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On characterisation of finitary
algebraic categories

Francis Borceux and B.J. Day

The aim of this article is to characterise categories which are
V-algebraic (equals V-theoretical) over V where V is a
symmetric monoidal closed category satisfying suitable limit~

colimit commutativity conditions (basicly axiom T ).

Introduction

In the theory of finitary V-algebraic categories over a category V
satisfying axiom 7 {Borceux and Day [3]) there are two basic
characterisation theorems. The first of these is discussed in Borceux and

Day [4], Section 2.5, and is based on the concept of rank of a functor.

The aim of this paper is to describe the second characterisation
theorem which is closer to the original characterisation theorem of Lawvere
for V = Ens (see Diers [7], Corollary 5.5.6). This second theorem is
based on the notion of a suitable strong projective generator in the
category; namely the free algebra on I € V when the category is known to

be algebraic.

In Section 3 we develop the theory of near-cartesian closed
categories. The principal example of such a category is the category of
pointed k-spaces; the tensor product in this category is the "smash
product" X # Y of pointed spaces X and Y and while this is not the
cartesian product there are canonical diagonals X > X # X # X # ... # X .
This allows us to deduce, from the characterisation theorem, that all

operadic categories on pointed k-spaces are algebraic (that is,
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theoretical). The main interest here derives from the well-known fact that
in the theory of infinite loop spaces it is possible to use theories
(Boardman and Vogt [2] and Beck [1]) or operads (May {1713 and Ketly [91).

We also point out other instances where this phenomenon occurs.

Throughout the article we assume that V= (V,®, I, [-, -1, ...) is
a complete and cocomplete symmetric monoidal closed category satisfying
axiom T , and we assume that all categorical algebra is relative to V
unless otherwise stated. We assume some familiarity with Borceux and Day
[3] and [4]. The basic algebra appears in [6] and [7].

1. Preliminaries
We recall that a (finitary) V-theory is a finite-product-preserving
functor t : V?.p + T which is one-one on objects, where Vf denotes the

full subcategory of UV comprising the finite copowers of I € V . Each
V-theory (T, t) generates amonad T =T(T) on V which has the
property
v
F
n, X]1® [m, T] = [m, TX]

for all m € V. , and is thus the "restriction to V " of the monadic

f
adjunction t* — [toP, ] - [T, V] > V;’_.P, (] :

Tbﬁ'VT c—— [T,V]

Fo| |0y t* 11 [£°P,1]

vV —L— E’;p,l] ,
where J : Vf-> V is the canonical inclusion. We say that T(T) has

algebraic rank J . By Day [5], Theorem 2.1, and the density of J , it

follows that VT is category equivalent to the full subcategory Tb

comprising the finite-product-preserving functors from T to V.

PROPOSITION 1.1. Let t :V, - T be a V-theory and let A be a

r
small category with finite products. Let G : A + V be a finite-product-
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preserving functor and let H : AP o Tb be any functor. Then the mean

tensor product GA * HA exists in 7 and is isomorphic to
A
J A®BA in [T, V].

Proof. Iterated use of axiom 7 gives us

lf" [A cA ®HA(tl):i = r‘ Ga ® BA(t1)"™
= JA GA ® HA(tm) ,

A

as required for J GA®HA in [T, V] to in fact be a T-algebra. //

We also recall from Borceux and Day [4] that if (T, ¢) is a
commutative V-theory then T has a canonical symmetric monoidal structure
Q@ : TA®T +T such that ¢ : V;P + T preserves tensor products.

PROPOSITION 1.2. 1f (T, t) is a commutative V-theory then T'b is
a symmetric monoidal closed category enriched over V .

Proof. Clearly Tb is closed under exponentiation in [T, V] ,
because the internal-hom is given by [4, B] = J [A(tn), B(tn ® -)] which

T

preserves finite products whenever B 1is a T-algebra. The unit object is

the free T-algebra on I € V , namely T(tl, -) . The tensor product of
two algebras A and B is given by

TeT
488 = alm) ®5(tm) © T(tm ® tn, -)

T T
zj A(m>®j B(tn) ® T(tm & tn, )

T
But, for each fixed m , J B(tn) @ T(tm® tn, -) 1is a T-algebra; so let
it be H(tm) in Proposition 1.1. This then shows that 4 53 is again a
T-algebra. Thus the convolution structure on [T, V] restriets to Tb S

This result was established in Borceux and Day [4] but is recalled

here for convenience in Section 3.
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2. Structure-semantics and characterisation

We denote by Adg = Adg(J) the category whose objects are functors
U : B>V having a left J-adjoint and whose morphisms are functors
M : B+>B' such that U'M = U (see Diers [6], Section L4). The functor

(J-) semantics
sem : Th°P » Adg

is given by Sem(T) = [VT, U) .

THEOREM 2.1. Semantics Sem : Th°® + Adg is fully faithful and has
a Zef;t adjoint.

Proof. This is just the V-analogue of Diers [6], Theorem 4.2. //

The left adjoint is the structure functor

Str : Adg -~ Th®P
which maps F —J—l U : B~V tothe obvious algebraic theory generated by

F—J—GU. We have

€ : Str Sem =~ 1 : Th® » T1°P s
n: 1= Sem Str : Adg ~ Adg .

THEOREM 2.2. Given F -5 U:B=~+V, then B ts algebraic with

respect to U i1f B <is cocomplete, U reflects isomorphisms, and U
preserves GA % HA whenever A is a small category with finite products,
G : A—+V ig a finite-product-preserving functor, and H : AP 5 B isa
functor.

Proof. Note first that, using the fact that Str (Sem Str) = Str , we

obtain a functor H : T°P + B such that

(%) 7°P i B
Y lU
———y V
Ur
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commutes, and such that LanyH is left adjoint to ng : B » Tb . Thus,
since B 1is cocomplete, ng has a left adjoint ¢ which is the

restriction to algebras of a left adjoint & to B -+ [T, V] ; namely
_ T
o(g) = J G(tn) .H(tn) . We require

(i) on~1:B 8 , and

(ii) 1zno : P -T1°

Because U reflects isomorphisms,we require for (i) that Uon =~ U . But

UTn =~ [/, so ve need Uo = UT : Tb + V ; +this also guarantees (ii).

Finally, to establish the result, consider

B +——— [T,V]

N\

T
Then o(G) =J G(tn) .H(tn) for all G € [T, V] . If G € Tb, then

14

UUT G(tn).H(tn)) = Blm, JT G{tn) .H(tn)) since F—U ,

G(tn) ® B(F1, H(tn)} by hypothesis,

R
“—-'\

G(tn) ® UH(tn)

flR
b—-

R

I ) ® T(Tn, T1) by (*),

12

G(t1l) by the representation theorem,

UT(G) as required. //

An object P € B is called an abstractly finite projective generator
of B if B(P, -) : B>V reflects isomorphisms and preserves GA = HA

whenever A is a small category with finite products, G : A+ V is a
finite-product-preserving functor, and #H : AOP + B is any functor.

COROLLARY 2.3. Let B be cocomplete with an abstractly finite
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projective generator P . Then U =B(P, -) : B+ V <ig algebraic.

Proof. The adjoint F —74U is given by F(n) ="P_ so the result
follows from the theorem.

COROLLARY 2.4, Let V be a m-category (see Borceux and Day [4],
Definition 2.1.1). Then B s algebraic over V if and only if B 1is
cocomplete and has an abstractly finite projective generator.

Proof. Over a mw-category any algebraic category is cocomplete, since

it has coequalisers of reflective pairs. Moreover, FI 1is an abstractly
finite projective generator of Tb by Proposition 1.1. //

In conclusion we note that if F——U : B+V and UF : V,.> V has

J bl
the structure of a monoidal functor then the theory of the structure of U
is commutative.

THEOREM 2.5. If V <e a mw-category, then B 1is commutatively
V-algebraic over V if and only if B 4ig cocomplete and has a symmetriec
monoidal closed structure (B, I, ®, [-, -1, ...) whose identity objeet I
is an abstractly finite projective generator of B . !/

3. Example: near-cartesian closed categories

The category of pointed compactly generated spaces (k-spaces) is more
than Jjust algebraic over compactly generated spaces, It is equipped with a
canonical identification map 4 X B 4 ® B and this permits us to
consider diagonals A +A® ... ®A . The key theoretical observation at
this point is that if T 1is a commutative V-theory over a closed category

 which satisfies axiom m then, in the presence of a suitable diagonal
T
functor T > T ® T , the functor J A(tn) @ T(tn ® ... ® tn, -) 1is again

a T-algebra and is, in fact, the mth tensor power of A4

In order to formalise what we have in mind here, we introduce the

following definition.

DEFINITION 3.1. The closed category V is called near-cartestan if

there exists an ordinary natural transformation e :AxB+A®B such

AB

that the following diagrams commute:
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(1) I ————— IxT

& e

Ier
%)
(2) (AxB)&(CxD) (A2C)*(BaD)
e®e e
(488)@(CRD) = > (46C)&(BED) ,
and
n

(3) J[n,A]@(n)’é@'"A for all m >0 and A4 €V .

Note that it is possible to write (3) because (1) and (2) imply the
existence of a canonical functor K =X(e) : Ax B > A®B for any

V-categories A and B . The following consequence is easily established.

PROPOSITION 3.2. Let V be near-cartesian and let (T, t) be a
commutative V-theory. Then the m-fold tensor power (m > 0) of a
T-algebra A 1is given by the formula

T
A@...@A:J Atn) @ T(tn ® ... ® tn, -) . /!

THEQREM 3.3. Let (T, t) be a commutative theory over the near-

cartesian closed category V and suppose V 18 a mw-category. Let R

be a monad on T generated by an operad on ? . Then (Tb]R i
algebraic over V .

Proof. For the concept of an operad we refer to May [11]. The

important aspect here is that the endofunctor R is given by an expression

m -
of the form RA = J Sn ® @nA) where n runs over either the free

V-category on the integers or the free V-category on the permutation
category (the integers are greater than or equal to O , with no morphisms
n+m if n #m , and the morphisms »n + n being the permutations on

n ). Let us denote the V-adjunctions involved by
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Both adjunctions F = U and F' 4 U' are monadic and both U and U'

create coequalisers of reflective pairs; hence UU' reflects isomorphisms

and (Tb)R is cocomplete. Thus, by Theorem 2.2, it remains to check that

UU' preserves GA * HA whenever A is a small category with finite

products, G : A > V preserves finite products, and X : A°P o (Tb)R is
any functor. But already U preserves GA * U'HA so it remains to check

that R on Tb preserves GA «* U'HA . For any H' :A°P+Tb we have

n
R(GA * H'A) =J sn® @ (ca » #'4)),

where
T
é"B=J B(tm)@T(tm® ...Q tm, =) : T >V
Thus
T (/A
& (ca » #'4) ~J U GAH'A] tm) @ T(tm ® ... @ tm, -)
(7 (A
* | [J )]@r( ® ...® tm, =) ;
SO
_ T
R(GA » H'A) ~ @“ GAU H'A(tm) @ T(tm ® ... ® tm, -)}

-
zj U &;@J HAtm) @ T(tm ® ... ® tm, -)]
GA * RH'A

Thus, by induction, we have FP(GA + H'A) ~ G4 * RPH'A  for p=0 . Thus
U' creates GA * HA , as required. //

In order to generate examples of near-cartesian closed categories we

consider the following

DEFINITION 3.4. A symmetric monoidal monad T = (T, u, n) on a

cartesian closed category is called near-cartesian if the transformation
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T:TXxTY + T(X x ¥) is left inverse to the canonical transformation
Kt T(X xY) Tk xTY .

LEMMA 3.5. Let V be cartesian closed and let T = (7, u, n) be a
near-cartestan monad on V . Suppose T preserves coequalisers of
reflective pairs and let F — U denote the associated monoidal adjunction
over V . Then 5AB : UA x UB ~U(A ®B) is a (regular epimorphic)

natural transformation in V

We leave the proof to the reader as an exercise.

THEOREM 3.6, Let V be cartesian closed and let T = (T, u, n) be
a finitary near-cartesian monad on V . Then v is a near-cartesian

closed category.

Proof. VT satisfies axiom m by Borceux and Day [3]. To satisfy

Definition 3.1 we choose e = aAB , using Lemma 3.5. Then, by Definition

AB
, {1) and (2) are simple consequences of applying U and using the

naturality of U . It remains to prove that

fn (Fn, 41 ® @'F) = &4

for all m >0 and A € VT . By virtue of the diagram

P x 7P -S> 7P x FPA 3 FAGRASF(AxA) —=> AxA

N/

we have that ¢ 1is the coequaliser in UT of a pair of morphisms

F?A X F?A + 4 X A . We then have

Fn
J [M,A]@iFZFnXFan) Feaxi?a
Fn ~ ll
j [ Fn, 410 FnxFn) = > AXA
Fn |
[ trn aleteveamn) et
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. . . T
where the isomorphism follows from axiom m on V' . For similar reasons

Fn
the top morphism is an epimorphism,so J (Fn, AlQ (Fn ® Fn) A ® 4
The proof is analogous for m > 2 . //

EXAMPLE 3.7 (V cartesian closed). Let 4 be a commutative

semigroup in V such that

A

commutes (sometimes such an object is called a semilattice {without a
unit)). Then TX =X +4 is a near-cartesian unary monad on V . Thus

the category A/V 1is near-cartesian closed.

EXAMPLE 3.8 (V cartesian closed). Let G : V > I be a symmetric
monoidal finitary near-cartesian endofunctor on  and let € : 6 1 be
a monoidal natural transformation. Then TX = X + GX is near-cartesian

and finitary. Thus the category "G/V" 1is near-cartesian closed.
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