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On characterisation of finitary

algebraic categories

Francis Borceux and B.J. Day

The aim of this article is to characterise categories which are

(/-algebraic (equals C-theoretical) over V where V is a

symmetric monoidal closed category satisfying suitable limit-

colimit commutativity conditions (basicly axiom IT ) .

Introduction

In the theory of f ini tary l/-algebraic categories over a category V

satisfying axiom TT (Borceux and Day [3]) there are two basic

characterisation theorems. The f i r s t of these i s discussed in Borceux and

Day [4 ] , Section 2 .5 , and is based on the concept of rank of a functor.

The aim of th is paper i s to describe the second characterisation

theorem which is closer to the original characterisation theorem of Lawvere

for 1/ = En4 (see Diers [7] , Corollary 5-5.6). This second theorem is

based on the notion of a suitable strong protective generator in the

category; namely the free algebra on I £ \l when the category is known to

be algebraic.

In Section 3 we develop the theory of near-cartesian closed

categories. The principal example of such a category is the category of

pointed fe-spaces; the tensor product in th is category is the "smash

product" X # T of pointed spaces X and Y and while this is not the

cartesian product there are canonical diagonals X + XttX#X# ... § X .

This allows us to deduce, from the characterisation theorem, that all

operadic categories on pointed fe-spaces are algebraic (that i s ,
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126 F r a n c i s B o r c e u x and B . J . Day

t heo re t i ca l ) . The main in teres t here derives from the well-known fact that

in the theory of in f in i t e loop spaces i t i s possible to use theories

(Boardman and Vogt [2] and Beck [/]) or operads (May [/ /] and Kelly [9 ] ) .

We also point out other instances where th is phenomenon occurs.

Throughout the a r t i c l e we assume that V = (I/, ®, I, [-, - ] , . . . ) i s

a complete and cocomplete symmetric monoidal closed category satisfying

axiom TT , and we assume tha t all categorical algebra is relative to V

unless otherwise s ta ted . We assume some familiarity with Borceux and Day

[3] and [4 ] , The basic algebra appears in [6] and [ 7 ] .

1 . Prelimi naries

We recal l that a ( f ini tary) V-theory is a finite-product-preserving

functor t : V-P •*• T which is one-one on objects, where I/- denotes the

ful l subcategory of 1/ comprising the f in i te copowers of I € 1/ . Each

(/-theory (T, t) generates a monad T = T(T) on f which has the

property

V

I n , X]® [m, Tn] * [m, TX]

for a l l m € (/. , and i s thus the " res t r ic t ion to 1/ " of the monadic

adjunction ** -i [tOp, l] : [T, V) - p ° p , v\ :

" C

where J : I/- -»• 1/ i s the canonical inclusion. We say that T(T) has

algebraic rank J . By Day [ 5 ] , Theorem 2 . 1 , and the density of J , i t

follows that V i s category equivalent to the full subcategory i

comprising the finite-product-preserving functors from T to V .

PROPOSITION 1.1. l e t £ : 1/ - -»• T be a V-theory and let A be a

small category with finite products. Let G : A •+ V be a finite-product-
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preserving functor ccnd let H : Aop •+ r be any functor. Then the

tensor product GA * HA exists in i and is isomorphia to

mean

f•A
GA ® HA in [T, V] .

Proof. Iterated use of axiom IT gives us

T- rA —i rAr f ~ i f
\m, GA ® HAitl) 3 GA ® HA(tl)

!A

sH (34 ® fld(frn) ,

as required for GA ® HA in [T, V] to in fact be a T-algebra. / /

We also recall from Borceux and Day [4] that if (T, t) is a
commutative V-theory then T has a canonical symmetric monoidal structure

® : T ® T •*• T such that t : Vjp •*• T preserves tensor products.

PROPOSITION 1.2. If (T, t) is a commutative V-theory then T* is
a symmetric monoidal closed category enriched over V .

Proof. Clearly r i s closed under exponentiation in [T, V] ,

because the internal-hom is given by [A, B] = I [A(tn), B{tn ® - ) ] which

n
preserves finite products whenever B is a T-algebra. The unit object is

the free T-algebra on I £ V , namely T(tl, -) . The tensor product of

two algebras A and B is given by

fT®T
f

=

3 I il(tm) ® I

A(tm) ® B(tn) ® T(tm ® tn, -)

T(tm® tn, -) .

But, for each fixed m , B(tn) ® T(tm ® tn, -) is a T-algebra; so let

i t be H(tm) in Proposition 1.1. This then shows that A ® B is again a

T-algebra. Thus the convolution structure on [T, V] restricts to r . / /

This result was established in Borceux and Day [4] but is recalled
here for convenience in Section 3.
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2. Structure-semantics and characterisation

We denote by Adg = Adg(j) the category whose objects are functors

V : 8 •*• V having a lef t e7-adjoint and whose morphisms are functors

M : B •+ 8 ' such that U'M = U (see Diers [6 ] , Section k). The functor

(J-) semantics

Sem : Th°V -* Adg

is given by Sem(T) = \V , U~\ .

THEOREM 2.1 . Semantics Sem : Th°v •* Adg is fully faithful and has

a left adjoint.

Proof. This i s J u s t t he l/-analogue of Diers [ 6 ] , Theorem k.2. //

The left adjoint is the structure functor

Str : Adg -* Th°v

which maps F —rH V : 8 •*• V to the obvious algebraic theory generated by
«/

F —rH U . We have
d

e : S t r Sem S 1 : Th°P * Th°p ,

n : 1 "* Sem S t r : Adg •* Adg .

THEOREM 2.2. Given F -J-I U -. 8 -* 1/, then 8 is algebraic with

respect to U if 8 is cocomplete, U reflects isomorphisms, and U

preserves GA * HA whenever A is a small category with finite •products,

G : A -* 1/ is a finite-product-preserving functor, and E : A p -»• 8 is a

functor.

Proof. Note f irst that, using the fact that Str (Sem Str) ?? Str , we

obtain a functor H : T°P •* 8 such that
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commutes, and such that LanJJ is left adjoint to Tig : 8 -»• r . Thus,

since 8 is cocomplete, n», has a left adjoint a which is the

restriction to algebras of a left adjoint a to 8 •+ [T, V] ; namely

a(G) = G{tn) .H(tn) . We require

( i ) an = 1 : 8 -»• 8 , and

( i i ) l ^ n a : 7* - 7 * .

Because U reflects isomorphisms,we require for ( i) that Uar] =¥ V . But

UjT\ = U, so we need Uo S Vj : T •* V ; t h i s also guarantees ( i i ) .

Finally, to establish the resu l t , consider

5

Then o(G) = I G(tn).H(tn) for al l G i [T, V] . If G € T° , then

J 3* 8 F

-r•r

, I since

by hypothesis,

T(T«, 2*1) by (*),

= G(tX) by the representation theorem,
= Uj(G) as required. / /

An object P € 8 is called an abstractly finite protective generator

of 8 if 8(P, -) : 8 -»• V reflects isomorphisms and preserves GA * HA
whenever A is a small category with finite products, G : A -*• V is a

finite-product-preserving functor, and H : A ->• 8 is any functor.

COROLLARY 2.3. Let 8 be cooomplete with an abstraotly finite
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projective generator P . Then V = B(P, -) : B •* V is algebraic.

Proof. The adjoint F -jH V is given by F(n) = nP , so the result

follows from the theorem.

COROLLARY 2.4. Let V be a -n-category (see Borceux and Day [4],

Definition 2.1.1). Then B is algebraic over V if and only if 8 is

cocomplete and has an abstractly finite projective generator.

Proof. Over a ir-category any algebraic category is cocomplete, since

i t has coequalisers of reflective pairs. Moreover, FI is an abstractly

finite projective generator of r by Proposition 1.1. / /

In conclusion we note that if F —=-* U : B •*• V and UF : V. -»• V has

the structure of a monoidal functor then the theory of the structure of V

is commutative.

THEOREM 2.5. If V is a T\-category, then B is commutatively

V-algebraic over V if and only if 8 is cocomplete and has a symmetric

monoidal closed structure (B, I, ®, [-, - ] , . . . ) whose identity object I

is an abstractly finite projective generator of B . / /

3. Example: near-cartesian closed categories

The category of pointed compactly generated spaces (fc-spaces) is more

than just algebraic over compactly generated spaces. It is equipped with a

canonical identification map A x B •*• A ® B and this permits us to

consider diagonals A •*• A ® . . . ® A . The key theoretical observation at

this point is that if T is a commutative l/-theory over a closed category

V which satisfies axiom v then, in the presence of a suitable diagonal

fT
functor T -»• T ® T , the functor A{tn) ® T{tn ® . . . ® tn, -) is again

a T-algebra and i s , in fact, the wth tensor power of A .

In order to formalise what we have in mind here, we introduce the

following definition.

DEFINITION 3.1. The closed category V is called near-cartesian if

there exists an ordinary natural transformation e._ : A * B •+ A ® B such

that the following diagrams commute:
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(1)

X8T ,

(2)

and

(3) "n) = for a l l m > 0 and A 6 1/ .

Note that i t i s possible to write (3) because ( l ) and (2) imply the

existence of a canonical functor K = K{e) : A x B -»• A ® 8 for any

(/-categories A and 8 . The following consequence is easily established.

PROPOSITION 3.2. Let V be near-cartesian and let (T, t) be a

commutative V-theory. Then the m-fold tensor power (m > 0) of a

T-algebra A is given by the formula

A A = A(tn) ® T{tn tn, -) .

THEOREM 3.3. Let (T, t) be a commutative theory over the near-

cartesian closed category f and suppose V is a it-category. Let R

be a monad on r generated by an operad on 1 . Then [r) is

algebraic over V .

Proof. For the concept of an operad we refer to May [77]. The

important aspect here is that the endofunctor R is given by an expression

of the form RA =
-

Sn ® where n runs over either the free

V-category on the integers or the free l/-category on the permutation

category (the integers are greater than or equal to 0 , with no morphisms

n •* m if n t m , and the morphisms n •+ n being the permutations on

n ). Let us denote the (/-adjunctions involved by
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U U'

Both adjunctions F -* U and F' -* U' are monadic and both U and U'

create coequalisers of reflective pa i r s ; hence UU' ref lects isomorphisms

and (j) i s cocomplete. Thus, by Theorem 2.2, i t remains to check that

UU' preserves GA * HA whenever A is a small category with f in i te

products, G : A -»• V preserves f in i t e products, and H : AOp ->• (T ) i s

any functor. But already U preserves GA * U'HA so i t remains to check

tha t R on T preserves GA * U'HA . For any H' : A°P -*• T we have

!n - ,-«
R(GA * H'A) = Sn® [®{GA * H'A)) ,

where

fT
® B = B{tm) ®T{tm® ... ® tm, -) : T •+ V .

Thus

(T ( rk \
(GA * H'A) s GA.H'AUtm) ® T(tm®^(G4 * H'A) s I II GA.H'A\(tm) ® T{tm ® . . . ® tm, -)

?? I

A 1
GA.H'A(tm) ® T(tm® . . . ® tw, -) ;

so

t m , - ) lffM) 3? I Sw® j G4. I H'A(tm) ® T(tm ® . .

fA (•(•« _ fT 1

^ GA.U Sn®\ H'A(tm) ®T(tm® ... ® t m , - ) \

^ GA * RH'A .

Thus, by induction, we have lP{GA * H'A) S G4 * i?Pff'i4 for p > 0 . Thus

U' creates GA * HA , as required. / /

In order to generate examples of near-cartesian closed categories we

consider the following

DEFINITION 3.4. A symmetric monoidal monad T = (T, u, n) on a

cartesian closed category is called near-cartesian if the transformation

https://doi.org/10.1017/S0004972700007875 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007875


A l g e b r a i c c a t e g o r i e s 133

T : TX x TY •+ T(X x Y) is le f t inverse to the canonical transformation

< : T(X x r) -»• TX x TY .

LEMMA 3.5. Let V be cartesian closed and let T = (21, \i, n) be a

near-cartesian monad on V . Suppose T preserves coequalisers of

reflective pairs and let F -n U denote the associated monoidal adjunction

over 1/ . Then U^ : UA x UB •*• U(A ® B) is a (regular epimorphic)

natural transformation in V

We leave the proof to the reader as an exercise.

THEOREM 3.6. Let V be cartesian closed and let T = (T, p , n) be

a finitary near-cartesian monad on f . Then 1/ is a near-cartesian

closed category.

Proof, f sa t i s f ies axiom ir by Borceux and Day [ 3 ] . To satisfy

Definition 3.1 we choose e.fl = U^ , using Lemma 3.5- Then, by Definition

3.1 , ( l) and (2) are simple consequences of applying U and using the

natural i ty of U . I t remains to prove that

I•Fn

[Fn, A]

for a l l m > 0 and A Z V . By virtue of the diagram

F2A x F2A -2-+ F2A x F^A •

we have that e is the coequaliser in V of a pair of morphisms

FAxFA-*-A*A. We then have

iFn 2 2 2 _2
[Fn,A]®[F'^FnxF Fn) • F A*F^A

rFn I „ il
I [Fn,AMFn*Fn) = -" A*A
•Fn I 1

y AGA
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where the isomorphism follows from axiom v on V For similar reasons

,Fn
the top morphism is an epimorphism, so [Fn, A] ® {Fn ® Fn) = A ® A .

The proof is analogous for m > 2 . //

EXAMPLE 3.7 (V cartesian closed). Let A be a commutative

semigroup in V such that

+ A

commutes (sometimes such an object i s called a semilattiae (without a

u n i t ) ) . Then TX = X + A i s a near-cartesian unary monad on 1/ . Thus

the category A/V i s near-cartesian closed.

EXAMPLE 3.8 (V cartesian closed). Let G : V •+ 1/ be a symmetric

monoidal f in i ta ry near-cartesian endofunctor on V and l e t e : G °* 1 be

a monoidal natural transformation. Then TX = X + GX i s near-cartesian

and f in i ta ry . Thus the category "G/V" i s near-cartesian closed.
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