a multiple of ${ }_{1} a_{0}$.
§5. The coefficients of powers of z higher than z^{n-1} in the expansion of $\left(1+\frac{z}{\underline{12}}+\frac{z^{2}}{\underline{3}}+\ldots\right)^{\rightarrow n}$ are given, for values of $r>n-1$,
by

$$
{ }_{n} c_{r}=\frac{(-1)^{n-1}}{\mid n-1}(\delta+1)(2 \delta+1) \ldots(\overline{n-1} \delta+1)_{1} c_{r},
$$

where ${ }_{n}{ }^{c} \equiv \mid r-n_{n} a_{r},{ }_{k}{ }_{k}={ }_{k} a_{k}$, and δ is a symjolic operator such that $\delta\left({ }_{m} c_{k}\right)={ }_{m} c_{k-1}$.

When $r>n-1$, the reduction equation
may be written

$$
\left|\underline{r-n}{ }_{n} a_{r}=-\left|r-n_{n-1} a_{r-1}-\frac{1}{n-1}\right| \underline{r-n-1}{ }_{n-1} a_{r}\right.
$$

or

$$
{ }_{n} c_{r}=-{ }_{n-1} c_{r-1}-\frac{1}{n-1}{ }_{n-1} c_{r},
$$

where

$$
{ }_{n} c_{r} \equiv \underline{r-n}{ }_{n} a_{r} \text { when } r>n \text {, and }{ }_{k} c_{k} \equiv_{k} a_{k} .
$$

This modified reduction equation holds good for all values of $n>1$.
Now let Δ and δ be symbolic operators such that

$$
\Delta\left(_{m} c_{k}\right)={ }_{m-1} c_{k} \text { and } \delta\left(\left(_{m} c_{k}\right)={ }_{m} c_{k-1} .\right.
$$

Then

$$
{ }_{n} c_{r}=-\left(\delta+\frac{1}{n-1}\right) \Delta_{n} c_{r}
$$

so that the operator $-\left(\delta+\frac{1}{n-1}\right) \Delta$ acting on a coefficient whose primary suffix in n reproduces that coefficient: and $\delta \Delta_{n} c_{r}$ and $\Delta_{n} c_{r}$ being coefficients whose primary suffix is $n-1$, and the operators being commutative, it follows that

$$
{ }_{n} c_{r}=(-1)^{2}\left(\delta+\frac{1}{n-1}\right)\left(\delta+\frac{1}{n-2}\right) \Delta_{{ }_{n}}^{2} c_{r} .
$$

Thus

$$
\begin{aligned}
{ }_{n} c_{r} & =(-1)^{n-1}\left(\delta+\frac{1}{n-1}\right)\left(\delta+\frac{1}{n-2}\right) \ldots(\delta+1) \Delta^{n-1}{ }_{n} c_{r} \\
& =\frac{(-1)^{n-1}}{\underline{n-1}}(\delta+1)(2 \delta+1) \ldots(\overline{n-1} \delta+1)_{1} c_{r} .
\end{aligned}
$$

This formula gives the coefficient ${ }_{n} a_{r}$ for values of $r>n-1$ as the sum of multiples of certain numbers of Bernoulli.
§6. For values of r from $n-2$ to 1

$$
{ }_{n} a_{r}=(-1)^{r} \frac{n-r-1}{\underline{n-1}} \mathrm{~S}_{r}(1,2,3 \ldots n-1),
$$

where $S_{r}(1,2,3 \ldots n-1)$ means the sum of the products of the numbers 1, 2, 3...n-1 taken r at a time.

When $0<r<n-1$ the reduction equation may be written

$$
\frac{{ }_{n} a_{r}}{\underline{n-r-1}}=-\frac{{ }_{n-1} a_{r-1}}{\underline{\mid n-r-1}}+\frac{1}{n-1} \underline{\underline{\mid n-1}} \frac{{ }_{n-1} a_{r}}{\underline{\mid n-2}},
$$

or

$$
{ }_{n} b_{r}=-{ }_{n-1} b_{r-1}+\frac{1}{n-1}{ }_{n-1} b_{r},
$$

where

$$
{ }_{n} b_{r} \equiv \frac{{ }_{n} a_{r}}{n-r-1} .
$$

When, however, $r=0$, and again when $r=n-1$, the reduction equation is discontinuous in form. In the first case

$$
{ }_{k} a_{0}={ }_{k-1} a_{0} \quad(k>1),
$$

and in the second case

$$
{ }_{k} a_{k-1}=-{ }_{k-1} a_{k-2} \quad(k>1) ;
$$

and the corresponding modified equations are

$$
\begin{array}{ll}
{ }_{k} b_{0}=\frac{1}{k-1}{ }_{k-1} b_{0} & (k>1), \\
{ }_{k} b_{k-1}=-{ }_{k-1} b_{k-2} & (k>1) .
\end{array}
$$

and
Hence the modified equation may be regarded as continuous in form if we introduce the symbols

$$
{ }_{k} b_{-1},{ }_{k} b_{-2}, \ldots \text { etc., }{ }_{k=1} b_{k-1}, k_{k-1} b_{k-2}, \ldots \text { etc. }
$$

all of them having the value zero. By the introduction of these

Fig. 2.
symbols, the array of points associated with the coefficients obtained from $n_{n} b_{r}$ by means of the reduction equation is no longer bounded by the lines $r=0, r=n-1$, but extends to the line $n=1$. Of the points ${ }_{1} b_{r}, b_{r-1}, \ldots, b_{1}, b_{1}, b_{1} b_{-1}, \ldots$, etc., ultimately reached, all except ${ }_{1} b_{0}$ are associated with coefficients which vanish by virtue of their definition.

Now let Δ and δ be symbolic operators such that $\Delta\left({ }_{m} b_{k}\right)={ }_{m-1} b_{k}$ and $\delta\left({ }_{m} b_{k}\right)={ }_{m} b_{k-1}$.
Then ${ }_{n} b_{r}=\left(-\delta+\frac{1}{n-1}\right) \Delta_{n} b_{r}=\left(-\delta+\frac{1}{n-1}\right)\left(-\delta+\frac{1}{n-2}\right) \Delta^{2}{ }_{n} b_{r}=\ldots$

$$
\begin{aligned}
& =\left(-\delta+\frac{1}{n-1}\right)\left(-\delta+\frac{1}{n-2}\right) \ldots(-\delta+1) \Delta^{n-1}{ }_{n} b_{r} \\
& =\left(-\delta+\frac{1}{n-1}\right)\left(-\delta+\frac{1}{n-2}\right) \ldots(-\delta+1)_{1} b_{r} \\
& =\frac{1}{\underline{n-1}}(1-\delta)(1-2 \delta) \ldots(1-\overline{n-1} \delta)_{1} b_{r}
\end{aligned}
$$

But $\delta^{\lambda}\left(b_{r}\right)=0$, for all values of λ except r, and $\delta^{r}\left(b_{r}\right)=1$.
$\therefore \quad{ }_{n} b_{r}=\frac{(-1)^{n}}{\mid n-1} \mathrm{~S}_{r}(1,2,3 \ldots n-1)$,
where $S_{r}(1,2,3 \ldots n-1)$ means the sum of the products of the numbers $1,2,3 \ldots n-1$ taken r at a time.

$$
\text { Hence }{ }_{n} a_{r}=(-1) \frac{\mid n-r-1}{\underline{\mid n-1}} \mathrm{~S}_{r}(1,2,3, \ldots n-1)
$$

for all values of $r<n-1$.
It may be observed that the formula holds for $r=n-1$, but the coefficients for which this is the case have been evaluated already.
§7. A number of identities invoiving Bernoulli's numbers can be obtained by expanding $\left(1-\frac{z}{2}+\frac{\mathrm{B}_{1}}{\underline{\underline{2}}} z^{2}-\frac{\mathrm{B}_{2}}{\underline{\underline{4}}} z^{4}+\ldots\right)^{n}$ and equating the coefficients of various powers of z to those of the expansion of $\left(1+\frac{\tilde{z}}{\mid 2}+\frac{z^{2}}{\mid 3}+\ldots\right)^{-n}$. For example, when $n=2$ the coefficients of $z^{2 r}$ give

$$
(2 r+1) \frac{\mathbf{B}_{r}}{2 r}=\frac{\mathbf{B}_{r-1}}{2 r-2} \frac{\mathbf{B}_{1}}{12}+\begin{array}{r}
\mathbf{B}_{r-2} \\
2 r-4 \\
\mathrm{~B}_{2} \\
\underline{4}
\end{array}+\ldots+\frac{\mathbf{B}_{1}}{\frac{\mathbf{B}_{r-1}}{2 r-2}} .
$$

