ON NON-ORIENTABLE CLOSED SURFAGES IN EUCLIDEAN SPACES

C. T. YANG

Let us begin with a simple result.
Proposition. Let X be a non-orientable closed surface differentiably imbedded into the euclidean 4-space R^{4}. Then there is a line in R^{4} which intersects X at more than two points.

Proof. Let c be any point of R^{4} and let r be the smallest number such that X is contained in the closed 4 -spheroid W of centre c and radius r. Clearly the boundary 3 -sphere S of W intersects X.

Let a be a point of $S \cap X$. Then there is a function $f: X \rightarrow S$ defined as follows:
(i) $f(a)=a$.
(ii) Whenever $x \in X-\{a\}$, the line determined by a and x intersects S at a and another point. The second point of intersection is taken to be $f(x)$.

Obviously f is continuous at every point of $X-\{a\}$. Since X is differentiably imbedded into R^{4}, every line which is tangent to X at a is also tangent to S at a. It follows that $f(x) \rightarrow a=f(a)$ as $x \rightarrow a$. Hence f is also continuous at a.

Now we assert that there is a line in R^{4} which contains a and intersects X at more than two points. If the assertion is false, then the map f constructed above is one-to-one so that it is a homeomorphism of X into S. But it is well known that such a homeomorphism into does not exist. The contradiction proves the assertion and thus the proof is completed.

The purpose of the present paper is to establish a more general result. In fact, we shall prove

Theorem. Let X be a non-orientable closed surface topologically imbedded into the euclidean n-space R^{n}. Then there is an $(n-3)$-plane in R^{n} which intersects X at more than $n-2$ points.

Notice that since any non-orientable closed surface cannot be topologically imbedded into R^{3}, the integer n in the theorem must be >3.

The statement of the theorem can be rephrased: "Any non-orientable closed surface in the euclidean n-space cannot be ($n-3$)-independent in the sense of Borsuk (1)." Hence the theorem confirms a special case of the following conjecture of Professor A. M. Gleason: Any compact subset of the euclidean

[^0]n-space which is k-independent in the sense of Borsuk can be topologically imbedded into an ($n-k$)-sphere. The author learned the conjecture from Dr. R. R. Phelps and a study on the conjecture in a forthcoming paper (2) induced the author to prepare the present paper.

To prove the theorem we assume that the theorem is false, and then establish a contradiction by computing the linking number of certain integral cycles. The proof will be given after the following four lemmas.

Lemma 1. Let X be a non-orientable closed surface. Let E be a closed 2-cell in X, let α be the boundary of E and let $Y=X-(E-\alpha)$. Let β be a simple closed curve in $Y-\alpha=X-E$ such that the local orientation of X at a point x of β is reversed when x moves along β once. Let λ be a homeomorphism of Y into $a 3$-sphere S. Let $S, \lambda(\alpha), \lambda(\beta)$ be oriented and let a, b be the integral fundamental cycles on $\lambda(\alpha), \lambda(\beta)$ respectively. Then the linking number of a and b is odd.

Proof. Let k be the first mod 2 Betti number of X. Then we may regard X as a decomposition space of the unit circular disk $D:|z| \leqq 1$ in the complex plane obtained as follows. Let

$$
\begin{aligned}
A_{r} & =\exp i r \pi / k, \quad r=1, \ldots, 2 k, 2 k+1 ; \\
A_{r} A_{r+1} & =\{\exp i(r \pi / k+\theta) \mid 0 \leqq \theta \leqq \pi / k\}, \quad r=1, \ldots, 2 k .
\end{aligned}
$$

Then X is obtained from D by identifying $A_{2 s-1} A_{2 s}$ with $A_{2 s} A_{2 s+1}, s=1$, ..., k.

Let ρ be the projection of D onto X. Let E^{\prime} be the closed 2 -cell $|z| \leqq 1 / 2$. Without loss of generality we may assume

$$
E=\rho\left(E^{\prime}\right)
$$

For every $s=1, \ldots, k$,

$$
\beta_{s}=. \rho\left(A_{2_{s-1}} A_{2 s}\right)
$$

is a simple closed curve in $Y-\alpha$ and the local orientation of X at a point x of β_{s} is reversed when x moves along β_{s} once. β_{s}, when oriented, may be regarded as a closed path of basic point $p=\rho\left(A_{1}\right)$. It is easily seen that the fundamental group of $Y-\alpha$ is generated by the homotopy classes containing $\beta_{1}, \ldots, \beta_{s}$ respectively.

Let q be a point of β and let γ be a path in $Y-\alpha$ from p to q. Since β, when oriented, may be regarded as a closed path of basic point $q, \gamma \beta \gamma^{-1}$ is a closed path of basic point p. Therefore there are integers

$$
k_{1}, \ldots, k_{j} \in\{1, \ldots, k\}
$$

not necessarily distinct, such that $\gamma \beta \gamma^{-1}$ is homotopic to $\beta_{k_{1}} \ldots \beta_{k_{j}}$ in $Y-\alpha$. Since every one of $\gamma \beta \gamma^{-1}, \beta_{1}, \ldots, \beta_{k}$ has the property that the local orientation of X at a point x of the curve is reversed when x moves along the curve once, it follows that j is odd.

Let

$$
a, b, b_{1}, \ldots, b_{k}
$$

be the integral fundamental cycles on $\lambda(\alpha), \lambda(\beta), \lambda\left(\beta_{1}\right), \ldots, \lambda\left(\beta_{k}\right)$ respectively. Then b and $b_{k_{1}}+\ldots+b_{k_{j}}$, as singular cycles in $\lambda(Y-\alpha)$ are homologous. Hence we remain to prove that the linking number of a and b_{s}, for every $s=1, \ldots, k$, is not congruent to $0 \bmod 2$.

Let $0<\delta<(\sin \pi / 2 k) / 2$ and let $r=1, \ldots, 2 k$. Denote by 0.1_{r} the radius of D of terminal point A_{r}, let K_{r} be the circle of centre A_{r} and radius δ and let B_{r}, C_{r}, D_{r} be the respective points of intersection of K_{r} with $A_{r-1} A_{r}$, $0 A_{r}, A_{r} A_{r+1}$, where $A_{0}=A_{2 k}$ and $A_{2 k+1}=A_{1}$. Let $B_{r} C_{r} D_{r}$ be the arc of K_{r} of endpoints B_{r}, D_{r} containing C_{r} and let $B_{r} C_{r}, C_{r} D_{r}$ be the subarcs of $B_{r} C_{r} D_{r}$ of endpoints B_{r}, C_{r} and C_{r}, D_{r} respectively. The circle K^{\prime} of centre 0 and radius $1-\delta$ clearly contains $C_{1}, \ldots, C_{2 k}$. Let $C_{r-1} C_{r} C_{r+1}$ be the arc of K^{\prime} of endpoints C_{r-1}, C_{r+1} containing C_{r} and let $C_{r-1} C_{r}$ be its subarc of endpoints C_{r-1}, C_{r}.

Fix an integer $t, t=1, \ldots, k$. Clearly ρ maps the union of the arcs

$$
\begin{gathered}
B_{2 t-1} C_{2 t-1}, C_{2 t-1} C_{2 t} C_{2 t+1}, C_{2 t+1} D_{2 t+1} \\
B_{r} C_{r} D_{r}, r=1, \ldots, 2 t-2,2 t+2, \ldots, 2 k
\end{gathered}
$$

into a simple closed curve γ_{t} in $Y-\alpha$ which is the boundary of a Möbius band M_{t} containing β_{t} in its interior, where $C_{2 k+1} D_{2 k+1}=C_{1} D_{1}$. Let $\lambda\left(\gamma_{t}\right)$ be oriented and let c_{t} be the integral fundamental cycle on $\lambda\left(\gamma_{t}\right)$. A direct observation yields that the linking number of c_{t} and b_{t} is not congruent to $0 \bmod 2$.

For every $s=1, \ldots, k, \rho$ maps the union of the arcs

$$
B_{2 s} C_{2 s}, C_{2 s} C_{2 s+1}, B_{2 s+1} C_{2 s+1}
$$

into a simple closed curve $\beta_{s}{ }^{\prime}$, where $B_{2 k+1} C_{2 k+1}=B_{1} C_{1}$. Let $\beta_{s}{ }^{\prime}$ be oriented and let $b_{s}{ }^{\prime}$ be the integral fundamental cycle on $\lambda\left(\beta_{s}{ }^{\prime}\right)$. Then a is homologous to

$$
c_{t}+2\left(b_{1}^{\prime}+\ldots+b_{t-1}^{\prime}+b_{t+1}^{\prime}+\ldots+b_{k}^{\prime}\right) \equiv c_{t} \bmod 2
$$

in $\lambda\left(Y-\left(M_{t}-\gamma_{t}\right)\right)$. Hence the linking number of a and b_{t} is not congruent to $0 \bmod 2$. The proof of Lemma 1 is thus completed.

Lemma 2. Let Y, α, β be as in Lemma 1 and let Y be topologically imbedded into the euclidean n-space R^{n}. Let x_{1}, \ldots, x_{n-3} be $n-3$ points of R^{n} such that every ($n-3$)-plane containing these $n-3$ points intersects Y at no more than one point. Let P be the $(n-4)$-plane determined by x_{1}, \ldots, x_{n-3}, let $P x$, for every $x \in Y$, denote the half ($n-3$)-plane of boundary P containing x, and let

$$
P \alpha=\bigcup_{x \in \alpha} P x
$$

Then in the one-point-compactification $R^{n} \cup\{\infty\}$ of $R^{n}, P \alpha \cup\{\infty\}$ is homeomorphic to an $(n-2)$-sphere and is contained in the complement of β. Moreover, if we orient $R^{n} \cup\{\infty\}, P \alpha \cup\{\infty\}$ and β, then the linking number of the integral fundamental cycle on $P \alpha \cup\{\infty\}$ and that on β is odd.

Proof. We first note that since, by hypothesis, every ($n-3$)-plane containing x_{1}, \ldots, x_{n-3} intersects Y at no more than one point, x_{1}, \ldots, x_{n-3} are distinct
and cannot be contained in the same $(n-5)$-plane so that they determine a unique $(n-4)$-plane P. Moreover, it follows from the hypothesis that $P \cap Y=\phi$ so that P and any point x of Y determine a unique $(n-3)$ plane. Hence $P x$ for $x \in Y$ and then $P \alpha$ are well-defined. For any two distinct points x and x^{\prime} of $\alpha, P x \neq P x^{\prime}$ and so $P x \cap P x^{\prime}=P$. We infer that $P \alpha$ is homeomorphic to an ($n-2$)-plane.

Let Q be a 4-plane orthogonal to P and let S be a 3 -sphere in Q with $P \cap Q$ as its centre. Then for every $x \in Y, P x \cap S$ contains exactly one point. The function $\lambda: Y \rightarrow S$ mapping every $x \in Y$ into the point in $P x \cap S$ is clearly continuous and one-to-one so that it is a homeomorphism into.

Let $\lambda(\alpha), \lambda(\beta), S$ be oriented and let a, b be the respective integral fundamental cycles on $\lambda(\alpha), \lambda(\beta)$. Then, by Lemma 1 , the linking number of a and b is odd.

Let $R^{n} \cup\{\infty\}$ be the one-point-compactification of R^{n}. Then topologically $R^{n} \cup\{\infty\}$ is an n-sphere, $P \cup\{\infty\}$ is an $(n-4)$-sphere and $P \alpha \cup\{\infty\}$ is an $(n-2)$-sphere. Let $R^{n} \cup\{\infty\}$ and $P \cup\{\infty\}$ be oriented such that the integral fundamental cycle on $\mathrm{P} \cup\{\infty\}$ and that on S have 1 as their linking number. Let α and β be oriented such that the homeomorphisms $\lambda_{\alpha}: \alpha \rightarrow \lambda(\alpha)$ and $\lambda_{\beta}: \beta \rightarrow \lambda(\beta)$ defined by λ are orientation-preserving, and let $P \alpha \cup\{\infty\}$ be oriented such that the integral fundamental cycle on $P \cup\{\infty\}$ and that on α have 1 as their linking number. Then the linking number of the integral fundamental cycle on $P \alpha \cup\{\infty\}$ and that on β is equal to the linking number of a and b and hence is odd. This completes the proof of Lemma 2.

Lemma 3. Let α and α^{\prime} be simple closed curves and let K and K^{\prime} be triangulations on α and α^{\prime} respectively. Let $\phi: \alpha^{\prime} \rightarrow \alpha^{\prime}$ be a simplicial involution without fixed point and let $\mu: \alpha \rightarrow \alpha^{\prime}$ be a simplicial map of degree 1 such that whenever σ is a 1-simplex of $K, \mu(\sigma)$ is a 1 -simplex of K^{\prime}. Let

$$
I=\{(x, y) \in \alpha \times \alpha \mid \mu(x)=\phi \mu(y)\}
$$

and let $p: I \rightarrow \alpha$ be given by

$$
p(x, y)=x, \quad(x, y) \in I
$$

Then there is a map $\nu: \alpha \rightarrow I$ such that $p \nu$ is homotopic to the identity map.
Proof. Since μ is of degree 1, we may let 1-simplexes of K and those of K^{\prime} be oriented such that (i) the sum of the oriented 1 -simplexes of K is an integral fundamental cycle c of α, (ii) the sum of the oriented 1 -simplexes of K^{\prime} is an integral fundamental cycle c^{\prime} of α^{\prime} and (iii) $\mu(c)=c^{\prime}$. Then for every oriented 1 -simplex σ^{\prime} of K^{\prime} the number of those oriented 1 -simplexes σ of K with $\mu(\sigma)=\sigma^{\prime}$ (that is, μ maps σ onto σ^{\prime} with orientation preserved) is exactly one larger than the number of those σ with $\mu(\sigma)=-\sigma^{\prime}$ (that is, μ maps σ onto σ^{\prime} with orientation reversed).

Let σ^{\prime} be an oriented 1 -simplex of K^{\prime} and let σ_{1} and σ_{2} be oriented 1-simplexes of K such that

$$
\mu\left(\sigma_{1}\right)=\epsilon_{1} \sigma^{\prime}, \quad \mu\left(\sigma_{2}\right)=\epsilon_{2} \phi\left(\sigma^{\prime}\right)
$$

where $\epsilon_{1}, \epsilon_{2}=1$ or -1 . Let u^{\prime}, v^{\prime} be vertices of σ^{\prime} and let u_{1}, v_{1} and u_{2}, v_{2} be respective vertices of σ_{1} and σ_{2} such that

$$
\begin{array}{ll}
\mu\left(u_{1}\right)=u^{\prime}: & \mu\left(v_{1}\right)=v^{\prime} \\
\mu\left(u_{2}\right)=\phi\left(u^{\prime}\right), & \mu\left(v_{2}\right)=\phi\left(v^{\prime}\right) .
\end{array}
$$

Then the diagonal of $\sigma_{1} \times \sigma_{2}$ joining (u_{1}, u_{2}) and (v_{1}, v_{2}), which we denote by $\sigma_{1} \Delta \sigma_{2}$, is in I.

It is easily seen that I is the union of these $\sigma_{1} \Delta \sigma_{2}$ and a finite set. Therefore there is a natural triangulation on I with every $\sigma_{1} \Delta \sigma_{2}$ as a 1 -simplex. Let the 1 -simplexes $\sigma_{1} \Delta \sigma_{2}$ be oriented such that

$$
p\left(\sigma_{1} \Delta \sigma_{2}\right)=\sigma_{1} \text { or }-\sigma_{1}
$$

according as $\mu\left(\sigma_{2}\right)$ has positive or negative orientation.
Whenever u_{1}, u_{2} are vertices of K such that $\left(u_{1}, u_{2}\right) \in I$, the 1 -simplexes $\sigma_{1} \Delta \sigma_{2}$ having (u_{1}, u_{2}) as a vertex are either four or two or zero in number. A direct observation yields that the sum of all the oriented 1 -simplexes $\sigma_{1} \Delta \sigma_{2}$ is an integral cycle z in I. Since the union of these 1 -simplexes is connected, there is a map $\nu: \alpha \rightarrow I$ such that $\nu(c)$ and z, as singular cycles in I, are homologous. Since $\mu p(z)=c^{\prime}$, we have $p(z)=c$. It follows that $p \nu(c)$ and c, as singular cycles in α, are homologous. Hence $p \nu$ is homotopic to the identity map. This proves Lemma 3.

Lemma 4. In Lemma 3, if α is the boundary of a closed 2 -cell $E, a \in E-\alpha$ and

$$
H=\{(x, y) \in E \times E \mid x \neq y\}
$$

then there is a map $h: \alpha \times[0,1] \rightarrow H$ such that for $x \in \alpha$,

$$
h(x, 0)=(x, a), \quad h(x, 1) \in I
$$

Proof. By Lemma 3, there is a map $\nu: \alpha \rightarrow I$ such that $p \nu$ is homotopic to the identity map. Let us consider E as the unit circular disk $|z| \leqq 1$ in the complex plane with $a=0$ and let $q: I \rightarrow \alpha$ be the map given by

$$
q(x, y)=y, \quad(x, y) \in I
$$

Let $g: \alpha \times[0,1] \rightarrow \alpha$ be a map such that for $x \in \alpha$,

$$
g(x, 0)=x, \quad g(x, 1)=p \nu(x)
$$

Then the map $h: \alpha \times[0,1] \rightarrow H$ given by

$$
h(x, t)=(g(x, t), t q \nu(x)), \quad(x, t) \in \alpha \times[0,1]
$$ is as desired. Hence Lemma 4 is proved.

Proof of theorem. Suppose that our theorem is false. Then we may assume that X is a non-orientable closed surface topologically imbedded into the euclidean n-space R^{n} such that every $(n-3)$-plane in R^{n} intersects X at no more than $n-2$ points. We recall again that n must be >3.

Suppose first that $n>4$. Let E be a closed 2 -cell in X, let α be the boundary of E and let $Y=X-(E-\alpha)$. Let γ be a simple closed curve in $E-\alpha$ and let

$$
x_{1}, x_{2}:[0,1] \rightarrow \gamma
$$

be maps such that
(i) $x_{1}(0)=x_{2}(1)$ and $x_{1}(1)=x_{2}(0)$ and
(ii) $x_{1}(t) \neq x_{2}(t)$ for all $t \in[0,1]$.

Let x_{3}, \ldots, x_{n-3} be any $n-5$ distinct points in $E-(\alpha \cup \gamma)$. Then for every $t \in[0,1], x_{1}(t), x_{2}(t), x_{3}, \ldots, x_{n-3}$ determine a unique $(n-4)$-plane P_{t}. As in Lemma 2, we have P_{t} and $P_{t} \alpha$ corresponding to P and $P \alpha$ respectively when $\left\{x_{1}(t), x_{2}(t), x_{3}, \ldots, x_{n-3}\right\}$ takes the place of $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n-3}\right\}$.

Let $R^{n} \cup\{\infty\}$ be the one-point-compactification of R^{n} and assign an orientation to $R^{n} \cup\{\infty\}$. Let $P_{t} \alpha \cup\{\infty\}$ be oriented such that the orientation is continuous in t, that means, the map $h_{t}: P_{0} \alpha \cup\{\infty\} \rightarrow P_{t} \alpha \cup\{\infty\}$ such that for every $x \in \alpha, h_{t}$ defines an affine transformation of $P_{0} x$ into $P_{t} x$ mapping $x_{1}(0), x_{2}(0), x_{3}, \ldots, x_{n-3}, x$ into $x_{1}(t), x_{2}(t), x_{3}, \ldots, x_{n-3}, x$ respectively, is orientation-preserving, $0 \leqq t \leqq 1$. Let β be an oriented simple closed curve in $X-E$ such that the local orientation of X at a point x of β is reversed when x moves along β once. By Lemma 2 , the linking number l_{t} of the integral fundamental cycle on $P_{t} \alpha \cup\{\infty\}$ and that on β is an odd number. Since the orientation on $P_{t} \alpha \cup\{\infty\}$ is continuous in t, the number l_{t} is continuous in t so that it is independent of t. Hence

$$
l_{0}=l_{1}
$$

However, $P_{0} \alpha \cup\{\infty\}$ and $P_{1} \alpha \cup\{\infty\}$ are identical but have opposite orientations. It follows that

$$
l_{0}=-l_{1} .
$$

Hence $l_{0}=l_{1}=0$, contrary to the fact that it is an odd number.
Suppose now that $n=4$. As in the proof of the proposition, there is a 4 spheroid W containing X such that the boundary 3 -sphere S of W intersects X. Let $a \in S \cap X$ and let T be the 3 -plane tangent to S at a. It is clear that whenever F is a closed subset of X not containing a there is a 3 -plane T^{\prime} which is parallel to T and separates a and F (that means, a and F are contained in different components of $R^{n}-T^{\prime}$).

Let A be a closed 2 -cell in X containing a in its interior. Then there is a 3 -plane L which is parallel to T and separates a and the boundary of A. Let B be a closed 2 -cell which contains a in its interior and is contained in $X-L$, let
D be the unit circular disk $|z| \leqq 1$ in the complex plane and let ξ be a homeomorphism of D onto B mapping 0 into a. Let α^{\prime} be the boundary of D and let

$$
\mu: B-\{a\} \rightarrow \alpha^{\prime}
$$

be the map defined by

$$
\mu(x)=\xi^{-1}(x) /\left|\xi^{-1}(x)\right|, \quad x \in B-\{a\}
$$

Let M be a 3 -plane which is parallel to T and separates a and the boundary of B, and let F be the boundary of the component of $B-M$ containing a. Since

$$
J=\{(x, y) \in F \times F| | \mu(x)-\mu(y) \mid \geqq 1\}
$$

is compact and, for every $(x, y) \in J$, the line joining x and y does not intersect the closed 3 -cell $L \cap W$, there is a number $\epsilon>0$ such that whenever $\left(x^{\prime}, y^{\prime}\right) \in B \times B$ such that for some $(x, y) \in J,\left|\xi^{-1}\left(x^{\prime}\right)-\xi^{-1}(x)\right|<\epsilon$ and $\left|\xi^{-1}\left(y^{\prime}\right)-\xi^{-1}(y)\right|<\epsilon, x^{\prime}$ and y^{\prime} are distinct and the line joining x^{\prime} and y^{\prime} does not intersect $L \cap W$.

Let ϵ^{\prime} be a number such that $\epsilon \geqq \epsilon^{\prime}>0$ and that whenever $(x, y) \in F \times F$ such that for some $\left(x^{\prime}, y^{\prime}\right) \in B \times B$ with $\left|\xi^{-1}\left(x^{\prime}\right)-\xi^{-1}(x)\right|<\epsilon^{\prime}, \mid \xi^{-1}\left(y^{\prime}\right)$ $-\xi^{-1}(y) \mid<\epsilon^{\prime}$ and $\mu\left(x^{\prime}\right)=-\mu\left(y^{\prime}\right),(x, y)$ belongs to J. Since F separates a and the boundary of B in X, there is a simple closed curve α in the ϵ^{\prime}-neighbourhood of F which separates a and the boundary of B in X. It is clear that the curve α can be so chosen that there are triangulations K and K^{\prime} of α and α^{\prime} respectively such that (i) $\phi: \alpha^{\prime} \rightarrow \alpha^{\prime}$ given by $\phi(z)=-z, z \in \alpha^{\prime}$, is simplicial, (ii) $\mu: \alpha \rightarrow \alpha^{\prime}$ given by $\mu(x)=\xi^{-1}(x) /\left|\xi^{-1}(x)\right|, x \in \alpha$, is simplicial, and (iii) whenever σ is a 1 -simplex of $K, \mu(\sigma)$ is a 1 -simplex of K^{\prime}.

Since α is a simple closed curve in the closed 2 -cell B, there is a closed 2 -cell E in B having α as its boundary and containing a in its interior. Let

$$
\begin{gathered}
H=\{(x, y) \in E \times E \mid x \neq y\} \\
I=\{(x, y) \in \alpha \times \alpha \mid \mu(x)=\phi \mu(y)\} .
\end{gathered}
$$

It follows from Lemma 4 that there is a map

$$
h: \alpha \times[0,1] \rightarrow H
$$

such that for $x \in \alpha$,

$$
h(x, 0)=(x, a), \quad h(x, 1) \in I .
$$

Since E is a closed 2 -cell containing a in its interior, there is a homeomorphism η of D onto E mapping 0 into a. Let C be the complex plane and let $p, q: H \rightarrow E$ be the maps given by

$$
p(x, y)=x, \quad q(x, y)=y, \quad(x, y) \in H
$$

Now we define a map

$$
\tau: C \times[0,1] \rightarrow R^{n}
$$

as follows: Whenever $r \geqq 0, z \in \alpha^{\prime}$ and $t \in[0,1]$,
$\tau(r z, t)= \begin{cases}\eta\left((r / t) \eta^{-1} q h(\eta(z), t)\right) & \text { if } r<t ; \\ q h(\eta(z), t)+(r-t)(p h(\eta(z), t)-q h(\eta(z), t)) & \text { if } r \geqq t .\end{cases}$
For a fixed $z \in \alpha^{\prime}, \tau$ maps the half-line $\{(r z, 0) \mid r \geqq 0\}$ into the half-line $a_{\eta}(z)$ of endpoint a containing $\eta(z)$. It follows that

$$
\tau(C \times\{0\})=\cup_{x \epsilon \alpha} a x=a \alpha
$$

Since every line intersects X at no more than two points, τ maps $C \times\{0\}$ homeomorphically onto $a \alpha$.

Let β be an oriented simple closed curve in $X-A$ such that the local orientation of X at a point x of β is reversed when x moves along β once. Let $R^{4} \cup\{\infty\}$ and $a \alpha \cup\{\infty\}$ be oriented. By Lemma 2, the linking number of the integral fundamental cycle b on β and the integral fundamental cycle c on $a \alpha \cup\{\infty\}$ does not vanish. Making use of the map τ constructed above, we can have a singular cycle c^{\prime} in $\tau(C \times\{1\}) \cup\{\infty\}$ which is homologous to c in $\tau(C \times[0,1]) \cup\{\infty\} \subset R^{4}-\beta$. The linking number of b and c^{\prime} is equal to that of b and c so that it does not vanish.

Let U be the component of $W-L$ containing β. Then b, as a singular cycle in U, is bounding. For a fixed $z \in \alpha^{\prime}, \tau$ maps the half line $\{(r z, 1) \mid r \geqq 0\}$ into the union of the $\operatorname{arc}\left\{\eta r \eta^{-1} q h(\eta(z), 1) \mid 0 \leqq r \leqq 1\right\}$ in E and the half line of endpoint $q h(\eta(z), 1)$ containing $p h(\eta(z), 1)$. Since

$$
(p h(\eta(z), 1), q h(\eta(z), 1))=h(\eta(z), 1) \in I,
$$

there is some $(x, y) \in J$ such that $\left|\xi^{-1} p h(\eta(z), 1)-\xi^{-1}(x)\right|<\epsilon^{\prime}$ and $\left|\xi^{-1} q h(\eta(z), 1)-\xi^{-1}(y)\right|<\epsilon^{\prime}$. By our choice of $\epsilon^{\prime},(x, y)$ belongs to J. It follows that the line joining $p h(\eta(z), 1)$ and $q h(\eta(z), 1)$ does not intersect $L \cap W$ and then does not intersect U either. From this result, we infer that $\tau(C \times\{1\})$ does not intersect U. Hence b is bounding in $R^{4} \cup\{\infty\}-$ $\tau(C \times\{1\}) \cup\{\infty\}$, contrary to the fact that b and c^{\prime} are linking. This completes the proof of our theorem.

Remark. For the case that $n=4$ and X is not the projective plane, a simpler proof of our theorem may be given as follows. Since the first mod 2 Betti number of X is >1, there are two disjoint simple closed curves β and γ in X, such as β_{1} and $\beta_{2}{ }^{\prime}$ in the proof of Lemma 1 , such that the local orientation of X at a point x of each of the curves is reversed if x moves along the curve once. Let D be the unit circular disk $|z| \leqq 1$ in the complex plane. It is easy to construct a map

$$
f: D \times[0,1] \rightarrow X
$$

such that
(i) $f(0,0)=f(0,1)$ and $f(0, t)$ moves along γ once as t varies from 0 to 1 ;
(ii) for every $t \in[0,1], f$ maps $D \times\{t\}$ homeomorphically onto a closed 2-cell E_{t} in X;
(iii) $f(D \times[0,1]) \subset X-\beta$;
(iv) for all $z \in D, f(z, 0)=f(\bar{z}, 1)$.

Let $a_{t}=f(0, t)$ and let α_{t} be the boundary of E_{t}. Let $R^{4} \cup\{\infty\}$ and β be oriented and let $a_{t} \alpha_{t} \cup\{\infty\}$ be oriented such that the orientation is continuous in $t, 0 \leqq t \leqq 1$. By Lemma 2, the linking number l_{t} of the integral fundamental cycle on $a_{t} \alpha_{t} \cup\{\infty\}$ and that on β is an odd number. Since l_{t} is continuous in t, it is independent of t so that $l_{0}=l_{1}$. On the other hand, $a_{0} \alpha_{0} \cup\{\infty\}$ and $a_{1} \alpha_{1} \cup\{\infty\}$ are identical but have opposite orientations. It follows that $l_{0}=-l_{1}=-l_{0}$. Hence $l_{0}=0$, contrary to the fact that it is odd.

References

1. K. Borsuk, On the k-independent subsets of the euclidean space and of the Hilbert space, Bull. Acad. Polon Sci. Cl. III, 5 (1957), 351-356.
2. C. T. Yang, On k-independent sets (unpublished).

University of Pennsylvania

[^0]: Received September 14, 1961. This research is supported by the Office of Ordnance Research under Contract No. DA-36-034-ORD-2970.

