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SOME REMARKS ON THE NUMBER OF POINTS ON ELLIPTIC
CURVES OVER FINITE PRIME FIELD

SAIYING H E AND J. MCLAUGHLIN

Let p ^ 5 be a prime and for a, 6 £ Fp, let Ea$ denote the elliptic curve over Fp with
equation y2 = x3 + a x + b. As usual define the trace of Probenius op, o,6 by

#£a,6(Fp) = V + 1 — ap,o,6-

We use elementary facts about exponential sums and known results about binary
p-i

quadratic forms over finite fields to evaluate the sums 5Z ap,t,6i 51 ap,a,u 51 °2 t b'
P-I p-i tefp ' ' tevp ' ' t=o ' '
52 ap 0 t and J2at t b ^or Primes P in various congruence classes.
t=o ' ' (=o '

As an example of our results, we prove the following: Let p = 5 (mod 6) be prime
and let b € F*. Then

p-i

1. INTRODUCTION

Let p ^ 5 be a prime and let Fp be the finite field of p elements. For a,b £ ¥p, let
Ea<b denote the elliptic curve over Fp with equation y2 = x3 + ax + b. Denote by Eatb(Fp)
the set of F p - rational points on the curve Ea,b and define the trace of Frobenius, ap, by
the equation

# £ a , 6 ( F p ) = p + l - a p .

A simple counting argument makes it clear that

_ x , (x3 + ax + b

where (./p) denotes the Legendre symbol.

We recall some of the arithmetic properties of the distribution of ap. The following
theorem is due to Hasse [4]:
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136 S. He and J. McLaughlin [2]

THEOREM 1 . The integer ap satisfies

ap

Since we wish to look at how ap varies as the coefficients a and 6 of the elliptic curve
vary, it is convenient for our purposes to write ap for the elliptic curve Ea,b as aPiaii). The
following result is well known (an easy consequence of the remarks on page 36 of [3], for
example).

PROPOSITION 1 . Let the function f : Z -> No be defined by setting

(1.2) f{k) = #{(a ,b) e F*p x F ; : ap,a,6 - k}.

Then for each integer k,

S r I '<*>•
The following result can be found in [2, p. 57].
PROPOSITION 2 . Define the function / i : Z -¥ No by setting

(1.3) fi(k) = #{(o,6) e Fp x Fp \ {(0,0)} : ap,a,6 = fc}.

Then for each integer k,

The following result is also known ([3, p. 37], for example).

PROPOSITION 3 . Let v be a quadratic non-residue modulo p. Then

To better understand the distribution of the aPiOi() it makes sense to study the mo-
ments. The j -invariant of the elliptic curve Ea,b is defined by

2833a3

j ~ 4a3 -I- 27ft2'

provided 4a3+2762 ^ 0. Michel showed in [7] that if {Ea(t),b{t) '• t € Fp} is a one-parameter
family of elliptic curves with a(t) and b(t) polynomials in t such that

• 4a(t)3+276(t)2 '

is non-constant, then

In [2] Birch defined
i2fl

[
o,d=0Li=

for integral i? ^ 1, and proved
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[3] Points on elliptic curves 137

THEOREM 2 . [In [2], Birch incorrectly omitted the factor ofp-1 in his statement

of Theorem 2] For p^b,

Sl(p) = {p-l)p2,

S2(p) = (p-l)(2p3-3p),

54(p) = (p - l)(14p5 - 28p3 - 20p2 - 7p),

55(p) = (P - 1) (42p6 - 90p4 - 75p3 - 35p2 - 9p - r(p)),

where r(p) is Ramanujan's r-function.
P-I

Theorem 2 evaluates sums of the form J2 a 2 / i i, m terms of p and these results were
a, 6=0 ' '

derived by Birch as consequences of the Selberg trace formula.
In this present paper we instead use elementary facts about exponential sums and

known results about binary quadratic forms over finite fields to evaluate the sums
P-I p-i p-i

£ aP,t,b, H aP,a,t, J2al,t,b> YLal,a,t a n d 12altb< f o r primes p in particular con-
!€FP teFp (=0 t=0 t=0

gruence classes. In particular, we prove the following theorems.

THEOREM 3 . Let p ̂  5 be a prime, and a, b e Fp. Then

This result is elementary but we prove it for the sake of completeness.

THEOREM 4 . Let p = 5 (mod 6) be prime and let b e F*. Then

P-I

(1.4)

THEOREM 5 . Let p ^ 5 be prime and let a € F* Then

(1.5)

Theorem 4 and Theorem 5 could be deduced from Theorem 2, but we believe it is
of interest to give elementary proofs that do not use the Selberg trace formula.

THEOREM 6 . Let p = 5 (mod 6) be prime and let be¥*p. Then
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2. P R O O F O F THE T H E O R E M S

We introduce some standard notation. Define e(j/p) := exp(2nij/p), so that

Define

(2.2) P

\ i / , P=3( mod 4).

LEMMA 1 . Let (./p) denote the Legendre symbol, modulo p . Then

(2.3)
\ 71 / I T D

d=l

PROOF: See [1, Theorem 1.1.5 and Theorem 1.5.2].

We shall occasionally use the fact that if H is a subset of Fp,

(2.4)

We shall also occasionally make use of some implications of the Law of Quadratic Reci-
procity (see [5, p. 53], for example).

THEOREM 7 . Letp and q be odd primes. Then

(— 1 \
_L) = (-DCP-D/a.

(b)

We now prove Theorems 3, 4, 5 and 6.

THEOREM 3 . Let p ^ 5 be a prime, and a, b € ¥p. Then

(i) E « ()

PROOF: (i) From (1.1) and (2.3), it follows that
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[5] Points on elliptic curves 139

The inner sum over t is zero unless x — 0, in which case it equals to p. The left side
therefore can be simplified to give

(6FP d=l

The last equality follows from (2.3).

(ii) From (1.1) and (2.3), it follows that

L v—V- 1 (d\ fd(x3+ax)\<s-^ (dt\

t€Fp i€Fp d=l p y y t£Fp
 F

The inner sum over t is equal to 0, by (2.1), since l ^ r f ^ p — 1 . D

The result at (ii) follows also, in the case of primes p = 3 (mod 4), from the fact that

Op,o.( = —ip,a,p-t- However, this is not the case for primes p = 1 (mod 4). For example,

{oi3,i,t : 0 < t ^ 12} = { - 6 , - 4 , 2 , - 1 , 0 , 5 , 1 , 1 , 5 , 0 , - 1 , 2 , - 4 } .

The results in Theorem 3 are almost certainly known, although we have not been able to
find a reference.

THEOREM 4 . Letp = 5 (mod 6) be prime and let b S F*. Then

PROOF: From (1.1) and (2.3) it follows that

p-i 3

+d2x2)\
- •

The inner sum over t is zero, unless Xi = —rfj"1 d2x2(mod p), in which case it equals p.

Thus

? P d d y

+d2)

te?P

Since the map x -> x3 is one-to-one on Fp, when p = 5(mod 6), the x2 in the inner sum
can be replaced by x2. Thus the inner sum is zero unless d\- d\ = 0(mod p), in which
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case it equals p. It follows tha t

^—^ 1 P
2_^ av,t,b ~ ~Fn

We have once again used (2.3) to compute the sums, noting that the sums above start
with d\ = 1. The result now follows since p/G* x (—1 | p) = 1 for all primes p ^ 3. D

R E M A R K S . (1) It is clear that the results will remain true if a(t) = t is replaced by any
function a(t) which is one-to-one on Fp.

(2) It is more difficult to determine the values taken by ^2 a2
Ptt,b f°r primes p = l(mod 6).

ieFp

This is principally because the map x —• x3 is not one-to-one on Fp for these primes (so
that (2.1) cannot be used so easily to simplify the summation), but also because the
answer depends on which coset b belongs to in F*/F*3.

Before proving the next theorem, it is necessary to recall a result about quadratic
forms over finite fields. Let q be a power of an odd prime and let rj denote the quadratic
character on ¥* (so that if q = p, an odd prime, then 77(0) — (c/p), the Legendre symbol).
The function v is defined on F , by

(2.5, Wh I
[q-l, 6 = 0.

Suppose
n

/ ( i i , . . . , ! „ ) = ^2 aijXiXj, with <Hj = ajt,

is a quadratic form over F,, with associated matrix A — (a.ij) and let A denote the
determinant of A (/ is non-degenerate if A / 0).

THEOREM 8 . Let f be a non-degenerate quadratic form over ¥q, q odd, in an even
number n of indeterminates. Then for b € ¥q the number of solutions of the equation

(2.6) q"'1 + u(6)g(n-2)/277((-l)n/2A).

P R O O F : See [6, pp. 282-293]. D

THEOREM 5 . Let p ^ 5 be prime and let a e F*. Then

p-i
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P R O O F : Once again (1.1) and (2.3) give that

E 2 _ 1 £ ^ fdxd2\ \ %

aP,a,t-^2 2_. {—)

p

The inner sum over t is zero, unless dx = -d2(mod p), in which case it equals p. Thus

We have used the fact that p/Gf, x ( -1 | p) — 1 for all primes p ^ 3. The inner sum
over dx equals - 1 , unless one of the factors x\ — x2, x\ + xxx2 4- x\ + a equals 0, in
which case the sum is p — 1. The equation xx = x2 has p solutions and, by (2.6) with

q = p, n — 2, f(xx,x2) = x\ 4- X1X2 + x\ and /I = I I, the equation

x\ + xxx2 + x\ = -a has

solutions. However, we need to be careful to avoid double counting and to examine when
x\ + xxx2 + x\ = —a has a solution with X\ = x2. The equation Zx\ = —a will have
two solutions if ( ( -3a) /p) = 1 and none if ((-3a)/p) = —1. Hence the number of
solutions to the equation Zx\ = - a is ((—3a)/p) + 1. Thus the number of solutions to
(xx - x2){x\ + xxx2 + x\ + a) = 0 is

- 3 a \

Thus

(SFP

+

The right side now simplifies to give the result. D

Before proving Theorem 6, we need some preliminary lemmas.
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LEMMA 2 . Let p = 5 {mod 6) be prime. Then

d,e,f=l

d,e,/=l ^
)Y,e{dfz{ /fa+

P
1} +ey + 1 ) ) -

PROOF: If 2 = 0, the left side of (2.8) becomes

d,e,/=l

The second equality follows since {y3 : y € Fp} = {y : y e Fp} for the primes p being

considered, the third equality follows from (2.1) and the last equality follows from (2.4).

If z ^ 0, then the left side of (2.8) equals

(2.9) A , : - 2 ^
d,e,/,2=l

d,e,J,z=l

/ e / ( l + e + / K y> /dz3(_( e y z-i + / ) 3 + e ( y z - i ) 3 + / }

P y6Fp P

Now replace y by j/z and then z3 by z (justified by the same argument as above) and

finally e by e/ to get this last sum equals

P-I

d,e,/,z=l ^ y£F,

g /e(l + e/ + / h >( y^/rf/z(-/2(ey+l)3 + ey3 + lh
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We wish to extend the last sum to include z = 0. If we set z = 0 on the right side of the
last equation and sum over d and y we get that

resulting sum = p(p — 1)

§e)
/=l ^ e=l /=1

Replace / by f(e + I)"1 in the second sum above and then

resulting sum = p(p - 1) ((p - 1) ( z l ) +
\ " e=l

It follows that the left side of (2.9) equals

P )
and thus that the left side of (2.8) equals

,2,0) ( ( ^ ) )
V ^ d,e,f=l

j

x J2
v,*e*P

 P

The second equality in (2.10) follows upon replacing y by ye~l and then e by e"1. D

LEMMA 3 . Let p = 5 (mod 6) be prime. Then

( 2 . n )
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where
p-2

S" := (2±^ l+
p

e f 1+ ) •
P R O O F : Upon changing the order of summation slightly, we get that

(dfz{—}2{y + I)3 + e2y3 + 1)\

i je,/=l r d=l y,:

If y = 0, the inner double sum over d and z is zero, unless / = ±1, if which case it equals
p(p - 1) and the right side of (2.11) equals

By similar reasoning, if y = —1, the right side of (2.11) also equals

Thus

(2.12) 5* =
\ v v ' /

•*(-/ (y +1) + e y

y=l e,/=l ^ d=l 2€FP

p-2

) E E < d / * ( ( e 2 /2
p
)y+1 / 2 ) ) '

e,/=l r d=\ z6Fp

where the last equality follows upon replacing / by f(y + I)"1 and e by ey"1. The inner
sum over d and z is zero unless

( e 2 - / 2 ) y + l - / 2 = 0,

in which case the inner sum is p(p — 1). We distinguish the cases e2 = f2 and e2 ^ f2.

If e2 = / 2 , then necessarily e2 = / 2 = 1 and the sum on the right side of (2.12) becomes

p-2
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[11] Points on elliptic curves 145

If e2 / f2 then

y =
e 2 - / 2 '

and since y ^ 0, — 1, we exclude f2 = 1 and e2 = 1. After substituting for y in the sum
in the final expression in (2.12), we find that

(2.14) S' --

where

p-2
(2.15) 5 " :=

LEMMA 4 . Let p = 5 (mod 6) be prime and let S" be as defined in Lemma 3.
Then

r

e=o /=o y

PROOF: Clearly we can remove the restrictions / ^ e, / ^ 1 and e ^ —1 freely. If
we set / = —e, we have that

^ ( ( 1 + e f 1 + 6 1 + / ) =
e,/=2, e=-f

The last equality follows from (2.4). Thus

e,/=2

If / is set equal to 0 in the sum above we get

p-2

e=2

If / is set equal to -1 in this sum we get

e=2

Thus
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' e - / ) ( - ' + / ))

If we set e = 0 in this latest sum we get

/=o r f=o,f?i

If we set e = 1 in this sum we get
_ _i

/=0

Thus

^ / - 2 ( 2 - / ) \ _ / - 2 N

e=0 /=0 r

LEMMA 5 . Let j) = 5( mod 6) be prime. Then

p-l p - l , . v ,

e=0 /=0
^ ) - ( ; ) - •

PROOF: If / is replaced by / + 1 and then e is replaced by e + / , the value of the
double sum above does not change. Thus

(2.16)
e=0 /=O

e=0 /=0

e=0 /=0

e=0 r f=0

We evaluate the inner sum using (2.3).
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[13] Points on elliptic curves 147

The next-to-last equality follows since the sum over / in the previous expression is 0,
unless d\ — —d2, in which case this sum is p. The sum over d2 equals p — 1 if e = p — 1
and equals - 1 otherwise. Hence the sum at (2.16) equals

the last equality following from the remark after (2.7).

COROLLARY 1 . Let 5* and S" be as defined in Lemma 3. Then

(i) S « = C p-

(ii) 5 - = p ( p -

PROOF: Lemmas 4 and 5 and the fact that (—3 | p) = - 1 if p = 5(mod6) give (i).
Lemma 3 and part (i) give (ii). 0

THEOREM 6 . Let p = 5 (mod 6) be prime and let b € F*. Then

PROOF: Let g be a generator of F*. It is a simple matter to show, using (1.1), that

p-i p-i

E 3 V~̂  3

ap,l,b = ~ / ;aD,t.bQ-
t=0 (=0

Thus the statement at (2.17) is equivalent to the statement

6=1 t=0

Let 5 denote the left side of (2.18). From (1.1) and (2.3) it follows that

P-I p-i

v
6=1 (=0 x,y,z€?p
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_ 1 V^ (def\ s-^ (d(x3 + tx) + e(y3 + ty) + f(z3 + tz)\

d,e,/=l y i,y,z,t€Fp
 y

= __L v (^L\(±

/ d(x3 + tx) +e{y3 + ty) + f{z3 + tz) \

1 ^ ^ / d e f \ / d + e + f\ ^ /dx3 + ey3 + fz3>
= ~~GP ' ' \~n~/ V o ) 2.*/ e\ n

P d,e,/=l z,y,z€Fp

— ; j

The inner sum is zero, unless dx + ey + fz = 0 in Fp, in which case it equals p. Upon
letting x = -d~1(ey + fz), replacing e by de and / by fe, we get that

eF P
d,e,f=l

which was what needed to be shown, by (2.18). The second equality above follows

from Lemma 2. Above 5* is as defined in Lemma 3 and in the next-to-last equality

we used Corollary 1, part (ii). In the last equality we used once again the fact that

-l\p) = l. D

https://doi.org/10.1017/S0004972700039034 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039034


[15] Points on elliptic curves 149

3. CONCLUDING REMARKS

Let p = 5 (mod 6) be prime, b € F* and k be an odd positive integer. Define

p-i

t=o

(It is not difficult to show that the right side is independent of b £ F')

By Theorem 6

We have not been able to determine /t(p) for A; ^ 5 (We do not consider even k, since a
formula for each even k can be derived from Birch's work in [2]).
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