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SOME REMARKS ON THE NUMBER OF POINTS ON ELLIPTIC
CURVES OVER FINITE PRIME FIELD

SAIYING HE AND J. MCLAUGHLIN

Let p > 5 be a prime and for a,b € Fy, let E, ; denote the elliptic curve over F, with
equation y? = z° + az + b. As usual define the trace of Frobenius a, 4 5 by

#Ea,b(]Fp) =p+1- Qp, a,b-

We use elementary facts about exponential sums and known results about binary

p-1
quadratic forms over finite fields to evaluate the sums 3" ap 3, > @pay, 2. a?,,t, b
' € =0

p-1 p=1 3 teF, teF,
9 . . .
ga”’“’t and an”v ¢,» for primes p in various congruence classes.

As an example of our results, we prove the following: Let p = 5 (mod 6) be prime
and let b € Fj. Then

S aun=s(0-0(2) +35) (2).

1. INTRODUCTION

Let p > 5 be a prime and let F, be the finite field of p elements. For a,b € F,, let
E, 4 denote the elliptic curve over IF, with equation y? = z3 +a z +b. Denote by Eq(Fp)
the set of I,— rational points on the curve E, , and define the trace of Frobenius, a,, by
the equation

#E, o(Fp) =p+1—a,.

A simple counting argument makes it clear that

wy =X (FREEED),

z€Fp

where (./p) denotes the Legendre symbol.
We recall some of the arithmetic properties of the distribution of a,. The following
theorem is due to Hasse [4]:
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136 S. He and J. McLaughlin (2]

THEOREM 1. The integer a, satisfies

—-2/p <a, < 2\/p.

Since we wish to look at how a, varies as the coefficients a and b of the elliptic curve
vary, it is convenient for our purposes to write a, for the elliptic curve E, ; as ap 4,5. The
following result is well known (an easy consequence of the remarks on page 36 of (3], for
example). :
PROPOSITION 1. Let the function f : Z — Ny be defined by setting

(1:2) f(ky = #{(a,b) €F; X F; : ap o = k}.
Then for each integer k, .
p —
2| 5k,
The following result can be found in (2, p. 57].
PROPOSITION 2. Define the function f,: Z — Ny by setting

(1.3) A0 = #{(@,0) € F, xF,\ {(0,0)} : apas = k}.
Then for each integer k,
fi(k) = fi(=k).
The following result is also known ([3, p. 37], for example).

PROPOSITION 3. Letv be a quadratic non-residue modulo p. Then
Qp,a,b = —Qp, y2a, 13-

To better understand the distribution of the a, , , it makes sense to study the mo-
ments. The j -invariant of the elliptic curve E, is defined by
) 2833a3
I = ¥ 2T
provided 4a®+27b% # 0. Michel showed in (7] that if { E4), 5 : t € F,} is a one-parameter
family of elliptic curves with a(t) and b(t) polynomials in ¢ such that
. 2833a(t)3
i(0) = O
4a(t)® + 27b(t)
is non-constant, then

Z a’2,a(t),b(t) =p’+ 0(1’3/2)-

teF,
In [2] Birch defined
p—-1 rp-1 3 2R
> —ar—-b
s = 3 [ 3 (5]
a,6=0 “z=0 p

for integral R > 1, and proved
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THEOREM 2. [In (2], Birch incorrectly omitted the factor of p—1 in his statement
of Theorem 2.] For p > 5,

Si(p) = (p - VP,
Sa(p) = (p — 1)(2p° — 3p),
Ss(p) = (p— 1)(5p" - 9p - 5p)
S4(p) = (p — 1)(14p° — 28p° ~ 20p” ~ Tp),
Ss(p) = (p—1)(42p° - 90p ~ 75p° — 35p* — 9p — 7(p)),
where 7(p) is Ramanujan’s T-function.
p-1
Theorem 2 evaluates sums of the form 37 a2R , in terms of p and these results were
a,b=0

derived by Birch as consequences of the Selberg trace formula.
In this present paper we instead use elementary facts about exponential sums and

known results about binary quadratic forms over finite fields to evaluate the sums
p-1 p=1 -1

3 ap,,bs Z{r p,a,t) E a .y Z a2, . and Z a3,y for primes p in particular con-
teF, teF,

gruence classes. In partlcular, we prove the followmg theorems.

THEOREM 3. Letp > 5 be a prime, and a, b € F,. Then

(1) > ape=—p(b/p),

teF,

(i) 2 apae=0.
teF,
This result is elementary but we prove it for the sake of completeness.

THEOREM 4. Letp=>5 (mod 6) be prime and let b € F;. Then

(1.4) gagyt’b=p<p—l—(%)).

THEOREM 5. Letp > 5 be prime and let a € F,. Then
p—-1
-3 —3a
- 2 _ 1 (=) _ -~
(10) ;ap,a,t_p(p 1 ( D ) ( D ))

Theorem 4 and Theorem 5 could be deduced from Theorem 2, but we believe it is
of interest to give elementary proofs that do not use the Selberg trace formula.

THEOREM 6. Letp=>5 (mod 6) be prime and let b € F,. Then

Zap,b——p<p 2)(= 2) +2p) (Z)
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2. PROOF OF THE THEOREMS

We introduce some standard notation. Define e(j/p) := exp(27ij/p), so that

=ity e pli,
- WOR {

t= O) (]5p) = 1'
Define
s =1 d 4),
(2.2) Gy={ VP PEL modd)
. iv/P, p=3( mod 4).

LEMMA 1. Let (./p) denote the Legendre symbol, modulo p. Then
z 1 2/dy dz
(2:3) () =& 2G)3)
PROOF: See [1, Theorem 1.1.5 and Theorem 1.5.2). 0
We shall occasionally use the fact that if H is a subset of Fp,

o > (0)--%(0)

deF,\H deH

We shall also occasionally make use of some implications of the Law of Quadratic Reci-
procity (see [5, p. 53], for example).

THEOREM 7. Letp and q be odd primes. Then

(2) (%)=(—1)<v~l>/2.
(c) (’_’) (2) = (=1)(@-D/2(-1)/2),
q/\p

We now prove Theorems 3, 4, 5 and 6.

THEOREM 3. Letp > 5 be a prime, and a, b € F,. Then

. b
(i) teEF,, Gp,t,b = —P(;),
(ll) z Ap,a,t = 0.
teF,
PRrOOF: (i) From (1.1) and (2.3), it follows that

S opis= - 53 o (9)e(HEE0) 3o (1)

teF, zeFp d=1 p teF, p
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The inner sum over ¢ is zero unless £ = 0, in which case it equals to p. The left side
therefore can be simplified to give

S~ & 2 (2)e(%) = -5(3)

The last equality follows from (2.3).
(ii)) From (1.1) and (2.3), it follows that

,;;apat:_;; ()( («3 +a:1:)z!; ( )

The inner sum over ¢ is equal to 0, by (2.1), since 1 <d<p— 1. 0
The result at (ii} follows also, in the case of primes p = 3 (mod 4), from the fact that
Gp.a.t = —0p,a,p—t. However, this is not the case for primes p = 1 (mod 4). For example,

{a13.1,0:0 <t <12} = {—6,-4,2,-1,0,5,1,1,5,0, 1,2, —4}.

The results in Theorem 3 are almost certainly known, although we have not been able to
find a reference.

THEOREM 4. Let p =5 (mod 6) be prime and let b € F;. Then
p—-1
-1
2 - pa— p— —
> auw=r(p-1-(3))

t=0

PROOF: From (1.1) and (2.3) it follows that

=1 did dy (2 do(z3 + b
a2, = é ) (g) ) e( l(zl+b): 2(23 + ))

teF, P d)dz=1 p z1,22€Fp
t(d d
XZ ( (diz) + 2$2))
teF,
The inner sum over ¢ is zero, unless z; = —df'dgzg(mod p), in which case it equals p.
Thus

a2y = _5_2 pii (dldz)e(b(d1+d2)) Z e(d;zdﬂg;dg_dg)).

teF, P dy,dy=1 p P z2€F,

Since the map z — z* is one-to-one on F,, when p = 5(mod 6), the z3 in the inner sum
can be replaced by zo. Thus the inner sum is zero unless d3 — d? = 0(mod p), in which
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case it equals p. It follows that

2 22l 1 o )
o & <.§1(—5)6(&5ﬂ) + E(—)e(MD

p p
- i(_l + (-_1)(,,_1)) -2(D) (,,_ - (_—_1)>
G P Gi\p P
We have once again used (2.3) to compute the sums, noting that the sums above start
with d; = 1. The result now follows since p/G2 x (—1 | p) = 1 for all primes p > 3. 0
REMARKS. (1) It is clear that the results will remain true if a(t) = ¢ is replaced by any
function a(t) which is one-to-one on F,.

(2) It is more difficult to determine the values taken by Y a2, , for primes p = 1(mod 6).
teF,
This is principally because the map z — z® is not one-to-one on F, for these primes (so

that (2.1) cannot be used so easily to simplify the summation), but also because the
answer depends on which coset b belongs to in II";/IF;"’.

Before proving the next theorem, it is necessary to recall a result about quadratic
forms over finite fields. Let ¢ be a power of an odd prime and let  denote the quadratic
character on FF; (so that if ¢ = p, an odd prime, then 7(c) = (c/p), the Legendre symbol).
The function v is defined on Fy by '

-1, beF,

(2.5) v(b) = o1 b=0.

Suppose

n
f(@1,-. ., Ta) = _S_ ayziT;,  with a; = aj;,
ij=1

is a quadratic form over F;, with associated matrix A = (a;;) and let A denote the
determinant of A (f is non-degenerate if A # 0).

THEOREM 8. Let f be a non-degenerate quadratic form over F,, ¢ odd, in an even
number n of indeterminates. Then for b € F, the number of solutions of the equation
flzy,...,z) =binFJ is

(2.6) ¢+ u(B)g" P ((-1)22).

PROOF: See 6, pp. 282-293]. 1]
THEOREM 5. Letp > 5 be prime and let a € F,. Then

emp-1- () - (32),

p-1

t=0
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PROOF: Once again (1.1) and (2.3) give that

p-1

Eapat 62 Z (dldz) Z e(d1(z?+am1)+d2(mg+az2))

te¥, P dy,dr=1 z1,72€F, !
tb(d, + d
X E e(——( ! 2))

tcF, 4

The inner sum over ¢t is zero, unless d; = —dy(mod p), in which case it equals p. Thus

01 Thu-(R) 5 Te(dldronooen)

tefFp tl,zzer di=1

Z Z (d1 Ty — T (Z'1+.’L'1.'L'2+.’E2+a)).

x),292€F, di=1 p

We have used the fact that p/G2 x (-1 | p) = 1 for all primes p > 3. The inner sum
over d, equals —1, unless one of the factors z, — z, % + 7,2, + z2 + a equals 0, in
which case the sum is p — 1. The equation z; = z3 has p solutions and, by (2.6) with

1 (p+1)/2 ,
=p,n=2 f(r;,72) =2+ 1170+ 22 and A = , the equation
g=p f(z1,32) =2 + 7122 + 73 ((p+1)/2 L q
1} + 2,22 + 23 = —a has
-1(1 — (p+ 1)%/4) -3
- ()
(-1)( : ) .
solutions. However, we need to be careful to avoid double counting and to examine when
z? 4+ ;75 + 22 = —a has a solution with z; = z,. The equation 3z? = —a will have
two solutions if ((—3a)/p) = 1 and none if ((—3a)/p) = —1. Hence the number of
solutions to the equatxon 3z? = —a is ((—3a)/p) + 1. Thus the number of solutions to

(x; —z) (22 + 1122+ 22 +a) =0 is

e (- () - () -»1- (- ()

Thus

> = (w-1-(F)-(59))e-»
(oG- ()

The right side now simplifies to give the result. 0
Before proving Theorem 6, we need some preliminary lemmas.
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LEMMA 2. Let p=5 (mod 6) be prime. Then

-1
(2.8) ,,2: (Ef_(lie_ﬂ) ) e(d(-(ey+ fZ)3+ey3+fz3))

p p

de,f=1 y,2€Fp

=-plp— 1)(1 + (_71))

+ pX_i (e+ef+f) Z e(dfz(—fz(y+1)3+e2y3+1)) 

def=1 p yz€F, P

PRrOOF: If z = 0, the left side of (2.8) becomes

Sp:= pz_l (ef(1+e+f))Ze(dzﬁe(l—ez))

de,f=1 p yeF, p
—(p- l)e;fil(ef(l -;e+f))!§e(ye(1p— 32))
=p(p—1)(pz:( 2+f)) +p§;( ))
f=1 f=1
=P(P—1)<Z(2f—l+l) +P ( ))
f=1 f=1

=p(p- 1)(—1+(p-1)(71)).

The second equality follows since {y* : y € F,} = {y : y € F,} for the primes p being
considered, the third equality follows from {2.1) and the last equality follows from (2.4).
If z # 0, then the left side of (2.8) equals

(2.9) S, = i (E_f(l_—‘-iﬁ) Ze(d(_(€y+fz)3 +ey3+f23))

d.e,fz=1 p y€EF, P
2L ref(l+e+f) d23(—(eyz ' + f¥ +e(yz™" ) + f)
= d,e,zf,;=l( p ) S%e( p )

Now replace y by yz and then z* by z (justified by the same argument as above) and
finally e by ef to get this last sum equals

pz_:l (Mﬁ_ﬂ) % Ze(dfz(—fﬁ(ey+ 13 +ey® + 1)).

p

d.e,f,z=1 yeF, p

https://doi.org/10.1017/50004972700039034 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039034

[9] Points on elliptic curves 143

We wish to extend the last sum to include z = 0. If we set z = 0 on the right side of the
last equation and sum over d and y we get that

resulting sum = p(p p‘i (—1—+£L1)))
=p(p-1) (pi( )+" ) l( L] e+1))))‘
f=1 e=1 f=1
Replace f by f(e + 1)7! in the second sum above and then
, B 1y X e1+f)
resulting sum = p(p — 1) ((p - 1)(7) + 2. f=1( p ))
1y ey B+
— - )((p-1)(3F) + (%) ;(T))
=p- (- 1(Z) + (-(F))-0)
=p*(p - 1)(—;—1)

It follows that the left side of (2.9) equals

_pz(p_l)(—?l)+ pii (6(1+ef+f)) ) e(dfz(—fz(ey+1)3+ey3+1)),

dief=1 4 yzeF, p

and thus that the left side of (2.8) equals

(2.10) so+sl=_p(p_1)(1+(;][)1))+ ’ii (e(1+;f+f))
de,f=1

dfz(—f*(ey + 1) + ey® + 1)
* 3 o ; )

,2€Fp

=~p(p—1)<1+(_71)) + pii (E+€I{+f)

d.e,f=1
dfz(—fHy + 1) + 3 + 1)
x 3 ef > )

y,2€Fp
The second equality in (2.10) follows upon replacing y by ye~! and then e by e™!. 0
LEMMA 3. Letp =5 (mod 6) be prime. Then

P pz_l (e+ef+f) Z e(dfz(—fz(y+1)3+ezy3+l))

(2.11) . -

de,f=1 y:ZGFp
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= 2p(p - 1)(—1 +(p- 1)(’71)) - 3(p - 1)(=) +plp - DS™,

where b2
T S (= f)(l;e— NELEY,
e, f=2, e2£f2

Proor: Upon changing the order of summation slightly, we get that

S____Z(e+ef+f)z Z (dfz —fHy+1)3 +ezy3+1))

e, f=1 d=1 y,zefp p

If y = 0, the inner double sum over d and z is zero, unless f = +1, if which case it equals
p(p — 1) and the right side of (2.11) equals

p(p - 1)(2(26: 1) +§(:—1)) =p(p - 1)(—1 +(p- 1)(:17—1))-

e=1 p

By similar reasoning, if y = —1, the right side of (2.11) also equals

p(p— 1)(-1 +(p— 1)(%))-

Thus
(212)  S*=12p(p- 1)(-1 +{p- 1)(—71))
+Z;je§1(e+ef+f)§§e(dfz f2y+:)) +e2y3+l))
<o~ -0 () )+ ()
y "Z_l ((e+f)y:e(1+f))Eze(dff«'((e”—f'zy“_fz)),
ef=1 d=1 z€F,

where the last equality follows upon replacing f by f(y+1)~! and e by ey~!. The inner
sum over d and z is zero unless

(€ - FPy+1-f2=0,

in which case the inner sum is p(p — 1). We distinguish the cases €2 = f2 and e? # f2.
If €2 = f2, then necessarily €2 = f2 = 1 and the sum on the right side of (2.12) becomes

(213) plp - .l)g.(y(y: 1)) ((2(y+ 1)) + (9) + (23) + (:@))

p p p P

= -3p(p - 1)(_72)-

https://doi.org/10.1017/50004972700039034 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700039034

[11) Points on elliptic curves 145

If €2 # f? then

_pot

T e2— f7
and since y # 0, —1, we exclude f2 = 1 and € = 1. After substituting for y in the sum
in the final expression in (2.12), we find that

(2.14) S*=2p(p-1) <—1 +(- 1)(:1})) —3p(p - 1)(_72) +p(p-1)S™,

where
p-2
. 1+e)(e— l+e— -1+
2.15) g § (rdespuresnCLen)
e, f=2, 2% [?
1]
LEMMA 4. Letp = 5 (mod 6) be prime and let S** be as defined in Lemma 3.
Then
p—1 p-1
. (L+e)e— Nl +e—f(=1+1) PN
ST = +2(-6p) +3(=) +3(=) +2.
CZ:;j:O( p ) ( p) ( P ) ( P )

PROOF: Clearly we can remove the restrictions f # e, f # 1 and e # —1 freely. If

we set f = —e, we have that
p—2 p—2
(1+e)e— fll+e—f)(~=1+f) 2e(1+2e
ef:;:-f( p ) 82:( )

=2
-1
—(3)+E)+3)
The last equality follows from (2.4). Thus

-5 (Lt Nl re= NELENY , (26)  (=2y =1y

e, f=2 P

If f is set equal to 0 in the sum above we get

2(3)=1-G)

If f is set equal to -1 in this sum we get

St (242 () --(()+ (D) ()

Thus
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p-2 p—1

1 - N+e-f-1+F)
ZZ( +e(e . + )

e=2 f=0

If we set e = 0 in this latest sum we get

S L0V S (Fy o
> (= )= 2 ()=t
If we set e = 1 in this sum we get
E(Z(I—f)(2;f)(—1+f))= _2_: (_2(2;0—”):_(:5%)'
/=0 F=0,f#1

Thus

p-1 p-1 . N _ ) i i
=e=0f=0((1+e)( f)(l;e 3l 1+f))+2(76)+3(72)+3(71)‘+2-D

LEMMA 5. Letp = 5( mod 6) be prime. Then

p135(1+ee—fX1+&aﬂF1+”)=pG)+L

e=0 f=0 p

Proor: If f is replaced by f + 1 and then e is replaced by e + f, the value of the
double sum above does not change. Thus

(2.16) pipz:((l+e e— (1;—e—f)(—1+f))
e=0 f=0
S te)e—f-1(e-ff
=;3( . )

fz:( 1+e+ f) e—l)ef)
(ee—l) )

0 f

(]

~ O

b~ Y
Il
- o

(1+e+f )

0

®
1

We evaluate the inner sum using (2.3).

1 -1 p-1
= (1+e+f f)zi” pz:—(dlpdg)e(dlf+dz(;+e+f))

1]
S~
I}
(=1
Y
=
~
—

f=0
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p-1
(dldg) (d2(1p+ e ); e( d1p+ dz))
TG (:p_l)e(dz(lp+ e))

-2 5 .(r9)

p

-1

L
,_.Q.M

-an

P

uM

The next-to-last equality follows since the sum over f in the previous expression is 0,
unless d; = —dj, in which case this sum is p. The sum over d; equals p~1ife=p-1
and equals —1 otherwise. Hence the sum at (2.16) equals

G EE e 0-0()) &GN () e-0()
=& 1) =)+

the last equality following from the remark after (2.7). 0

COROLLARY 1. Let S* and S** be as deﬁined in Lemma 3. Then
@) S*=@- 2)(p)+3(p)+3(7)+3,
.. 2
@ s =po-(1+@+0(2) +e-2(2)).
PROOF: Lemmas 4 and 5 and the fact that (-3 | p) = —1 if p = 5(mod 6) give (i).

Lemma 3 and part (i) give (ii). 0
THEOREM 6. Let p =5 (mod 6) be prime and let b € F,. Then
= -2 b
3 —_ —
(2.17) tZap,t,b— p( (- 2)( ) +2p> (p)

PROOF: Let g be a generator of F;. It is a simple matter to show, using (1.1), that

p-1 p—1

3 _ 3
§ :ap,t,b == E :ap,t,by'
t=0 t=0

Thus the statement at (2.17) is equivalent to the statement

p—1 p-1

(2.18) PIPILINE )=—p(p—1)((p 2)(p2)+2p)

b=1 t=0
Let S denote the left side of (2.18). From (1.1) and (2.3) it follows that

p—1 p-1

ZZ Z (z +tz+b)(y3+ty+b)(z3+tz+b)(9)

b=1 t=0 z,y,2€Fp p p p
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1 22X d d(z® +tz) +e(y® +t 224t
=__3_Z(ef S e(( +tz) +e(y’ +ty) + f( +Z))

Paes=1 P 7 syzicF, p
D))
5
1 22 (defy(d+e+f
-z ,2 (5=

9 Z e(d(x3+tz)+e(y3+ty)+f(z3+tz))

z,y,2,tE€Fp p

5 3 (M)(fretd) 3 (Sratal

Pde,f=1 z,y,2€Fp
9 Z ( dx+ey+fz))

teF,

The inner sum is zero, unless dz + ey + fz = 0 in I, in which case it equals p. Upon
letting x = —d~!(ey + fz), replacing e by de and f by fe, we get that

so-g § (o)) 3 Aottt

Pdef=1 p y,2€Fp p

20 ()

-1
P pz: e+e}{+f) Ze(dfz(—fz(y+;)3+e2y3+1))

2
P de,f=1 y,z€F,

2(r — _
= p———(’(’;g ) (1 + (71)) - G%JS‘
2(p — _
P2 0 5()
== (2+6-2(F)),

which was what needed to be shown, by (2.18). The second equality above follows
from Lemma 2. Above S* is as defined in Lemma 3 and in the next-to-last equality
we used Corollary 1, part (ii). In the last equality we used once again the fact that

p/Gy(-1|p) =1 g
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3. CONCLUDING REMARKS

Let p = 5 (mod 6) be prime, b € F; and k be an odd positive integer. Define

fe(p) = Saﬁ,m(g)-
=0

(It is not difficult to show that the right side is independent of b € F})
By Theorem 6

filp) = —p<(p - 2)(—72) + 210)-

We have not been able to determine fi(p) for k > 5 (We do not consider even k, since a
formula for each even & can be derived from Birch’s work in [2]).
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