ON NON-ORIENTABLE CLOSED SURFACES IN EUCLIDEAN SPACES

C. T. YANG

Let us begin with a simple result.

PROPOSITION. Let X be a non-orientable closed surface differentiably imbedded into the euclidean 4-space R^4 . Then there is a line in R^4 which intersects X at more than two points.

Proof. Let c be any point of R^4 and let r be the smallest number such that X is contained in the closed 4-spheroid W of centre c and radius r. Clearly the boundary 3-sphere S of W intersects X.

Let a be a point of $S \cap X$. Then there is a function $f: X \to S$ defined as follows:

(i) f(a) = a.

(ii) Whenever $x \in X - \{a\}$, the line determined by a and x intersects S at a and another point. The second point of intersection is taken to be f(x).

Obviously f is continuous at every point of $X - \{a\}$. Since X is differentiably imbedded into R^4 , every line which is tangent to X at a is also tangent to S at a. It follows that $f(x) \rightarrow a = f(a)$ as $x \rightarrow a$. Hence f is also continuous at a.

Now we assert that there is a line in R^4 which contains a and intersects X at more than two points. If the assertion is false, then the map f constructed above is one-to-one so that it is a homeomorphism of X into S. But it is well known that such a homeomorphism into does not exist. The contradiction proves the assertion and thus the proof is completed.

The purpose of the present paper is to establish a more general result. In fact, we shall prove

THEOREM. Let X be a non-orientable closed surface topologically imbedded into the euclidean n-space \mathbb{R}^n . Then there is an (n-3)-plane in \mathbb{R}^n which intersects X at more than n-2 points.

Notice that since any non-orientable closed surface cannot be topologically imbedded into R^3 , the integer n in the theorem must be >3.

The statement of the theorem can be rephrased: "Any non-orientable closed surface in the euclidean *n*-space cannot be (n-3)-independent in the sense of Borsuk (1)." Hence the theorem confirms a special case of the following conjecture of Professor A. M. Gleason: Any compact subset of the euclidean

Received September 14, 1961. This research is supported by the Office of Ordnance Research under Contract No. DA-36-034-ORD-2970.

n-space which is k-independent in the sense of Borsuk can be topologically imbedded into an (n - k)-sphere. The author learned the conjecture from Dr. R. R. Phelps and a study on the conjecture in a forthcoming paper (2) induced the author to prepare the present paper.

To prove the theorem we assume that the theorem is false, and then establish a contradiction by computing the linking number of certain integral cycles. The proof will be given after the following four lemmas.

LEMMA 1. Let X be a non-orientable closed surface. Let E be a closed 2-cell in X, let α be the boundary of E and let $Y = X - (E - \alpha)$. Let β be a simple closed curve in $Y - \alpha = X - E$ such that the local orientation of X at a point x of β is reversed when x moves along β once. Let λ be a homeomorphism of Y into a 3-sphere S. Let S, $\lambda(\alpha)$, $\lambda(\beta)$ be oriented and let a, b be the integral fundamental cycles on $\lambda(\alpha)$, $\lambda(\beta)$ respectively. Then the linking number of a and b is odd.

Proof. Let k be the first mod 2 Betti number of X. Then we may regard X as a decomposition space of the unit circular disk $D: |z| \leq 1$ in the complex plane obtained as follows. Let

$$A_{r} = \exp i r \pi/k, \quad r = 1, \dots, 2k, 2k + 1; A_{r}A_{r+1} = \{ \exp i (r \pi/k + \theta) | 0 \le \theta \le \pi/k \}, \quad r = 1, \dots, 2k.$$

Then X is obtained from D by identifying $A_{2s-1}A_{2s}$ with $A_{2s}A_{2s+1}$, $s = 1, \ldots, k$.

Let ρ be the projection of D onto X. Let E' be the closed 2-cell $|z| \leq 1/2$. Without loss of generality we may assume

$$E = \rho(E').$$

For every $s = 1, \ldots, k$,

$$\beta_s = \rho(A_{2s-1}A_{2s})$$

is a simple closed curve in $Y - \alpha$ and the local orientation of X at a point x of β_s is reversed when x moves along β_s once. β_s , when oriented, may be regarded as a closed path of basic point $p = \rho(A_1)$. It is easily seen that the fundamental group of $Y - \alpha$ is generated by the homotopy classes containing β_1, \ldots, β_s respectively.

Let q be a point of β and let γ be a path in $Y - \alpha$ from p to q. Since β , when oriented, may be regarded as a closed path of basic point q, $\gamma\beta\gamma^{-1}$ is a closed path of basic point p. Therefore there are integers

$$k_1,\ldots,k_j\in\{1,\ldots,k\},$$

not necessarily distinct, such that $\gamma\beta\gamma^{-1}$ is homotopic to $\beta_{k_1} \dots \beta_{k_j}$ in $Y - \alpha$. Since every one of $\gamma\beta\gamma^{-1}, \beta_1, \dots, \beta_k$ has the property that the local orientation of X at a point x of the curve is reversed when x moves along the curve once, it follows that j is odd.

Let

$$a, b, b_1, \ldots, b_k$$

be the integral fundamental cycles on $\lambda(\alpha), \lambda(\beta), \lambda(\beta_1), \ldots, \lambda(\beta_k)$ respectively. Then b and $b_{k_1} + \ldots + b_{k_j}$, as singular cycles in $\lambda(Y - \alpha)$ are homologous. Hence we remain to prove that the linking number of a and b_s , for every $s = 1, \ldots, k$, is not congruent to 0 mod 2.

Let $0 < \delta < (\sin \pi/2k)/2$ and let r = 1, ..., 2k. Denote by 0.1_r the radius of D of terminal point A_r , let K_r be the circle of centre A_r and radius δ and let B_r , C_r , D_r be the respective points of intersection of K_r with $A_{r-1}A_r$, $0A_r$, A_rA_{r+1} , where $A_0 = A_{2k}$ and $A_{2k+1} = A_1$. Let $B_rC_rD_r$ be the arc of K_r of endpoints B_r , D_r containing C_r and let B_rC_r , C_rD_r be the subarcs of $B_rC_rD_r$ of endpoints B_r , C_r and C_r , D_r respectively. The circle K' of centre 0 and radius $1 - \delta$ clearly containing C_r and let $C_{r-1}C_rC_{r+1}$ be the arc of K' of endpoints C_{r-1} , C_{r+1} containing C_r and let $C_{r-1}C_r$ be its subarc of endpoints C_{r-1} , C_r . Fix an integer t, t = 1, ..., k. Clearly ρ maps the union of the arcs

$$B_{2t-1}C_{2t-1}, C_{2t-1}C_{2t}C_{2t+1}, C_{2t+1}D_{2t+1}; B_{r}C_{r}D_{r}, r = 1, \dots, 2t - 2, 2t + 2, \dots, 2k,$$

into a simple closed curve γ_t in $Y - \alpha$ which is the boundary of a Möbius band M_t containing β_t in its interior, where $C_{2k+1}D_{2k+1} = C_1D_1$. Let $\lambda(\gamma_t)$ be oriented and let c_t be the integral fundamental cycle on $\lambda(\gamma_t)$. A direct observation yields that the linking number of c_t and b_t is not congruent to 0 mod 2.

For every s = 1, ..., k, ρ maps the union of the arcs

$$B_{2s}C_{2s}, C_{2s}C_{2s+1}, B_{2s+1}C_{2s+1}$$

into a simple closed curve β_s' , where $B_{2k+1}C_{2k+1} = B_1C_1$. Let β_s' be oriented and let b_s' be the integral fundamental cycle on $\lambda(\beta_s')$. Then *a* is homologous to

$$c_{t} + 2(b'_{1} + \ldots + b'_{t-1} + b'_{t+1} + \ldots + b'_{k}) \equiv c_{t} \mod 2$$

in $\lambda(Y - (M_t - \gamma_t))$. Hence the linking number of a and b_t is not congruent to 0 mod 2. The proof of Lemma 1 is thus completed.

LEMMA 2. Let Y, α, β be as in Lemma 1 and let Y be topologically imbedded into the euclidean n-space \mathbb{R}^n . Let x_1, \ldots, x_{n-3} be n-3 points of \mathbb{R}^n such that every (n-3)-plane containing these n-3 points intersects Y at no more than one point. Let P be the (n-4)-plane determined by x_1, \ldots, x_{n-3} , let Px, for every $x \in Y$, denote the half (n-3)-plane of boundary P containing x, and let

$$P\alpha = \bigcup_{x \in \alpha} Px.$$

Then in the one-point-compactification $\mathbb{R}^n \cup \{\infty\}$ of \mathbb{R}^n , $P\alpha \cup \{\infty\}$ is homeomorphic to an (n-2)-sphere and is contained in the complement of β . Moreover, if we orient $\mathbb{R}^n \cup \{\infty\}$, $P\alpha \cup \{\infty\}$ and β , then the linking number of the integral fundamental cycle on $P\alpha \cup \{\infty\}$ and that on β is odd.

Proof. We first note that since, by hypothesis, every (n - 3)-plane containing x_1, \ldots, x_{n-3} intersects Y at no more than one point, x_1, \ldots, x_{n-3} are distinct

and cannot be contained in the same (n-5)-plane so that they determine a unique (n-4)-plane P. Moreover, it follows from the hypothesis that $P \cap Y = \phi$ so that P and any point x of Y determine a unique (n-3)plane. Hence Px for $x \in Y$ and then $P\alpha$ are well-defined. For any two distinct points x and x' of α , $Px \neq Px'$ and so $Px \cap Px' = P$. We infer that $P\alpha$ is homeomorphic to an (n-2)-plane.

Let Q be a 4-plane orthogonal to P and let S be a 3-sphere in Q with $P \cap Q$ as its centre. Then for every $x \in Y$, $Px \cap S$ contains exactly one point. The function $\lambda: Y \to S$ mapping every $x \in Y$ into the point in $Px \cap S$ is clearly continuous and one-to-one so that it is a homeomorphism into.

Let $\lambda(\alpha)$, $\lambda(\beta)$, S be oriented and let a, b be the respective integral fundamental cycles on $\lambda(\alpha)$, $\lambda(\beta)$. Then, by Lemma 1, the linking number of a and b is odd.

Let $\mathbb{R}^n \cup \{\infty\}$ be the one-point-compactification of \mathbb{R}^n . Then topologically $\mathbb{R}^n \cup \{\infty\}$ is an *n*-sphere, $P \cup \{\infty\}$ is an (n-4)-sphere and $P\alpha \cup \{\infty\}$ is an (n-2)-sphere. Let $\mathbb{R}^n \cup \{\infty\}$ and $P \cup \{\infty\}$ be oriented such that the integral fundamental cycle on $P \cup \{\infty\}$ and that on *S* have 1 as their linking number. Let α and β be oriented such that the homeomorphisms $\lambda_{\alpha} : \alpha \to \lambda(\alpha)$ and $\lambda_{\beta} : \beta \to \lambda(\beta)$ defined by λ are orientation-preserving, and let $P\alpha \cup \{\infty\}$ be oriented such that the integral fundamental cycle on $P \cup \{\infty\}$ and that on α have 1 as their linking number. Then the linking number of the integral fundamental cycle on $P\alpha \cup \{\infty\}$ and that on β is equal to the linking number of *a* and *b* and hence is odd. This completes the proof of Lemma 2.

LEMMA 3. Let α and α' be simple closed curves and let K and K' be triangulations on α and α' respectively. Let $\phi: \alpha' \to \alpha'$ be a simplicial involution without fixed point and let $\mu: \alpha \to \alpha'$ be a simplicial map of degree 1 such that whenever σ is a 1-simplex of K, $\mu(\sigma)$ is a 1-simplex of K'. Let

$$I = \{ (x, y) \in \alpha \times \alpha | \mu(x) = \phi \mu(y) \}$$

and let $p: I \to \alpha$ be given by

$$p(x, y) = x, \qquad (x, y) \in I.$$

Then there is a map $\nu: \alpha \to I$ such that $p\nu$ is homotopic to the identity map.

Proof. Since μ is of degree 1, we may let 1-simplexes of K and those of K' be oriented such that (i) the sum of the oriented 1-simplexes of K is an integral fundamental cycle c of α , (ii) the sum of the oriented 1-simplexes of K' is an integral fundamental cycle c' of α' and (iii) $\mu(c) = c'$. Then for every oriented 1-simplex σ' of K' the number of those oriented 1-simplexes σ of K with $\mu(\sigma) = \sigma'$ (that is, μ maps σ onto σ' with orientation preserved) is exactly one larger than the number of those σ with $\mu(\sigma) = -\sigma'$ (that is, μ maps σ onto σ' with orientation reversed).

Let σ' be an oriented 1-simplex of K' and let σ_1 and σ_2 be oriented 1-simplexes of K such that

$$\mu(\sigma_1) = \epsilon_1 \sigma', \qquad \mu(\sigma_2) = \epsilon_2 \phi(\sigma'),$$

where ϵ_1 , $\epsilon_2 = 1$ or -1. Let u', v' be vertices of σ' and let u_1, v_1 and u_2, v_2 be respective vertices of σ_1 and σ_2 such that

$$\mu(u_1) = u', \qquad \mu(v_1) = v'; \\ \mu(u_2) = \phi(u'), \qquad \mu(v_2) = \phi(v').$$

Then the diagonal of $\sigma_1 \times \sigma_2$ joining (u_1, u_2) and (v_1, v_2) , which we denote by $\sigma_1 \Delta \sigma_2$, is in *I*.

It is easily seen that I is the union of these $\sigma_1 \bigtriangleup \sigma_2$ and a finite set. Therefore there is a natural triangulation on I with every $\sigma_1 \bigtriangleup \sigma_2$ as a 1-simplex. Let the 1-simplexes $\sigma_1 \bigtriangleup \sigma_2$ be oriented such that

$$p(\sigma_1 \bigtriangleup \sigma_2) = \sigma_1 \text{ or } -\sigma_1$$

according as $\mu(\sigma_2)$ has positive or negative orientation.

Whenever u_1, u_2 are vertices of K such that $(u_1, u_2) \in I$, the 1-simplexes $\sigma_1 \Delta \sigma_2$ having (u_1, u_2) as a vertex are either four or two or zero in number. A direct observation yields that the sum of all the oriented 1-simplexes $\sigma_1 \Delta \sigma_2$ is an integral cycle z in I. Since the union of these 1-simplexes is connected, there is a map $\nu: \alpha \to I$ such that $\nu(c)$ and z, as singular cycles in I, are homologous. Since $\mu p(z) = c'$, we have p(z) = c. It follows that $\rho\nu(c)$ and c, as singular cycles in α , are homologous. Hence $\rho\nu$ is homotopic to the identity map. This proves Lemma 3.

LEMMA 4. In Lemma 3, if α is the boundary of a closed 2-cell E, $a \in E - \alpha$ and

 $H = \{(x, y) \in E \times E | x \neq y\},\$

then there is a map $h: \alpha \times [0, 1] \rightarrow H$ such that for $x \in \alpha$,

 $h(x, 0) = (x, a), \quad h(x, 1) \in I.$

Proof. By Lemma 3, there is a map $\nu: \alpha \to I$ such that $p\nu$ is homotopic to the identity map. Let us consider E as the unit circular disk $|z| \leq 1$ in the complex plane with a = 0 and let $q: I \to \alpha$ be the map given by

$$q(x, y) = y, \qquad (x, y) \in I.$$

Let $g: \alpha \times [0, 1] \rightarrow \alpha$ be a map such that for $x \in \alpha$,

$$g(x, 0) = x,$$
 $g(x, 1) = p\nu(x).$

Then the map $h: \alpha \times [0, 1] \rightarrow H$ given by

$$h(x, t) = (g(x, t), tq\nu(x)),$$
 $(x, t) \in \alpha \times [0, 1],$

is as desired. Hence Lemma 4 is proved.

664

Proof of theorem. Suppose that our theorem is false. Then we may assume that X is a non-orientable closed surface topologically imbedded into the euclidean *n*-space \mathbb{R}^n such that every (n-3)-plane in \mathbb{R}^n intersects X at no more than n-2 points. We recall again that n must be >3.

Suppose first that n > 4. Let *E* be a closed 2-cell in *X*, let α be the boundary of *E* and let $Y = X - (E - \alpha)$. Let γ be a simple closed curve in $E - \alpha$ and let

$$x_1, x_2 \colon [0, 1] \to \gamma$$

be maps such that

(i) $x_1(0) = x_2(1)$ and $x_1(1) = x_2(0)$ and

(ii) $x_1(t) \neq x_2(t)$ for all $t \in [0, 1]$.

Let x_3, \ldots, x_{n-3} be any n-5 distinct points in $E - (\alpha \cup \gamma)$. Then for every $t \in [0, 1], x_1(t), x_2(t), x_3, \ldots, x_{n-3}$ determine a unique (n-4)-plane P_t . As in Lemma 2, we have P_t and $P_t\alpha$ corresponding to P and $P\alpha$ respectively when $\{x_1(t), x_2(t), x_3, \ldots, x_{n-3}\}$ takes the place of $\{x_1, x_2, x_3, \ldots, x_{n-3}\}$.

Let $\mathbb{R}^n \cup \{\infty\}$ be the one-point-compactification of \mathbb{R}^n and assign an orientation to $\mathbb{R}^n \cup \{\infty\}$. Let $P_t \alpha \cup \{\infty\}$ be oriented such that the orientation is continuous in t, that means, the map $h_i: P_0 \alpha \cup \{\infty\} \to P_t \alpha \cup \{\infty\}$ such that for every $x \in \alpha$, h_t defines an affine transformation of $P_0 x$ into $P_t x$ mapping $x_1(0), x_2(0), x_3, \ldots, x_{n-3}, x$ into $x_1(t), x_2(t), x_3, \ldots, x_{n-3}, x$ respectively, is orientation-preserving, $0 \leq t \leq 1$. Let β be an oriented simple closed curve in X - E such that the local orientation of X at a point x of β is reversed when x moves along β once. By Lemma 2, the linking number l_t of the integral fundamental cycle on $P_t \alpha \cup \{\infty\}$ and that on β is an odd number. Since the orientation on $P_t \alpha \cup \{\infty\}$ is continuous in t, the number l_t is continuous in t so that it is independent of t. Hence

$$l_0 = l_1.$$

However, $P_0 \alpha \cup \{\infty\}$ and $P_1 \alpha \cup \{\infty\}$ are identical but have opposite orientations. It follows that

$$l_0 = -l_1.$$

Hence $l_0 = l_1 = 0$, contrary to the fact that it is an odd number.

Suppose now that n = 4. As in the proof of the proposition, there is a 4-spheroid W containing X such that the boundary 3-sphere S of W intersects X. Let $a \in S \cap X$ and let T be the 3-plane tangent to S at a. It is clear that whenever F is a closed subset of X not containing a there is a 3-plane T' which is parallel to T and separates a and F (that means, a and F are contained in different components of $\mathbb{R}^n - T'$).

Let A be a closed 2-cell in X containing a in its interior. Then there is a 3-plane L which is parallel to T and separates a and the boundary of A. Let B be a closed 2-cell which contains a in its interior and is contained in X - L, let

C. T. YANG

D be the unit circular disk $|z| \leq 1$ in the complex plane and let ξ be a homeomorphism of *D* onto *B* mapping 0 into *a*. Let α' be the boundary of *D* and let

$$\mu\colon B - \{a\} \to \alpha'$$

be the map defined by

$$\mu(x) = \xi^{-1}(x)/|\xi^{-1}(x)|, \qquad x \in B - \{a\}.$$

Let M be a 3-plane which is parallel to T and separates a and the boundary of B, and let F be the boundary of the component of B - M containing a. Since

$$J = \{ (x, y) \in F \times F | |\mu(x) - \mu(y)| \ge 1 \}$$

is compact and, for every $(x, y) \in J$, the line joining x and y does not intersect the closed 3-cell $L \cap W$, there is a number $\epsilon > 0$ such that whenever $(x', y') \in B \times B$ such that for some $(x, y) \in J$, $|\xi^{-1}(x') - \xi^{-1}(x)| < \epsilon$ and $|\xi^{-1}(y') - \xi^{-1}(y)| < \epsilon$, x' and y' are distinct and the line joining x' and y' does not intersect $L \cap W$.

Let ϵ' be a number such that $\epsilon \geq \epsilon' > 0$ and that whenever $(x, y) \in F \times F$ such that for some $(x', y') \in B \times B$ with $|\xi^{-1}(x') - \xi^{-1}(x)| < \epsilon', |\xi^{-1}(y') - \xi^{-1}(y)| < \epsilon'$ and $\mu(x') = -\mu(y')$, (x, y) belongs to J. Since F separates a and the boundary of B in X, there is a simple closed curve α in the ϵ' -neighbourhood of F which separates a and the boundary of B in X. It is clear that the curve α can be so chosen that there are triangulations K and K' of α and α' respectively such that (i) $\phi: \alpha' \to \alpha'$ given by $\phi(z) = -z, z \in \alpha'$, is simplicial, (ii) $\mu: \alpha \to \alpha'$ given by $\mu(x) = \xi^{-1}(x)/|\xi^{-1}(x)|, x \in \alpha$, is simplicial, and (iii) whenever σ is a 1-simplex of K, $\mu(\sigma)$ is a 1-simplex of K'.

Since α is a simple closed curve in the closed 2-cell *B*, there is a closed 2-cell *E* in *B* having α as its boundary and containing *a* in its interior. Let

$$H = \{ (x, y) \in E \times E | x \neq y \},\$$

$$I = \{ (x, y) \in \alpha \times \alpha | \mu(x) = \phi \mu(y) \}.$$

It follows from Lemma 4 that there is a map

 $h: \alpha \times [0, 1] \to H$

such that for $x \in \alpha$,

$$h(x, 0) = (x, a), \quad h(x, 1) \in I.$$

Since *E* is a closed 2-cell containing *a* in its interior, there is a homeomorphism η of *D* onto *E* mapping 0 into *a*. Let *C* be the complex plane and let $p, q: H \to E$ be the maps given by

$$p(x, y) = x, \qquad q(x, y) = y, \qquad (x, y) \in H.$$

Now we define a map

$$\tau\colon C\times [0,1]\to R^n$$

as follows: Whenever $r \ge 0, z \in \alpha'$ and $t \in [0, 1]$,

$$\tau(rz, t) = \begin{cases} \eta((r/t)\eta^{-1}qh(\eta(z), t)) & \text{if } r < t; \\ qh(\eta(z), t) + (r-t)(ph(\eta(z), t) - qh(\eta(z), t)) & \text{if } r \ge t. \end{cases}$$

For a fixed $z \in \alpha'$, τ maps the half-line $\{(rz, 0) | r \ge 0\}$ into the half-line $a\eta(z)$ of endpoint a containing $\eta(z)$. It follows that

$$\tau(C \times \{0\}) = \bigcup_{x \in \alpha} ax = a\alpha.$$

Since every line intersects X at no more than two points, τ maps $C \times \{0\}$ homeomorphically onto $a\alpha$.

Let β be an oriented simple closed curve in X - A such that the local orientation of X at a point x of β is reversed when x moves along β once. Let $R^4 \cup \{\infty\}$ and $a\alpha \cup \{\infty\}$ be oriented. By Lemma 2, the linking number of the integral fundamental cycle b on β and the integral fundamental cycle c on $a\alpha \cup \{\infty\}$ does not vanish. Making use of the map τ constructed above, we can have a singular cycle c' in $\tau(C \times \{1\}) \cup \{\infty\}$ which is homologous to c in $\tau(C \times [0, 1]) \cup \{\infty\} \subset R^4 - \beta$. The linking number of b and c' is equal to that of b and c so that it does not vanish.

Let U be the component of W - L containing β . Then b, as a singular cycle in U, is bounding. For a fixed $z \in \alpha', \tau$ maps the half line $\{(rz, 1) | r \ge 0\}$ into the union of the arc $\{\eta r \eta^{-1} qh(\eta(z), 1) | 0 \le r \le 1\}$ in E and the half line of endpoint $qh(\eta(z), 1)$ containing $ph(\eta(z), 1)$. Since

$$(ph(\eta(z), 1), qh(\eta(z), 1)) = h(\eta(z), 1) \in I,$$

there is some $(x, y) \in J$ such that $|\xi^{-1}ph(\eta(z), 1) - \xi^{-1}(x)| < \epsilon'$ and $|\xi^{-1}qh(\eta(z), 1) - \xi^{-1}(y)| < \epsilon'$. By our choice of ϵ' , (x, y) belongs to J. It follows that the line joining $ph(\eta(z), 1)$ and $qh(\eta(z), 1)$ does not intersect $L \cap W$ and then does not intersect U either. From this result, we infer that $\tau(C \times \{1\})$ does not intersect U. Hence b is bounding in $\mathbb{R}^4 \cup \{\infty\} - \tau(C \times \{1\}) \cup \{\infty\}$, contrary to the fact that b and c' are linking. This completes the proof of our theorem.

Remark. For the case that n = 4 and X is *not* the projective plane, a simpler proof of our theorem may be given as follows. Since the first mod 2 Betti number of X is >1, there are two disjoint simple closed curves β and γ in X, such as β_1 and β_2' in the proof of Lemma 1, such that the local orientation of X at a point x of each of the curves is reversed if x moves along the curve once. Let D be the unit circular disk $|z| \leq 1$ in the complex plane. It is easy to construct a map

$$f: D \times [0, 1] \to X$$

such that

(i) f(0, 0) = f(0, 1) and f(0, t) moves along γ once as t varies from 0 to 1;
(ii) for every t ∈ [0, 1], f maps D × {t} homeomorphically onto a closed 2-cell E_t in X;

- (iii) $f(D \times [0, 1]) \subset X \beta$;
- (iv) for all $z \in D$, $f(z, 0) = f(\overline{z}, 1)$.

Let $a_t = f(0, t)$ and let α_t be the boundary of E_t . Let $R^4 \cup \{\infty\}$ and β be oriented and let $a_t \alpha_t \cup \{\infty\}$ be oriented such that the orientation is continuous in $t, 0 \leq t \leq 1$. By Lemma 2, the linking number l_t of the integral fundamental cycle on $a_t \alpha_t \cup \{\infty\}$ and that on β is an odd number. Since l_t is continuous in t, it is independent of t so that $l_0 = l_1$. On the other hand, $a_0 \alpha_0 \cup \{\infty\}$ and $a_1 \alpha_1 \cup \{\infty\}$ are identical but have opposite orientations. It follows that $l_0 = -l_1 = -l_0$. Hence $l_0 = 0$, contrary to the fact that it is odd.

References

- K. Borsuk, On the k-independent subsets of the euclidean space and of the Hilbert space, Bull. Acad. Polon Sci. Cl. III, 5 (1957), 351–356.
- 2. C. T. Yang, On k-independent sets (unpublished).

University of Pennsylvania

668