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In the interaction of water waves with marine structures, the interplay between wave
diffraction and drag-induced dissipation is seldom, if ever, considered. In particular, linear
hydrodynamic models, and extensions thereof through the addition of a quadratic force
term, do not represent the change in amplitude of the waves diffracted and radiated to
the far field, which should result from local energy dissipation in the vicinity of the
structure. In this work, a series of wave flume experiments is carried out, whereby waves of
increasing amplitude impinge upon a vertical barrier, extending partway through the flume
width. As the wave amplitude increases, the effect of drag – which is known to increase
quadratically with the flow velocity – is enhanced, thus allowing the examination of the
far-field effect of drag-induced dissipation, in terms of wave reflection and transmission.
A potential flow model is proposed, with a simple quadratic pressure drop condition
through a virtual porous surface, located on the sides of the barrier (where dissipation
occurs). Experimental results confirm that drag-induced dissipation has a marked effect
on the diffracted flow, i.e. on wave reflection and transmission, which is appropriately
captured in the proposed model. Conversely, when diffraction becomes dominant as the
barrier width becomes comparable to the incoming wavelength, the diffracted flow must
be accounted for in predicting drag-induced forces and dissipation.
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1. Introduction

The interaction of sea surface waves with natural and artificial marine structures lends
itself to a wealth of analytical and numerical models (Faltinsen 1993; Linton & McIver
2001; Mei, Stiassnie & Yue 2005; Folley 2016). Intensive computations, such as those
required for structure optimisation or for the determination of long-term force and motion
statistics, together with the need for intelligibility and analytical tractability, call for
relatively simple models, whereby wave force calculations and the structure dynamics are
based on linear hydrodynamic theory, and extensions thereof through additional modelling
terms. Such models are essential tools in the design and optimisation of ships, offshore
structures, etc. – without negating the importance of more realistic numerical models to
study specific events.

For structures of characteristic dimension small with respect to wavelength, and
comparable to or smaller than the wave amplitude, wave forces are dominated by inertial
terms (i.e. the dynamic pressure forces due to the incident, undisturbed flow, also termed
Froude–Krylov forces, together with added-mass terms) and drag terms (i.e. due to flow
separation) (Mei et al. 2005). Slender structures (Luhar, Infantes & Nepf 2017) and small
surface scatterers (Garnaud & Mei 2010) belong to this category. In contrast, for structures
with characteristic size comparable to or larger than the wavelength and wave height,
diffraction forces (i.e. due to the flow modification induced by the presence of the solid
body) dominate. Between those two archetypal scenarios, there exist more nuanced cases
where inertia is significant, alone or in combination with diffraction, and cases where the
three types of forces should be modelled. Those different wave force regimes are depicted
in the diagram of figure 1, reproduced from Chakrabarti (1987).

In drag- and inertia-dominated situations, the effect of the structure on the wave field
is assumed negligible, and one is therefore primarily interested in the structure forces
or motion, rather than in the flow. Hydrodynamic forces are typically modelled as a
quadratic damping drag term and a linear inertial term (Morison, Johnson & Schaaf
1950). The damping term is similar in form to the force used for constant flows, with a
different coefficient, which accounts for the oscillatory nature of the flow (Keulegan &
Carpenter 1956). Such formulations are convenient, since they are not difficult to compute
in numerical simulations, and they encapsulate the nonlinear nature of drag-induced
forces, which increase more than linearly with the amplitude of the relative flow velocity.
However, they do not indicate how the wave field is modified. In many cases, however,
the effect on the wave field is also important to examine, when collective effects enter
into account (seagrass, arrays of cylinders or other wave-dissipating structures Garnaud
& Mei 2010; Luhar et al. 2017; Nové-Josserand, Godoy-Diana & Thiria 2019), or when
the motion of the structures is such that a significant fraction of the wave energy can be
absorbed or dissipated, in spite of the small structure dimension, as is often the case for
‘point-absorber’ wave energy converters (Budal & Falnes 1975).

When diffraction is dominant, the effect of the structures on the wave field is
duly represented in linear hydrodynamic models. However, even diffraction-dominated
structures may require the inclusion of drag-induced terms, at least to avoid unrealistically
large predictions of the structure or fluid motion, for example around the resonant
frequency of a floating structure or for particular fluid modes. Drag forces are
especially important when the wave energy budget is of interest, in particular for
diffraction-dominated wave energy converters such as the large, flap-like devices known
as ‘oscillating wave surge converters’ (Cummins & Dias 2017), or for coastal protection
devices such as breakwaters. In such cases, consistently with the additional quadratic
force formulation, vortices lead to a loss of energy, that should be (physically) subtracted
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Figure 1. Different wave force regimes (Chakrabarti 1987), as reproduced from Negro et al. (2014). For
structures of characteristic dimension small with respect to wavelength (πD/λ� 1), and comparable to or
smaller than the wave amplitude (H/D ≥ 1), wave forces are dominated by inertial and drag terms. For
structures with characteristic size comparable to or larger than the wavelength (πD/λ ≥ 1) and wave height
(H/D ≤ 1), diffraction forces dominate. Between those two archetypal scenarios, there exist more nuanced
cases.

from the wave field. To our knowledge, this effect has not been taken into account in the
numerical modelling of wave energy arrays (Folley 2016; Verbrugghe et al. 2017; Vervaet
et al. 2022).

In short, there are a variety of situations where it is important to model accurately both
the diffraction effect of structures on the wave field, together with drag-induced forces
and the resulting flow modifications. In those situations, drag-induced dissipation should
reduce the amplitude of the waves that are diffracted and radiated to the far field, while, in
return, wave diffraction or radiation by the structures modify the flow locally, thus making
the pertinent relative velocity different from that of the incident flow, which should alter
drag-induced dissipation. This relation between the far-field and locally dissipated energy
is seldom articulated in hydrodynamic models. A notable exception concerns the study of
slotted barriers (Bennett, McIver & Smallman 1992; Isaacson, Premasiri & Yang 1998),
porous screens and media (Arnaud et al. 2017; Mackay & Johanning 2020) and other
breakwater-like devices, designed at reflecting and dissipating a significant fraction of
the incident wave energy. Concerning the hydrodynamics of rigid, impermeable bodies,
where dissipation mostly occurs near corners and sharp edges, the authors of the present
study have not been able to find any study which indicates how vortex shedding affects the
far-field flow. At best, based on experimental data, a couple of studies limit themselves to
noting that drag-dissipated energy seems to be removed from the transmitted, rather than
the reflected, wave (Knott & Mackley 1980; Stiassnie, Naheer & Boguslavsky 1984).
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Figure 2. Problem geometry and main notations: (a) side view, (b) front view. A vertical, rigid, rectangular
plate of width w is located in the middle of a wave channel of width W and depth h. The flow is described
through linear potential theory. The incident wave, represented by the incident potential flow φI , impinges
upon the barrier. The scattered flow is denoted as φ− in the up-wave zone, and φ+ in the down-wave zone.

In this article, we highlight experimentally the importance of the interplay between
wave diffraction, on the one hand, and drag-induced forces and dissipation, on the
other hand, and we suggest modelling approaches which encapsulate it. To do so, we
consider the simple case of wave diffraction by a vertical plate in a channel, which is
equivalent to an infinite row of fixed vertical structures parallel to the wave front. In
such a set-up, the far-field representation reduces to incident, reflected and transmitted
waves, which greatly simplifies the analysis. In particular, we shall make use of the
geometrical framework proposed by Mérigaud, Thiria & Godoy-Diana (2023), which
consists of representing the transmission coefficient in the complex plane, and allows for
a straightforward visualisation of the energy budget between reflected waves, transmitted
waves and power dissipation near the structure.

The remainder of this article is organised as follows: in § 2, linear potential flow theory
is used to model the diffraction problem, and the inclusion of drag-induced dissipation and
forces within this modelling framework is discussed, while the details of the mathematical
and numerical solution are left to Appendix A. Based on a geometrical representation, § 3
discusses how the far-field flow (that is, reflected and transmitted waves) may be modified
in the presence of drag-induced dissipation, and explores the connection between wave
reflection and the hydrodynamic forces exerted onto the structure. In § 4, the application
of the more usual Morison drag force model is detailed for our case study. Section 5,
complemented with Appendix B, introduces the experimental set-up and procedure, and
§ 6 shows the experimental results, compared with their numerical counterparts. Finally,
conclusions and avenues for future work are outlined in § 7.

2. Potential flow model and numerical solution

2.1. Linear potential flow model
A vertical, rigid, rectangular plate is located in the middle of a channel of width W, filled
with water. The plate extends vertically throughout the whole water depth h, assumed
constant, laterally over a width w, and it is considered infinitely thin. The origin of the
Cartesian frame is chosen to be the middle of the channel, at the bottom of the barrier; x, y
and z represent the longitudinal, lateral and vertical position coordinates, respectively. The
problem geometry and notations are summarised in figure 2.

The fluid is assumed inviscid, incompressible and the flow irrotational. The flow can
thus be described through potential flow theory whereby, everywhere, the flow local
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velocity vector u is calculated from the potential function φ(x, y, z, t) as

u = ∇φ. (2.1)

Small perturbations are assumed, so that linear potential theory can be employed
throughout. The potential satisfies the Laplace equation within the fluid domain, which
reads

∇2φ = 0, (2.2)

together with boundary conditions. The kinematic-dynamic boundary condition at the free
surface reads

∂2φ

∂t2
+ g

∂φ

∂z
= 0 in z = h, (2.3)

where g is the gravity constant.
No-flow conditions hold on solid boundaries, i.e. at the sea bottom

∂φ

∂z
= 0 in z = 0, (2.4)

at the vertical lateral walls
∂φ

∂y
= 0 in y = ±W/2 (2.5)

and on the two sides of the vertical barrier

∂φ

∂x
= 0 in x = 0+−, |y| ≤ w/2. (2.6)

A harmonic incident wave with frequency ω travels forward along the channel. Using the
problem linearity, in steady state, all quantities can be defined harmonically. In particular,
the potential, dynamic pressure, flow velocity and free-surface elevation are defined from
spatial complex functions φ̂(x, y, z), p̂(x, y, z), û(x, y, z) and η̂(x, y) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
φ(x, y, z, t) = Re{φ̂(x, y, z)e−iωt}
p(x, y, z, t) = Re{p̂(x, y, z)e−iωt}
u(x, y, z, t) = Re{û(x, y, z)e−iωt}
η(x, y, t) = Re{η̂(x, y)e−iωt}.

(2.7)

2.2. Introducing drag-induced dissipation to the potential solution
Although the incident wave amplitude may be smaller than the obstacle characteristic
dimension w, the singularities at the sharp edges of the thin barrier result in a locally large
flow velocity, thus inducing flow separation and vortices, which cannot be represented in a
potential flow framework. We therefore adopt an approach similar to that of Cummins
& Dias (2017), which consists of introducing a porous-wall condition across a virtual
dissipative surface near the edges of the barrier, where vortices are known to occur.
Such conditions at an interface are commonplace in the modelling of breakwaters,
porous screens or slotted structures (Bennett et al. 1992; Isaacson et al. 1998; Mackay
& Johanning 2020), where they allow the determination of the structure reflection and
transmission coefficients. Only more recently have they been proposed for impermeable
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bodies, with the different aim of preventing the calculation of unrealistic spikes in the
hydrodynamic response of oscillating structures or fluid modes (Chen, Duan & Liu 2011;
Cummins & Dias 2017; Feng, Chen & Dias 2018).

In the work of Cummins & Dias (2017), the virtual surface has two parameters, which
should both be calibrated experimentally, namely a dissipation coefficient, and the width
of the virtual surface where dissipation is expected to take place. Note, however, that this
is only one of many possibilities to introduce dissipation on the virtual surface. It could be
imagined, for example, that the porosity properties instead change gradually according to
some continuous profile. Such an idea is detailed further in Appendix A.

In this work, we simplify the model by extending the width of the virtual porous screen
to the whole gap between the barrier edge and the channel lateral wall (i.e. w/2 ≤ |y| ≤
W/2), so that only the porosity coefficient needs to be tuned. In addition, the pressure drop
at the interface is expressed as a quadratic function of the local flow velocity. In spite of
the chosen homogeneous porosity profile, because of the quadratic pressure drop, energy
dissipation increases cubically with the local flow velocity, so that the model should predict
energy dissipation occurring predominantly in the vicinity of the barrier edge singularity,
where the local flow velocity grows to infinity.

In mathematical terms, the porous-wall condition implies that the x-wise velocity is
continuous, while the drop in dynamic pressure p = −ρ(∂φ/∂t) is expressed as

− ρ

[
∂φ+
∂t
− ∂φ−

∂t

]
= −1

2
ρεq|∇φ|2 sign

(
∂φ

∂x

)
, (2.8)

where εq is a non-dimensional parameter to identify from our experiments. In this way,
the instantaneous dissipated power P = 1

2ρεq|∂φ/∂x||∇φ|2 is proportional to the flux of
kinetic energy across the virtual surface.

For the problem to be solved numerically, we need to linearise condition (2.8), as

− ρ

[
∂φ+
∂t
− ∂φ−

∂t

]
= −ρ

g
ω

εl
∂φ

∂x
, (2.9)

where εl is found according to the Lorentz linearisation principle, i.e. such that the
dissipated power is equal for both quadratic and linear pressure drop formulations.
The latter condition reads Pl(εl) = Pq(εl), where the ‘linear-case’ and ‘quadratic-case’
dissipated power values are given as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Pl(εl) = 1

T
ρεl

g
ω

∫ T

0

∫ h

0

∫ W/2

−W/2

∣∣∣∣∂φεl

∂x

∣∣∣∣
2

|η̂I|2 dy dz dt

Pq(εl) = 1
T

1
2
ρεq

∫ T

0

∫ h

0

∫ W/2

−W/2
|∇φεl |2

∣∣∣∣∂φεl

∂x

∣∣∣∣ |η̂I|3 dy dz dt,

(2.10)

where φεl is the potential per unit incident wave amplitude, obtained from the linear
problem with condition (2.9), and η̂I is the complex incident wave amplitude.

The quadratic loss coefficient εq could be finely tuned based on experimental data.
However, in this article, the choice is made to set this coefficient to a constant value of
1 throughout all wave frequencies, amplitudes and barrier dimensions, which amounts to
stating that the energy, dissipated by the vortices during every half-wave cycle, equals the
flux of kinetic energy through the interface during the same period of time. As shall be seen
in § 6, even such a simple approximation gives satisfactory agreement with experimental
data across the range of test conditions.
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2.3. Numerical solution
Wave diffraction by a vertical barrier in a channel is a well-known hydrodynamic problem,
which can be efficiently solved using matched eigenfunction expansion methods, as in
Dalrymple & Martin (1990). The approach of Dalrymple & Martin (1990) is extended,
by Wang et al. (2016), to the solution of the radiation problem for oscillating wave
surge converters (i.e. when the vertical barrier is able to pitch). In this work, we
introduce minor generalisations of Dalrymple & Martin (1990) and Wang et al. (2016),
namely by allowing the vertical structure to undergo arbitrary deflection modes, and by
defining an arbitrary matching profile which accommodates, in a unified formulation,
solid-wall, porous-wall and continuity conditions, across the interface of the vertical
barrier plane. The mathematical and numerical details of the solution method are provided
in Appendix A.

3. Far-field solution and hydrodynamic forces

3.1. Effect of drag on the far field
Assuming that the wave frequency is below the channel cutoff frequency (that is, the
wavelength is larger than W), the far-field scattered solution reduces to a transmitted plane
wave and a reflected plane wave. Complex coefficients of reflection R̂ and transmission T̂
can thus be defined, which account for both a change in amplitude and a phase shift. In this
section, we explain how transmission and reflection coefficients can be used to summarise
and understand the main outcomes of the wave–structure interaction.

To do so, we adopt the geometric representation of reflection and transmission
coefficients proposed by Mérigaud, Thiria & Godoy-Diana (2021) and further generalised
and detailed by Mérigaud et al. (2023). Since the barrier is infinitely thin, it can be shown
(Mérigaud et al. 2021) that

R̂+ T̂ = 1. (3.1)

Thus, it suffices to represent T̂ to also represent R̂, which can be read as 1− T̂ . Note that,
for other shapes of obstacles, one would still have the property |R̂+ T̂| = 1 (Mérigaud
et al. 2023).

Without dissipation, the incident wave energy is preserved in transmitted and reflected
waves, which translates mathematically as |R̂|2 + |T̂|2 = 1. Combined with (3.1), this
ensures that T̂ is located on a circle with centre (1/2, 0) and radius 1/2, as exemplified
in figure 3 through the case labelled 0©. When dissipation is introduced, as explained in
§ 2.2, or as will be the case with physical experiments, the sum of transmitted and reflected
energy coefficients decreases below unity, and the transmission coefficient location thus
moves towards the interior of the circle, as in cases 1©, 2© and 3© of figure 3. More
precisely, the dissipated power Pd, relative to the incident wave power Pwave, can be read
through the distance r from T̂ to the centre (1/2, 0), as Pd/Pwave = 2(1/4− r2) (Mérigaud
et al. 2023).

As explained in the introduction, one of the primary objectives of this work is to study
how drag-induced dissipation affects the far-field solution. Using the proposed geometric
approach allows a straightforward visualisation of whether transmission, reflection or both,
are modified by introducing drag, as illustrated in figure 3. In the figure, cases 1©, 2© and
3© outline different possible hypotheses regarding the far-field modification due to drag:

in case 1©, only transmitted energy decreases, leaving the reflection coefficient magnitude
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Figure 3. Transmission and reflection coefficients T̂ and R̂ represented in the complex plane, in a
dissipation-free scenario 0© and in three possible dissipative scenarios 1©, 2© and 3©. 1© Assumes that only T̂
is affected by dissipation, 2© assumes that only R̂ is affected, while 3© assumes an intermediate situation.

unchanged, in case 2©, on the contrary, only reflected energy decreases, while case 3©
represents an intermediate scenario.

3.2. Hydrodynamic forces and reflection coefficients
In this subsection, a linear potential flow solution is assumed, as in § 2. Consider ζ(z) the
deflection profile of the vertical barrier in the x direction (in this case, a small rotation
around its hinge axis), and p̂ = iωρφ̂ the dynamic pressure from the potential solution
φ̂ for a unit amplitude incident wave. With an incident wave with amplitude η̂I , the
hydrodynamic force due to the unsteady pressure can be calculated as

f̂h = êη̂I, (3.2)

where the excitation force coefficient ê is calculated as follows:

ê =
∫ h

0

∫ W/2

−W/2
ζ(z)[p̂−( y, z)− p̂+( y, z)] dy dz. (3.3)

When no dissipation occurs, as is usually the case in the linear hydrodynamics of
impermeable bodies, the pressure continuity in the gap between the barrier and the wall
ensures that the integral contribution for |y| > w/2 is zero in (3.3). We denote as ê0 the
excitation coefficient obtained at a given frequency, assuming no dissipation.

Let us now consider the modified potential flow solution, with a pressure drop at the
interface, as detailed in § 2.2. Applying (3.3) results in a generalised excitation force
coefficient ê, different from that of the dissipation-free case ê0. In particular, with the
virtual porous surface, the pressure contribution for |y| > w/2 is no longer zero. The
difference with respect to ê0 can thus be interpreted as the linearised drag force coefficient,
êd = ê− ê0. The total hydrodynamic force can now be further detailed as

f̂h = f̂0 + f̂d,l, (3.4)

with f̂0 = ê0η̂I the traditional (dissipation-free) excitation force, and f̂d,l = êdη̂I the drag
force.

There exists a direct mathematical connection between the far-field solution and the
excitation force. More specifically, it can be shown, see (A30), that

ê = 2ρgWγ0R̂, (3.5)

where γ0 denotes the projection of the deflection profile onto the first fluid vertical
eigenmode, defined in (A27).
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0

R̂0R̂d

R̂1

T̂0

T̂1 1

11/2

1/2

Im
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Figure 4. Transmission and reflection coefficients T̂ and R̂ represented in the complex plane, in a
dissipation-free scenario 0© and in a dissipative scenario 1©. The reflection coefficient R̂1 can be decomposed
into a dissipation-free component R̂0, related to the linear excitation force coefficient ê0 through (3.5), and a
drag component R̂d , related to the drag force through (3.6) and (3.7).

Thus, the coefficient R̂, as visualised in the complex plane according to our proposed
geometrical framework, indirectly represents both the magnitude and the phase of the
generalised excitation force coefficient. Figure 4 illustrates how the connection between
hydrodynamic forces and reflection coefficients can be employed, to infer the complex
drag force coefficient from reflection measurements. By considering the difference, in
R̂, between the dissipation-free 0© and dissipative 1© cases, i.e. using R̂d = R̂1 − R̂0, the
linearised drag force can be inferred using (3.5)

f̂d,l = êdη̂I, (3.6)

with
êd = 2gρWγ0R̂d. (3.7)

It is also interesting to note that the drag force does not necessarily increase the total
hydrodynamic force magnitude: depending on how exactly R̂ is modified by the occurrence
of drag, which indicates the relative phase of the two excitation force components, the
total force magnitude may increase, decrease or remain unchanged. Although it is based
on linear potential flow results, (3.5) will be verified experimentally in § 6, where it will
be used to indirectly measure the drag force magnitude.

4. Morison model for drag-induced forces

A more common approach to accommodating drag forces, in an otherwise linear
hydrodynamic model, consists of introducing a quadratic force term acting on the
structure, as proposed by Morison et al. (1950). Let urel be an appropriately chosen relative
velocity between the structure and the oscillatory flow. Then the drag force is usually
expressed as

fM(t) = 1
2ρwCDurel(t)|urel(t)|, (4.1)

where ρ is the density of water, w is some characteristic dimension of the structure and CD
is a drag coefficient. In the case of vertical plates which we study here, CD can be given
by a semi-empirical formula depending on the Keulegan–Carpenter number KC, see for
example Luhar & Nepf (2016), of the form

CD = αKC−1/3, (4.2)

with KC = TUrel/w, T being the period of the reciprocating motion, Urel the amplitude
of the relative velocity oscillations urel and α a constant, real positive coefficient.
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Regarding the coefficient α, slightly different values are reported in the literature, such
as 7.8 (Graham 1980) or 8 (Faltinsen 1993), but in the rest of this study, following Luhar
& Nepf (2016), this coefficient is rounded up to α = 10. As KC tends to infinity, however,
the formula should be corrected to ensure that CD tends to its ‘stationary stream’ value of
1.95. In the case of a fixed vertical structure, the relative velocity urel(t) is usually chosen
as the horizontal velocity of the incident, undisturbed flow, ux,I(t).

In the application of (4.1) to our case study, the formula is modulated along the depth to
account for vertical variations in the flow velocity, as in Luhar & Nepf (2016). The local
drag force thus reads

fM(z, t) = 1
2ρwCD(z)ux,I(z, t)|ux,I(z, t)|, (4.3)

where

ux,I(z, t) = Re
{

gk
ω

cosh kz
cosh kh

η̂Ie−iωt
}

, (4.4)

and CD(z) is obtained from (4.2) using

Urel(z) = gk
ω

cosh kz
cosh kh

|η̂I |. (4.5)

From (4.3), the time-averaged local power dissipation is obtained as

PM(z) = 1
T

1
2
ρwCD(z)

∫ T

0
|ux,I(z, t)|3 dt, (4.6)

which, after some simple algebra, yields

PM(z) = 4
3π

1
2
ρw

(
T
w

)−1/3 (
cosh kz
cosh kh

)8/3 ∣∣∣∣gk
ω

η̂I

∣∣∣∣
8/3

, (4.7)

where the term (gk/ω)η̂I represents the horizontal velocity amplitude at the free surface.
The local Morison force fM(z, t) can be approximated linearly following Lorentz’s

principle, to ensure that the corresponding dissipation is equal in the quadratic formulation
and in its linear approximation. Such a linear drag force formulation reads, for example

fM,l(z, t) = 1
2ρwCl(z)ux,I(z, t). (4.8)

The corresponding average dissipated power is found to be

PM,l(z) = 1
4
ρwCl(z)

(
cosh kz
cosh kh

)2 ∣∣∣∣gk
ω

η̂I

∣∣∣∣
2

. (4.9)

Equating PM,l(z) and PM(z), one finds

Cl(z) = 8
3π

(
T
w

)−1/3 (
cosh kz
cosh kh

)2/3 ∣∣∣∣gk
ω

η̂I

∣∣∣∣
2/3

. (4.10)

Finally, integrating (4.8) along the barrier deflection profile, and taking the Fourier
transform, provides the total linearised drag force f̂M,l, which relates to the incident wave
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Wave probes

Wavemaker
Force transducer

Dissipation beach

Vertical plate

Figure 5. Wave channel set-up.

amplitude through a linearised drag force coefficient êd,M

f̂M,l = êd,Mη̂I, (4.11)

where

êd,M = 1
2
ρw

gk
ω

∫ h

0

cosh kz
cosh kh

ζ(z)Cl(z) dz. (4.12)

The parameter êd,M in (4.11) is the equivalent for êd in (3.6). In the Morison force
model, the drag force is synchronised with the incident velocity, as in (4.3). Accordingly,
the resulting linearisation coefficient êd,M of (4.12) is a real number, so that the drag force
of (4.11) is in phase with the incident wave elevation ηI .

The Morison force model does not explicitly specify how the flow is affected by
dissipation. However, if one were to speculate about a possible relation between the drag
force and the far-field flow, it would not be without merit to assume that (3.7) remains
valid. In such a case, because êd,M is a real number, the reflection coefficient R̂ would
change horizontally, from a dissipation-free case to a dissipative case.

5. Experimental set-up and procedures

5.1. Experimental set-up
A series of experiments was carried out in the wave flume of the Laboratoire Ondes et
Milieux Complexes (LOMC) – Waves and Complex Media Lab, in Le Havre, France.
The LOMC wave flume is 35 m long, 1.2 m high and 0.9 m wide. It is equipped with
a piston-type wavemaker at one end of the channel, and a sloping beach at the other
end to reduce wave reflection. Two arrays of four resistive wave gages each are used
for accurate free-surface elevation measurements. Throughout all experiments of this
study, the water depth is 0.4 m. The general set-up is depicted in figure 5. Note that the
wavemaker features an active wave absorption system, which efficiently prevents unwanted
consecutive reflections on the wavemaker surface.

As depicted in figure 5, a polymethyl methacrylate plate is positioned vertically, centred
across the channel width, approximately half-way between the wavemaker and the beach.
The plate is hinged to the flume bottom, while it is maintained vertically by a force
transducer, rigidly connected to the flume superstructure. Thus, the transducer force
measurements give access to the total moment, about the hinge axis, of the fluid forces
exerted by the flow on the barrier.

The resistive wave gages record the wave elevation with a 100 Hz sampling frequency,
while the transducer has a 1000 Hz sampling frequency. In the latter case, the large
sampling frequency allows for effectively filtering out the sensor noise, as detailed in
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Appendix B.3. In any case, most of the analysis presented in this work relies on the
Fourier amplitude of the signals at the wavemaker frequency (between 0.4 and 1.2 Hz),
which makes the sampling rates more than sufficient for the purpose of this study.

5.2. Experimental plan
Plates of three different width values, w = 20, 40 and 60 cm, are studied. In each
experiment, the wavemaker generates a monochromatic wave, with a target frequency
and amplitude (as measured at the wavemaker position). The nominal frequencies range
from 0.4 to 1.2 Hz, while the nominal amplitudes range from 2 to 80 mm. However,
some frequency–amplitude combinations were not explored, to prevent possible damage
onto the plate or transducer. In addition, in some of the experiments, large higher-order
wave harmonics do not allow for accurate measurements of the energy budget. Those
experiments were discarded, following the procedure outlined in Appendix B.3. Finally,
the range of nominal frequencies and amplitudes, initially considered, and eventually
included in the analysis, are summarised in the tables of figure 19.

5.3. Signal processing
Each experiment is at least 100 s long, to ensure that the steady state is reached along
the whole channel length. The recorded signals are the eight resistive wave probe signals
and the force transducer signal. For every experiment, only the second half of the record
is used, to ensure that the steady-state regime is reached. The Fourier transform of each
signal is calculated, at the prescribed wavemaker frequency. Prior to the Fourier transform,
however, the signal is truncated so that its duration is a multiple of the prescribed
wavemaker period, which mitigates frequency leakage. An example of experimental record
is presented in more detail in Appendix B.3.

Eventually, each experiment results in 8 complex wave amplitudes η̂i, i = 1 . . . 8, and
the complex transducer force amplitude F̂m. The transducer force amplitude is used to infer
the total excitation force in the pitch mode of motion, as explained in § 5.4, and the wave
amplitudes are used to calculate forward- and backward-propagating wave components,
in the up-wave and down-wave zones, using the procedure outlined in Appendix B.1,
ensuring that the longitudinal dissipation in the flume is accounted for. Those wave
components are employed to calculate the reflection and transmission coefficients, as also
detailed in B.1.

5.4. Force measurements
The transducer force measurement Fm is related to the pressure forces as follows:

HFm(t) =
∫ w/2

y=−w/2

∫ h

z=0
z[p−( y, z, t)− p+( y, z, t)] dz dy, (5.1)

where H = 0.80 m is the height of the transducer with respect to the hinge axis, h is
the water depth and p−( y, z, t) and p+( y, z, t) are the pressure profiles onto the back
and front sides of the barrier. Taking the Fourier transform of (5.1) in steady state, one
recognises the generalised excitation force of (3.3), with the deflection mode ζ(z) = z,
which corresponds to a small pitch angle rotation about the plate hinge axis. Thus, the
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transducer measurements F̂m and the hydrodynamic force f̂h are related as follows:

f̂h = HF̂m. (5.2)

Thus, in our experiments, the generalised hydrodynamic force f̂h takes the form of the
moment, about the barrier hinge axis, of hydrodynamic pressure forces.

5.5. Reflection and transmission coefficient measurements
The main focus of this work is to assess the effect of drag-induced dissipation on the
far-field diffracted flow, which is described by means of reflected and transmitted travelling
waves. With that aim, incident waves of various amplitudes and frequencies are sent
to interact with the vertical plate, and the resulting transmitted and reflected waves
are measured. As the incident wave amplitude is increased linearly, the magnitude of
drag-induced forces should increase quadratically, so that the dissipated energy should
increase cubically, while the incident wave energy increases with the square of the
amplitude. The effect of drag on the far-field flow should then become more visible as
the wave amplitude increases: with small wave amplitudes, very little departure from
linear theory should be observed, while, with larger amplitudes, dissipation should have
an appreciable effect on the flow, by withdrawing a significant fraction of the energy
diffracted away from the structure.

More specifically, reflection and transmission coefficients should be affected, in a way
which accounts for the energy withdrawn from the wave field, as discussed in § 3.1. By
measuring transmitted and reflected waves propagating away from the structure, the ratio
of energy dissipation is calculated as Pd/Pwave = 1− |R̂|2 − |T̂|2, where T̂ and R̂ are the
measured (complex) transmission and reflection coefficients. In addition, it can be assessed
whether the dissipated energy is rather withdrawn from the transmitted wave, the reflected
wave or both.

In summary, reflection and transmission measurements are instrumental in
understanding the flow energy budget, and its drag-induced modifications. In addition,
as shown in § 3.2, the reflection coefficient can also be used to estimate the excitation and
drag force magnitude, as will be seen in § 6.2. The detail of the calculation of R̂ and T̂ ,
based on wave amplitudes η̂i, i = 1 . . . 8, is presented in Appendix B.1.

6. Results

6.1. Transmission and reflection coefficients
Reflection and transmission results are presented in figure 6 for the three plates, and for
various frequencies and nominal wavemaker amplitudes, using the geometrical framework
summarised in § 3. For each experimental point, its model counterpart (from the model of
§§ 2.1 and 2.2) is plotted using the same marker shape and face colour, but with a black
border. The dissipation-free model results (which do not depend on the wave amplitude)
are also shown for each frequency, as black markers, which all rightly appear along the
circle since no energy is dissipated.

Let us first briefly comment on the linear behaviour of the barrier, i.e.
the transmission coefficient for the smallest wave amplitudes. As frequency increases,
transmission decreases (and reflection increases). Besides, at any given frequency, the
transmission coefficient decreases with the plate width. In short, reflection is more
important when kw increases. The precise location of T̂ , for the smallest incident wave
amplitudes (where the least dissipation is expected to take place), is in reasonably good
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Figure 6. Transmission coefficient in the complex plane: experiments and model. Black markers indicate the
model dissipation-free coefficients. (a) Small plate – w = 20 cm. (b) Medium plate – w = 40 cm. (c) Large
plate – w = 60 cm.
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agreement with that predicted by the potential flow model of § 2.1 with no dissipation, and
which is exactly located on the circle.

However, by examining figure 6(c), which shows reflection and transmission results
for the largest plate, it can be noted that the potential flow model does not accurately
capture the angular position of the transmission coefficient along the circle observed
experimentally. This error, however, does not seem to depend on the incident wave
amplitude, and thus cannot be attributed to an inherently nonlinear modelling error.
A couple of tests, based on the numerical model of § 2, have helped us formulate plausible
explanations. In practice, the plates were not perfectly rigid, so that appreciable deflection
occurred during the experiments, of the order of 1 cm of maximum deflection for a
4 cm amplitude wave (8 cm trough to crest). Although relatively modest at first glance,
for the largest plate the waves radiated by this motion may not be negligible, and thus may
explain inaccuracies in the numerical results, which only represent the diffraction problem.
Another possible explanation lies in the narrow width (15 cm) of the gaps between the
large barrier edges and the flume vertical sidewalls. For the modelling of an oscillatory
flow through narrow slots, it is customary to introduce a linear added inertial term in the
boundary condition, with an empirically tuned ‘effective orifice length’ parameter, see e.g.
Bennett et al. (1992) or Mei et al. (2005), chapter 6. As pointed out in Appendix A.1, the
addition of such an inertial term in our model is possible, although beyond the scope of
this work. Since this added inertia is a linear, non-dissipative effect, it would result in a
change in the angular position of T̂ along the circle contour. Nevertheless, in the absence
of accurate plate deflection measurements throughout our set of experiments, we will not
speculate further about the cause of the observed mismatch.

Now considering the effect of wave amplitude on the reflection and transmission
coefficients, the experimental observations confirm that, as the wave amplitude increases,
more and more energy (relative to the incident wave energy) is withdrawn from the wave
field, as can be seen from the transmission coefficient location entering further inside
the circle. The direction in which the transmission coefficient moves indicates that the
dissipated energy is primarily at the expense of the transmitted wave, and yet does not, in
general, leave reflection unchanged. In fact, the reflection coefficient may at times increase
(for smaller kw values, i.e. small plate or small frequencies), or decrease (larger kw). The
drag-induced far-field modifications are thus not as simple as either case 1 or 2 in figure 3,
but, by comparing model and experimental points in figure 6, those modifications are
relatively well captured by the pressure drop model of § 2.2.

Finally, a Morison force model would be consistent with a horizontal modification of
the reflection coefficient, as discussed at the end of § 4. From figure 6, this only appears
to be the case, experimentally, for low kw (especially for the small plate), i.e. precisely in
the conditions where the forces are drag dominated, see figure 1. In contrast, the pressure
drop model captures the drag-induced far-field modifications across all conditions.

6.2. Drag forces and power dissipation
We now turn our attention to a more quantitative analysis of the results. In this section,
we intend to examine how the experimental drag forces compare with the predictions of
the pressure drop model of § 2.2, and those of the Morison force model of § 4. Ideally,
one would use the transducer measurements, which give access to f̂h = f̂0 + f̂d, see (5.1).
One would measure f̂h for the smallest incident waves, which would be an approximation
for f̂0, while other measurements of f̂h would provide f̂d through the relation f̂d = f̂h − f̂0.
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Figure 7. Experimental measurement of hydrodynamic moment (excitation + drag): direct measurement
through the force transducer vs indirect measurement through the wave reflection coefficient. (a) Small plate –
w = 20 cm. (b) Medium plate – w = 40 cm. (c) Large plate – w = 60 cm.

However, comparing the angle of f̂h across experiments would require force measurements
to be precisely synchronised across experiments (with respect to incoming waves).

Unfortunately, the wavemaker and wave probe measurement systems were distinct from
the transducer data acquisition set-up, so that wave elevation and force measurements
could not be precisely synchronised. This means that we do not have direct access to the
phase relation between η and the hydrodynamic forces, and we thus cannot compare f̂h
across two different experiments.

However, we can make good use of (3.5) to infer the excitation force coefficient ê in each
experiment, using solely the reflection coefficient measured and plotted in § 6.1. Before
doing so, we verify experimentally the validity of (3.5), by comparing the magnitude of
f̂h (directly measured from the transducer) with that estimated through (3.5), as shown in
figure 7. The agreement is found excellent for almost all experimental points. Therefore,
it seems a valid approach to relate the hydrodynamic forces to the reflection coefficient,
following (3.5).

Denoting as R̂d = R̂− R̂0 as the difference in reflection coefficient between the
drag-free and dissipative cases, the drag force can now be inferred as

f̂d,est = 2gρWγ0η̂I R̂d. (6.1)

It remains to estimate an experimental value for R̂0. To do so, for each frequency and for
each plate, the value T̂ for the smallest incident wave amplitude (A0 = 2 mm) is projected
onto the circle where dissipation-free coefficients should be located, thus yielding an
estimate for T̂0 and R̂0 = 1− T̂0, as illustrated in figure 8 for the medium-size plate.

The drag moment magnitude, empirically estimated through the above procedure, is
shown in figure 9, and compared with its model counterparts, obtained through the
Morison force model (left-hand side figures) and through the pressure drop model
(right-hand side figures). Both models seem to capture experimental results reasonably
well. The surfaces show how the two models extend beyond the experimental range of
amplitudes. Overall, the two models predict a similar drag force magnitude, except for
larger kw values, where the curves of the pressure drop model bend significantly. This
bending of the pressure drop model occurs for kw ≈ π, i.e. when the structure width is
comparable to half a wavelength, and it can be interpreted as the diffracted flow having a
substantial effect on drag creation.
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Figure 8. Experimental estimation of the drag-free transmission coefficient, for the medium plate
(w = 40 cm).

Finally, the amount of dissipated power, relative to that of the incident wave, can also
be measured as Pd/Pwave = 1− |T̂|2 − |R̂|2. Figure 10, which is organised identically to
figure 9, compares this amount with its model equivalents, i.e. by integrating (4.6) over z
in the Morison force model, and by calculating 1− |T̂|2 − |R̂|2 in the pressure drop model
(which is equivalent to, and easier than, using (2.10)).

The two models seem to perform similarly well under most conditions. However, the
pressure drop model has a tendency to overestimate power dissipation for the small plate,
more markedly so than the Morison force model. For the large plate, and for the larger kw
values (which correspond to f = 1 Hz and f = 1.2 Hz), the Morison force model strongly
overestimates the dissipated power. In contrast, the curvature of the pressure drop model
accurately captures the experimental data, thus highlighting the importance of including
the diffraction effect in the calculation of drag in cases where diffraction is dominant.

7. Conclusion

The experimental results clearly demonstrate the interplay between diffraction
and drag-induced forces and dissipation. In all conditions, i.e. for drag- or
diffraction-dominated flows, energy dissipation in the vortices has a marked effect on the
far-field diffracted flow. Overall, the dissipated energy is subtracted predominantly from
the transmitted wave, which is consistent with the results of previous studies (Stiassnie
et al. 1984) discussed in the introduction, but it would not be accurate to state that the
reflected wave remains unchanged. In fact, depending on the frequency and magnitude
of the incident wave, the presence of drag may reduce or increase the reflected wave
amplitude with respect to that of a hypothetical dissipation-free scenario; additionally,
in all cases, the phase of the reflection coefficient is modified.
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Figure 9. Moment of drag forces. Each experimental point is vertically connected to its model equivalent
through a dashed grey line. The surface represents how the model drag force extends across and beyond the
experimental range. All model points (black squares) are located on the surface. (a,b) Small plate – w = 20 cm.
(c,d) Medium plate – w = 40 cm. (e, f ) Large plate – w = 60 cm.

Conversely, the results for the largest kw values (which correspond to the largest plate
and largest frequencies) show that the diffraction-induced flow modification should be
taken into account when calculating drag forces and dissipation. Indeed, in those cases,
the experimental results show a marked bend, which is well captured by the pressure drop
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Figure 10. Average dissipated power relative to incident wave power. Each experimental point is vertically
connected to its model equivalent through a dashed grey line. The surface represents how the model dissipation
extends across and beyond the experimental range. All model points (black squares) are located on the surface.
(a,b) Small plate – w = 20 cm. (c,d) Medium plate – w = 40 cm. (e, f ) Large plate – w = 60 cm.
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model (where the diffracted flow is represented), but not by the Morison force model
(which is solely based on the incident flow).

Except for the latter case, the Morison force model compares well with experimental
data, in terms of drag force magnitude and power dissipation. However, it does not account
for the drag-induced far-field modification, nor does it represent accurately the phase of
the radiation force, except for the drag-dominated flows (smallest kw values, which occur
for the small plate).

The results from the pressure drop model, in terms of wave reflection and transmission,
drag forces and dissipation, albeit imperfect, are satisfactory across all conditions. In
particular, the far-field flow modification in the presence of drag seems to be realistically
represented. Note that those results were obtained using a relatively crude pressure drop
model, with only one parameter (namely, a dimensionless quadratic loss coefficient),
which was kept identical throughout all conditions. The agreement with experimental
points could certainly be improved, by fine tuning this parameter depending on the
frequency and on the plate size. Introducing a second parameter governing, for example,
the lateral extent of the virtual porous screen, would further enhance the results. However,
instead of heading towards more complexity, the point of this work is rather to account for
the diffraction–drag interplay with the least possible parameter tuning.
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Appendix A. Numerical solution methods

A.1. Scattering problem formulation
Consider the hydrodynamic problem described in § 2. The variables are all written as
harmonic functions, as specified in (2.7). Thus, (2.2)–(2.6) can be reformulated in terms
of the complex potential function. In the fluid domain, the Laplace equation reads

∇2φ̂ = 0. (A1)

At the free surface, the kinematic-dynamic boundary condition becomes

− ω2φ̂ + g
∂φ̂

∂z
= 0. (A2)

The no-flow conditions through the flume bottom and lateral walls are expressed as

∂φ̂

∂z
= 0, z = 0, (A3)

and
∂φ̂

∂y
= 0, y = ±W/2. (A4)
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Far-field effect of drag-induced dissipation

Finally, conditions apply over the vertical plane x = 0, where the barrier is located. On
the barrier, a no-flow condition applies

∂φ̂

∂x
= 0, x = 0, |y| ≤ w/2. (A5)

Without modelling the dissipation, the potential is continuous through the interface on the
two sides of the barrier, that is

φ̂+ − φ̂− = 0, x = 0, |y| ≥ w/2, (A6)

while the introduction of dissipation across a virtual porous wall, as in (2.9), takes the
following form:

φ̂+ − φ̂− = jg
ω2 εl

∂φ̂

∂x
, x = 0, |y| ≥ w/2. (A7)

We remark that conditions (A5), (A6) and (A7) generalise into the following condition,
valid along the whole lateral extent of the flume:

λ( y)
[
φ̂+ − φ̂−

]
= ig

ω2

[
1− λ( y)

] ∂φ̂

∂x
, x = 0, |y| ≤ W

2
, (A8)

where λ( y) is a real or complex function of y, which may vary continuously or stepwise,
over the flume width.

First, considering that λ is a real-valued function, λ( y) = 0 amounts to condition
(A5) (impermeable barrier condition), λ( y) = 1 amounts to condition (A6) (continuity
condition) and 0 < λ( y) < 1 amounts to condition (A7) (porous-wall condition), with the
equivalence

λ( y) = 1
1+ εl

. (A9)

Eventually, the set of equations to solve reduces to (A1)–(A4), together with (A8).
The function λ( y), which we choose to call the ‘matching profile’, accommodates any

y-wise variation in porosity. For example, it would be possible to make the profile vary
continuously between 0 at the barrier and 1 far from the barrier, for a refined representation
of where dissipation occurs the most. In addition, it would not be difficult to also make λ
vary with depth. Finally, in the study of porous screens and slotted or pierced barriers, it
is not uncommon to find matching conditions also involving inertial terms, in the form

φ̂+ − φ̂− =
[

jg
ω2 εl + L

]
∂φ̂

∂x
, x = 0, (A10)

where L is an ‘effective orifice length’ parameter, see e.g. Bennett et al. (1992). In such a
case, (A8) still holds, with λ taking complex values

λ( y) = 1

1+ εl − i
ω2

g
L

. (A11)
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A.2. Matched eigenfunction expansion solution
We now turn our attention to the mathematical and numerical solution of (A1)–(A4) and
(A8), through a matched eigenfunction expansion method. Although the approach relies
on the same principle as that of Dalrymple & Martin (1990) and Wang et al. (2016), the
more general matching profile formulations, proposed here, make it useful to provide the
mathematical and numerical procedure in some detail.

Since the depth is constant, using separation of variables, the problem is decomposed
into vertical fluid eigenmodes Zn(z), n ∈ N , see for example chapter 8 of Mei et al. (2005).
However, in the present diffraction problem, because the structure walls are perfectly
vertical, only the flow component following the mode Z0 is non-zero (Dalrymple & Martin
1990), where

Z0(z) = cosh kz
cosh kh

. (A12)

Hence, the scattered potential can be written as follows:

φ̂(x, y, z) = Z0(z)(âIeikx + ϕ̂0(x, y)). (A13)

In (A13), the first term âIZ0(z)eikx represents the incident potential flow, where âI relates
to the incident free-surface elevation amplitude η̂I as follows:

âI = −ig
ω

η̂I . (A14)

When solving the problem numerically, the incident potential amplitude is assumed equal
to unity, i.e. âI = 1.

The function ϕ̂0 satisfies the Helmholtz equation[
∇2 + κ2

0

]
ϕ̂0 = 0. (A15)

Let ϕ̂−0 denote the solution in the up-wave zone (x ≤ 0), and ϕ̂+0 the solution in the
down-wave zone (x ≥ 0). Using again separation of variables, the y dependency of the
potential functions ϕ̂−0 and ϕ̂+0 is decomposed into a set of sinusoids. Also using the
Helmholtz equation (A15) and the fact that the diffracted potential is always going away
from the structure, one finds⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ϕ̂−0 (x, y) =

∞∑
p=−∞

â−p exp(i(−βpx+ αpy))

ϕ̂+0 (x, y) = −
∞∑

p=−∞
â+p exp(i(βpx+ αpy)),

(A16)

where ⎧⎪⎨
⎪⎩

αp = 2pπ

W

β2
p + α2

p = κ2
0 ,

(A17)

and â+p and â−p , p = −∞ . . .∞ represent two sets of unknown complex coefficients.
The modes of (A16) represent propagating waves for all |p| such that κ2

0 − α2
p > 0, while

larger values of |p| yield evanescent modes, with amplitude decaying exponentially away
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Far-field effect of drag-induced dissipation

from the structure location. Note that, in the case of an incident wave length 2π/k larger
than the channel width W, the only propagating mode is for p = 0.

In x = 0, the x-wise flow velocity is continuous through the interface between the
up-wave and down-wave regions, that is

∂ϕ̂+0
∂x
− ∂ϕ̂−0

∂x
= 0, x = 0, |y| ≤ W/2. (A18)

Replacing ϕ̂ with its expression (A16), multiplying the equality by e−iαny, integrating over
y ∈ [−W/2;W/2] and using orthogonality of the functions eiαpy, it is easy to find that ∀p,
â+p = â−p , which allows us to drop the ± superscript and denote the unknown coefficients
as âp (see also Dalrymple & Martin 1990).

Finally, in order to determine the unknown coefficients âp, (A16) is injected in the
generalised matching condition of (A8), to derive the following equation:

G( y) = 0, |y| ≤ W/2, (A19)

where

G( y) =
∞∑

p=−∞

[(
2− gβp

ω2

)
λ( y)+ gβp

ω2

]
âpeiαpy − [

1− λ( y)
] gk

ω2 , (A20)

and

λ( y) =
{

0 (|y| ≤ w/2),

1 (|y| > w/2).
(A21)

Equation (A19) can be solved using a spectral method, that is, by projecting the equation
onto the basis functions eiαpy, up to a chosen truncation order. However, such a method was
found prone to numerical inaccuracies. Therefore, instead, the equation is solved through
the minimisation of the L2 norm, i.e. by minimising

F(â−P, . . . , â0, . . . âP) =
∫ W/2

−W/2
|GP( y)|2 dy (A22)

with respect to the coefficients âp, where P is the truncation order, and GP is the
Pth-order truncation of G. The approach is thus similar to the one of Dalrymple & Martin
(1990), with differences in the implementation because of the different formulation for the
matching function G( y).

By writing the optimality condition

∂F
∂ âq
= 0, (A23)

for q = −P . . . P, one finds, after some cumbersome but simple algebra, the following set
of 2P+ 1 linear equations:

P∑
p=−P

[
4Ap−q + g2

ω4 βpβ
∗
q Bp−q + 2g

ω2 βpCp−q + 2g
ω2 β∗q C∗q−p

]
âp

=
[

kg2

ω4 β∗q B−q + 2kg
ω2 C−q

]
, (A24)
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where the terms Ap, Bp and Cp, −2P ≤ p ≤ 2P, are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ap = 1
W

∫ W/2

−W/2
|λ( y)|2eiαpy dy

Bp = 1
W

∫ W/2

−W/2
|1− λ( y)|2eiαpy dy

Cp = 1
W

∫ W/2

−W/2
λ∗( y)

[
1− λ( y)

]
eiαpy dy.

(A25)

Once the 2P+ 1× 2P+ 1 linear problem of (A23) is solved, the excitation force can be
found by integrating the pressure difference p̂+ − p̂− over the surface x = 0, |y| < W/2,
0 ≤ z ≤ h. Because the deflection profile ζ(z) depends on z only, the contribution of modes
eiαny, |n| ≥ 1, is zero, which yields

f̂h = 2iωρWγ0â0, (A26)

where γ0 is the projection of the deflection mode onto the first vertical eigenmode, defined
as follows:

γ0 =
∫ h

0
ζ(z)Z0(z) dz. (A27)

The reflection and transmission coefficients are simply given as follows:

{
R̂ = â0,

T̂ = 1− â0.
(A28)

Using (A14), the hydrodynamic force (A26) can be reformulated as

f̂h = êη̂I, (A29)

where the excitation coefficient reads

ê = 2ρgWγ0â0, (A30)

which, together with (A28), proves (3.5).

A.3. Lorentz linearisation
It remains to introduce a quadratic loss function at the interface as in (2.8), instead of
the linear one of (2.9). Given a quadratic loss coefficient εq and incident wave amplitude
Â, one seeks to find a linear loss coefficient εl, such that the quadratic and linear average
power values Pq and Pl, of (2.10), are equal. One could proceed iteratively, i.e. start with an
initial guess ε

(0)
l , calculate Pq(ε

(0)
l ) and Pl(ε

(0)
l ) and adjust εl as ε

(1)
l = Pq(ε

(0)
l )/Pl(ε

(0)
l ),

and so on with ε
(i+1)
l = Pq(ε

(i)
l )/Pl(ε

(i)
l ), until some convergence criterion is met.
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However, in this work, we rather adopt a different method, which avoids resorting to an
iterative procedure for every new wave amplitude. By defining

R(εl) = ω

2gεl

∫ T

0

∫ h

0

∫ W/2

−W/2
|∇φεl |2

∣∣∣∣∂φεl

∂x

∣∣∣∣ dy dz dt

∫ T

0

∫ h

0

∫ W/2

−W/2

∣∣∣∣∂φεl

∂x

∣∣∣∣
2

dy dz dt

, (A31)

the quadratic-to-linear power ratio can be expressed as

Pq(εl)

Pl(εl)
= R(εl)εq|Â|. (A32)

Thus, the potential solution φεl is first calculated for a wide enough range of εl

values, and R(εl) is saved. Subsequently, for any values of εq and Â, the equivalent
linear coefficient εl is found by numerically solving R(εl) = (εq|Â|)−1. Finally, the
corresponding potential solution φεl , and the results of interest such as hydrodynamic
forces and reflection–transmission coefficients are calculated. Note that, although εq could
be more finely tuned, it is kept equal to 1 throughout the present study.

Appendix B. Experimental data processing

B.1. Reflection and transmission coefficient calculation
Measuring reflected and transmitted waves requires the separation of forward- and
backward-propagating wave components, in the up-wave and down-wave regions of the
flume, using probe measurements. The procedure adopted in this work is based on the
method of Mansard & Funke (1980), which is slightly modified to account for longitudinal
wave dissipation along the flume.

Assume, as we do in the rest of this article, that the wave frequency is below the
flume cutoff, which ensures that the wavelength 2π/k is larger than the flume width
W. Also assume that the waves are small enough for Airy’s wave theory to be a valid
representation. Far enough from the barrier, the damping beach or the wavemaker, the
free-surface elevation thus consists of forward- and backward-propagating plane waves,
which allows for writing

η(x, t) = Re{η̂→ exp(i(k(ω)x− ωt))+ η̂← exp(i(−k(ω)x− ωt))}, (B1)

where x is the longitudinal position along the flume, x = 0 is the barrier position, the
dependency of the wave field on y has been dropped and the wavenumber k depends on
ω through the dispersion relation. Equation (B1) implies that the amplitude of each wave
remains unchanged as the wave travels. In reality, however, the waves undergo longitudinal
dissipation, which can occur predominantly at the flume bottom and sidewalls, and near
the water surface. Dissipation can be accounted for by modifying (B1) as follows:

η(x, t) = Re{η̂→ exp(i(k̃(ω)x− ωt))+ η̂← exp(i(−k̃(ω)x− ωt))}, (B2)

where k̃(ω) = k(ω)+ iν(ω) and ν(ω) is a real, positive dissipation coefficient. The
dissipation coefficient ν(ω) is calibrated experimentally for each frequency using a series
of barrier-free tests, which are detailed in § B.2.

Figure 11 illustrates how an incident (forward-propagating) wave is superimposed with
a reflected (backward-propagating) wave, to form the total wave field. Both forward- and
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Figure 11. Forward- and backward-propagating wave components with longitudinal dissipation (first and
second graphs, respectively), as well as their sum as per (B2) (third graph). Each graph represents the wave
elevation at a different instant across a wave period Tw, indicated by the line colour.
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Figure 12. Dimensions and distances in the wave flume, expressed in cm.

backward-propagating components undergo longitudinal dissipation, as represented in
(B2).

In each zone of the flume (up-wave and down-wave), the signal η is recorded by a rack of
4 wave probes located at positions xi, i = 1 . . . 4. The probe positions can be deduced from
the distances specified in figure 12, bearing in mind that the barrier location is taken as
the origin x = 0. In every experiment, the signal η, in steady state, is Fourier transformed
at the wavemaker frequency ω0, to obtain a set of four Fourier coefficients η̂i, which are

987 A24-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.298


Far-field effect of drag-induced dissipation
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Figure 13. Geometrical determination of the phase of T̂ , using the law of cosines.
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Figure 14. Empirically estimated dissipation coefficient for different wave amplitudes and frequencies.

related to forward- and backward-propagating wave components through (B2), as follows:

η̂i = η̂→ exp(ik̃(ω)xi)+ η̂← exp(−ik̃(ω)xi). (B3)

The two unknowns η̂→ and η̂← are found from the four equations using complex
linear least squares. Doing so in the up-wave (−) and down-wave (+) zones yields four
complex amplitude coefficients η̂−→, η̂−←, η̂+→ and η̂+←. If it is assumed that the dissipation
beach perfectly prevents wave reflection in the down-wave zone (η̂+← = 0), then the
plate reflection and transmission coefficients could simply be expressed as the fractions
R̂ = η̂−←/η̂−→ and T̂ = η̂+→/η̂−→. However, it is more robust to estimate R̂ and T̂ in a way
which accounts for possible backward-propagating wave component in the down-wave
zone.

In general, the four complex amplitude coefficients η̂−→, η̂−←, η̂+→ and η̂+← are related to
R̂ and T̂ as follows: {

η̂−← = R̂η̂−→ + T̂η̂−←
η̂+→ = T̂η̂−→ + R̂η̂+←,

(B4)

and therefore (
R̂
T̂

)
=

(
η̂−→ η̂−←
η̂+← η̂−→

)−1 (
η̂−←
η̂+→

)
. (B5)
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Figure 15. Wave probe signals from the up-wave probe group, f0 = 1.2 Hz, A = 8 mm.

However, as already documented by Mérigaud et al. (2021), the phase of R̂ from (B5)
is highly sensitive to the exact distances between the probes and the barrier, while that
of T̂ is highly sensitive to the exact value of the wavelength (which, in experiments, may
slightly deviate from the theoretical dispersion relation, due to the presence of a mean
surface current, for example). To represent the two coefficients in the complex plane, we
thus rather use the fact that R̂+ T̂ = 1 (Mérigaud et al. 2021), to determine R̂ and T̂ based
solely on the magnitude of (B5), which is a procedure almost insensitive to the probe
location and wavelength. More specifically, the law of cosines is used for the triangle
of side lengths 1, |R̂|exp and |T̂|exp, as illustrated in figure 13. This yields two possible
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Figure 16. Wave probe signals from the down-wave probe group, f0 = 1.2 Hz, A = 8 mm.

locations for T̂ , together forming a complex-conjugate pair. However, the linear potential
flow model of § 2 predicts that the transmission coefficient is located in the upper half
of the circle, as seen in figure 6. Thus, in the notations of figure 13, it can reasonably be
assumed that T̂1 should be chosen.

B.2. Dissipation calibration
To calibrate the dissipation coefficients, experiments are carried out without the barrier.
Similarly to the procedure described in § B.1, forward- and backward-propagating wave
components are separated at the up-wave (−) and down-wave (+) probe racks, assuming
ν = 0 in (B2). Implicitly, such an approach assumes that the dissipation is negligible over
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Figure 17. Force transducer signal, f0 = 1.2 Hz, A = 8 mm. The raw, unfiltered signal is shown by thin grey
lines.

the span of each probe rack. By doing so, one finds η̂−→ and η̂+→, with |η̂+→| ≤ |η̂−→|, due
to the longitudinal dissipation taking place over the distance between the two probe racks.

Defining as x̄− and x̄+ the average longitudinal positions of the up-wave and down-wave
probe racks, respectively, the dissipation coefficient ν is found as

ν = log |η̂+→| − log |η̂−→|
x̄+ − x̄−

. (B6)

For each frequency, ν is estimated for three incoming wave amplitudes (2, 4 and 10 mm),
to ensure that the coefficient does not exhibit a strong wave-amplitude dependency.
The results are summarised in figure 14, which indeed suggests that the dissipation
coefficient is relatively similar across wave amplitudes, while increasing consistently
with the frequency. The average value (dashed line in figure 14) is retained, and used
in (B3) to identify forward- and backward-propagating wave components, throughout all
experiments.

B.3. Data quality and selection
Figures 15, 16 and 17 show a detailed example of the recorded experimental signals, where
the target wave amplitude is 8 mm and the wave frequency is 1.2 Hz. The 1.2 Hz frequency
is chosen as an example because, among the frequency values of the experimental plan,
1.2 Hz waves are those with the slowest propagation speed, and it is therefore the frequency
for which the steady-state regime takes the most time to be reached.

Figures 15 and 16 show the raw signals from the up-wave and down-wave resistive
probe groups, respectively, together with the steady-state segment of the data extracted
for Fourier analysis, as mentioned in § 5.3, corresponding to an integer number of wave
periods.
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Figure 18. Nonlinear wave effects measured at the up-wave probe rack, in the experiments with the small plate
(w = 20 cm). (a) Phase-averaged wave pattern, measured by the first probe, at the lowest (left-hand side) and
largest (right-hand side) frequencies. The bottom graphs show the same wave patterns, normalised by their L2
norm, so that the changes in wave shape, with increasing wave amplitude, can be better appreciated. (b) Fourier
amplitudes of the wave signal (averaged over the four up-wave probes), at the incident wave frequency f0 and
its harmonics, at the lowest (left-hand side) and largest (right-hand side) frequencies. In the bottom graphs, the
same amplitudes are shown, normalised by that of the fundamental f0.
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Figure 19. Frequency–amplitude conditions for the small (a), medium (b) and large (c) plates, which are
eventually exploited in this article (blue entries), for which the experiments were carried out but discarded
based on the criterion of (B7) (red entries), and which were not carried out to preserve the set-up integrity
(grey entries).

Figure 17 shows the force transducer measurements for the same experiment (8 mm
wave amplitude and 1.2 Hz wave frequency), also highlighting the transition to steady
state. The transducer measurements are subject to significant measurement noise (in the
present example, of magnitude comparable to the signal). However, the noise is essentially
from the power supply, so that all the noise energy is located at the 50 Hz utility frequency
and its higher harmonics. In this context, the 1000 Hz sampling rate of the transducer
makes it easy to effectively suppress most of the noise using frequency-domain filtering,
adopting 10 Hz as a cutoff frequency: the signal is Fourier transformed, the frequency
components above 10 Hz are set to 0 and the signal is then transformed back to the time
domain through the inverse Fourier transform. Figure 17 shows both unfiltered and filter
signals.

The initial experimental plan included waves with amplitudes ranging from 2 to 80 mm,
and frequencies between 0.4 and 1.2 Hz. However, the experiments for some pairs of
conditions were eventually not carried out, when the plate deformation became too
important, which may have led to damage to the plate itself or to the connection with
the force transducer.

In some experiments, typically with the largest wave amplitudes, significant higher-order
wave effects are visible, either by examining the time trace of the wave signal (figure 18a),
or by analysing the frequency content of the waves (figure 18b). For low wave frequencies,
the flume represents shallow water conditions, and as the wave amplitude grows, the wave
signal takes an asymmetric shape resembling cnoidal waves (left-hand side of figure 18a).
At larger wave frequencies, as the wave steepness increases, the wave crests become
sharper and the wave profile approaches a higher-order Stokes wave (right-hand side of
figure 18a). In addition to those nonlinear wave profiles, which result in bound harmonics,

987 A24-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

29
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.298


Far-field effect of drag-induced dissipation

the possibly nonlinear wave–structure interaction at the barrier may result in the creation,
and propagation, of free harmonics.

Regardless of the causes for the observed higher-order harmonics, seen in figure 18(b),
the energy budget established through the Fourier analysis at the incident wave frequency,
as described in § B.1, is certainly biased when a significant fraction of the energy is
diverted to those harmonics. In addition, in such cases, the linear summation of forward-
and backward-propagating waves, which is the basis for the calculation of reflection and
transmission coefficients, can no longer be assumed. Therefore, those experiments, where
wave nonlinearities jeopardise the accuracy of experimental results, are discarded. As a
nonlinearity measure, the amplitude ratio of the first harmonic to the fundamental, at
the up-wave probes, is chosen, and the experiments where that ratio exceeds 15 % are
discarded, i.e. ∣∣∣∣ η̂(2f0)

η̂( f0)

∣∣∣∣ ≥ 15 %. (B7)

In the examples shown in the bottom graphs of figure 18(b), one would discard those
experiments where the second peak (at 2f0) exceeds 0.15.

Figure 19 summarises the frequency–amplitude conditions which are eventually
exploited in this article (blue entries), those for which the experiments were carried out
but discarded based on the criterion of (B7) (red entries), and those which were not carried
out (grey entries).
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