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Abstract

Reflected Brownian motion is used in areas such as physiology, electrochemistry and
nuclear magnetic resonance. We study the first-passage-time problem of this process
which is relevant in applications; specifically, we find a Volterra integral equation for the
distribution of the first time that a reflected Brownian motion reaches a nondecreasing
barrier. Additionally, we note how a numerical procedure can be used to solve the
integral equation.
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1. Introduction

Reflected Brownian motion has received considerable attention due to its capacity to
model several real phenomena in physics, biology and chemistry; see Grebenkov [12],
where several applications are mentioned. It is known that this model is very suitable
for modelling the interaction between a particle diffusing in a medium and an interface,
where the particle may suffer a “reflection” (see for example [12, 18]). First-passage-
time problems are important in such applications (see for instance Levitz et al. [18]),
which motivates us to study the distribution of the time when the process surpasses an
increasing varying level/barrier, that is, the time when the particle interacting with the
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interface reaches a specific level in the medium (separated from the interface). Hence,
we concentrate on finding the distribution of

T := inf{t : |Bt | = f (t)},

where B = {Bt : t ≥ 0} is a standard Brownian motion (BM) and f (t) is a
nondecreasing function with f (0) > 0.

However, this issue can be seen as a particular case of the first time that the BM
exits a moving range. Let f (t) and g(t) be two positive functions such that f (0) > 0
and g(0) > 0 (that is, the BM starts in between the barriers). The general probabilistic
question is to find the distribution of

T ∗ := inf{t : Bt /∈ (−g(t), f (t))}. (1.1)

There are works in the literature concerning first-exit-time problems from varying
regions, with single and double barriers. Considering a single barrier, see for example
Ricciardi et al. [24], Peskir [22], De-la-Peña and Hernández-del-Valle [10], Darling
and Siegert [7].

Regarding two-sided barriers, as in (1.1), there has been also a lot of interest, mainly
from a theoretical point of view. Lifshits and Shi [21], address the tail behaviour of
the exit-time distribution from parabolic domains of a planar Brownian motion, see
also [1, 19, 20]. Deblassie [9] studies the probability that a Brownian motion (with
dimension higher than one) remains in what he calls horn-shaped domains. Other
related works are [5, 8, 19].

Notice that reflected Brownian motion is a one-dimensional Bessel process; in
Betensky [3] first-passage issues for Bessel processes are addressed.

Here we focus on characterizing the distribution of T .
The paper is organized as follows. In Section 2 we give preliminary results.

In Section 3 we find an integral equation for the first exit time distribution of the
reflected Brownian motion, and in Section 4 we state the integral equation for the
density. Finally we use a numerical method to solve integral equations. We also give
conclusions and mention some open problems.

2. Hitting times of a Brownian motion

To start studying exit-times distribution, we define common variables that we use.
Process B will be Brownian motion (BM) throughout the paper. The following hitting
times are of interest:

T f
:= inf{t ≥ 0 : Bt = f (t)}, T−g := inf{t ≥ 0 : Bt =−g(t)},

where f and g are two functions such that f (0) > 0 and g(0) > 0.

The first fact we have to notice is that T− f
d
= T f , by symmetry of the BM (

d
= stands

for equality in distribution). We readily see that the exit time T , defined in (1.1),
satisfies T = T f

∧ T−g . So, the exit time is the first time B hits any of the barriers.
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The following cases are known (refer to [11, 14–16, 23]). If f (t)= a for all t ≥ 0,
the density ϕa(s) of T f is given by

ϕa(s)=
a

√
2πs3

exp

{
−

a2

2s

}
, s ≥ 0.

If f (t)= ct + a, with a > 0, the density becomes

ϕ f (s)=
a

√
2πs3

exp

{
−
(cs + a)2

2s

}
, t ≥ 0. (2.1)

For the case of constant barriers f (t)= g(t)= a, it is known that the Laplace
transform of T [23, Proposition 2.3.7] is

E
(
e−θT )

=
1

cosh(a
√

2θ)
.

Thus, the density is given by the inverse function. In this paper, we shall work with
a more general form.

PROPOSITION 2.1 ([4, Page 172]). Consider a Brownian motion B starting at x. The
density of T , the first time B exits [−a, b] with x ∈ [−a, b], is given by

P(T ∈ dt)= ss(b−x,b+a)(t)+ ss(x+a,b+a)(t), (2.2)

where

ss(u,v)(t)=
∞∑

k=−∞

v − u + 2kv
√

2π t3
e−(v−u+2kv)2/(2t).

Furthermore, the expected value of T is E(T )= (x + a)(b − x) [23, Exercise 2.3.11].

We denote by ϕ(−a,b)
x (t) the density function P(T ∈ dt) in (2.2).

3. Integral equation

When the functions f and g in (1.1) are nondecreasing, T is said to be the first time
that B exits the “horn-shape” {(−g(t), f (t)) : t ≥ 0}. In this section, we shall derive
an integral equation to compute the distribution of the first time a BM leaves a region
determined by reflective barriers, that is, when g = f . First we need some notation.

3.1. Notation Let f and g be two positive functions.
• We denote by T f the first time a BM hits f , and T−g when it hits −g. The

notation is the same when f and g are constants, namely T b or T−a .
• We denote by T f

−g(x) the first time a BM starting at x hits f or −g, where
x ∈ [−g(0), f (0)]. So T b

−a(x) denotes the hitting time when the barriers are

constants. When there is no ambiguity we write T f
−g(0) as T .
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• The distribution of T f
−g(x) is denoted by 8(−g, f )

x (t) := P(T f
−g(x) < t), or 8(t)

when x = 0.
Notice that if the barriers are constants, the distribution is known, and the density

is given by ϕ(−a,b)
x (u) in (2.2). For example, if we fix t and s, then ϕ(−g(t), f (s))

x (u)
denotes the density of the first time a BM hits either of the fixed points −g(t) or f (s)
(the functions evaluated at specific nodes t and s).

3.2. Methodology As part of the technique, we shall take approximations of the
barrier. Hence, given a function f , we consider a partition of the time domain [0, t],
namely 5n := {0= t0,n < t1,n < · · ·< tn,n = t}. Then the approximating barrier is

fn(t) :=
n∑

i=1

f (ti−1,n)I[ti−1,n,ti,n)(t), (3.1)

where I is the indicator function. We take the partitions such that5m ⊂5n for m < n,
and max0≤i, j≤n |ti,n − t j,n| → 0 as n→∞.

We have the following proposition.

PROPOSITION 3.1. For any pair of nondecreasing functions f and g on R+ with
f (0) > 0 and g(0) > 0,

P
(

T fn
−gn

< t
)
→ P

(
T f
−g < t

)
, ∀t > 0, as n→∞,

where fn and gn are the approximations as in (3.1) on the same partitions {5n, n =
1, 2, . . .}.

PROOF. By construction fn(s)≤ f (s) and gn(s)≤ g(s) for all s. Thus, the sequence
P(T fn
−gn

< t), n = 1, 2, . . . is decreasing, and is bounded from below by P(T < t).

Since we have {T fn
−gn

< t} → {T f
−g < t} as n→∞, convergence holds. 2

Exploiting well known properties of the BM, in the following result we obtain an
integral equation of Volterra type for the exit-time distribution. We use arguments
similar to those in [10] or [13].

THEOREM 3.2. Let f be a nondecreasing function such that f (0) > 0. Then, the
distribution 8 of the first exit time T f

− f (0) obeys the integral equation

8(t) =
∫ t

0
ϕ
(− f (u), f (u))
0 (u) du

−

∫ t

0

(∫ s

0
ϕ
(− f (s)− f (u), f (s)− f (u))
0 (s − u) 8(du)

)
ds, (3.2)

where the function ϕ(a,b)x (u) is given by (2.2).
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PROOF. Consider an approximation { fn, n = 1, 2, . . .} for f as in (3.1). We note

8n(t)= P
(

T fn
− fn

< t
)
=

n∑
i=1

P
(

ti−1,n ≤ T fn
− fn

< ti,n
)
. (3.3)

Here, 8n(·) :=8
(− fn, fn)

0 (·), and for simplicity we write T f
−g instead of T f

−g(0). By
Proposition 3.1 we have that 8n→8 as n→∞.

The proof is divided into three parts.

PART 1. We analyse the right-hand side of identity (3.3). For notational convenience,

set Ai,n =
(
ti−1,n ≤ T

f (ti−1,n)

− f (ti−1,n)
< ti,n

)
. Then for each term we observe that

P
(

ti−1,n ≤ T fn
− fn

< ti,n
)
= P(Ai,n)− P

(
Ai,n, T fn

− fn
< ti−1,n

)
. (3.4)

PART 2. The first part of the right-hand side of (3.4) can be obtained from (2.2) by
integrating on the interval [ti−1,n, ti,n). Hence, it reads as

P(Ai,n)=

∫ ti,n

ti−1,n

ϕ
(− f (ti−1,n), f (ti−1,n))

0 (u) du.

By the mean value theorem for integrals (see [2]) the previous equation becomes

P(Ai,n)= ϕ
(− f (ti−1,n), f (ti−1,n))

0 (t∗i,n)(ti,n − ti−1,n)

for some value t∗i,n ∈ [ti−1,n, ti,n). Thus, in (3.3) we actually have a Riemann sum
which converges to the desired quantity:

lim
n→∞

n∑
i=1

φ
(− f (ti−1,n), f (ti−1,n))

0 (t∗i,n)(ti,n − ti−1,n)=

∫ t

0
ϕ
(− f (u), f (u))
0 (u) du.

Hence, the second element of (3.2) is obtained.

PART 3. For the last term in (3.4), we have the analysis

P
(

Ai,n, T fn
− fn

< ti−1,n

)
=

∫ ti−1,n

0
P
(

Ai,n

∣∣∣ T fn
− fn
= ut

)
8n(du)

=

i−1∑
k=1

∫ tk,n

tk−1,n

P
(

Ai,n

∣∣∣ T fn
− fn
= u

)
8n(du).
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This in turn equals

i−1∑
k=1

∫ tk,n

tk−1,n

P
(

Ai,n

∣∣∣ T fn < T− fn , T fn
− fn
= u

)
× P

(
T fn < T− fn

∣∣∣ T fn
− fn
= u

)
8n(du)

+

i−1∑
k=1

∫ tk,n

tk−1,n

P
(

Ai,n

∣∣∣ T fn ≥ T− fn , T fn
− fn
= u

)
× P

(
T fn ≥ T− fn

∣∣∣ T fn
− fn
= u

)
8n(du). (3.5)

Now, we analyse the quantities involved in the sums. We know that

P
(

T fn < T− fn

∣∣∣ T fn
− fn
= u

)
+ P

(
T fn ≥ T− fn

∣∣∣ T fn
− fn
= u

)
= 1.

By the symmetry of the BM,

P
(

T fn < T− fn

∣∣∣ T fn
− fn
= u

)
= P

(
T fn ≥ T− fn

∣∣∣ T fn
− fn
= u

)
=

1
2
. (3.6)

On the other hand, for each integral in the sums, let u ∈ [tk−1,n, tk,n)with k ≤ i − 1.
From the regenerative properties of the BM,

P
(

Ai,n

∣∣∣ T fn ≥ T− fn , T fn
− fn
= u

)
= P

(
ti−1,n − u ≤ T

f (ti−1,n)− f (tk−1,n)

− f (ti−1,n)− f (tk−1,n)
< ti,n − u

)
=

∫ ti,n−u

ti−1,n−u
ϕ
(− f (ti−1,n− f (tk−1,n), f (ti−1,n)− f (tk−1,n))

0 (w) dw. (3.7)

For this last step, the assumption of nondecreasing barriers is important. After a change
of variable and application of the mean value theorem for each k = 1, 2, . . . , i − 1 the
probability (3.7) becomes

ϕ
(− f (ti−1,n)− f (tk−1,n), f (ti−1,n)− f (tk−1,n))

0 (t∗k,i,n − u)(tk,n − tk−1,n), (3.8)

for some t∗k,i,n ∈ [ti−1,n, ti,n) and k < i − 1 and i = 1, 2, . . . , n.
Furthermore, for the last sums at (3.5), owing to the symmetry of the BM,

P
(

Ai,n

∣∣∣ T fn < T− fn , T fn
− fn
= u

)
= P

(
Ai,n

∣∣∣ T fn ≥ T− fn , T fn
− fn
= u

)
.

So, using also (3.6) and (3.8), probability (3.5) ends up as

2
i−1∑
k=1

∫ tk,n

tk−1,n

ϕ
(− f (ti−1,n)− f (tk−1,n), f (ti−1,n)− f (tk−1,n))

0 (t∗k,i,n − u)(tk,n − tk−1,n)
1
2
8n(du).
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Substitution in equations (3.4) and (3.3) yields

n∑
i=1

i−1∑
k=1

∫ tk,n

tk−1,n

ϕ
(− f (ti−1,n)− f (tk−1,n), f (ti−1,n)− f (tk−1,n))

0

× (t∗k,i,n − u)(tk,n − tk−1,n) 8n(du). (3.9)

Upon applying again the mean value theorem, there are t∗i,k,n ∈ [tk−1,n, tk,n) for
each i < n, such that sum (3.9) equals

n∑
i=1

i−1∑
k=1

ϕ
(− f (ti−1,n)− f (tk−1,n), f (ti−1,n)− f (tk−1,n))

0 (t∗k,i,n − t∗i,k,n)

× (tk,n − tk−1,n)(8n(ti,n)−8n(ti−1,n)). (3.10)

Equation (3.10) represents a Riemann–Stieltjes sum of a continuous function. Thus,
when n→∞ we obtain the limit∫ t

0

(∫ s

0
ϕ
(− f (s)− f (u), f (s)− f (u))
0 (s − u) 8(du)

)
ds,

which finally yields the last part of (3.2). This concludes the proof. 2

4. Equations for the density

In the previous section, Theorem 3.2 stated an integral equation for the distribution
of T , the first exit time. There are results on first passage times requiring additional
conditions in order to derive an integral equation for the density. In [10, 22, 24] the
barrier needs to be differentiable. In our case, we can readily see in (3.2) that 8 is
differentiable, and thus we are able to obtain an integral equation for the density.

COROLLARY 4.1. Under the conditions of Theorem 3.2, we have that the density of
T , which we denote by ϕ, satisfies the integral equation

ϕ(t)= ϕ(− f (t), f (t))
0 (t)−

∫ t

0
ϕ
(− f (t)− f (u), f (t)− f (u))
0 (t − u)ϕ(u) du, (4.1)

where the function ϕ(a,b)x (u) is given by (2.2).

REMARK 1. As mentioned above, generally one assumes differentiable barriers
to ensure the existence of a density. However, since the barriers we use are
nondecreasing, one also has that the distribution function is differentiable.

REMARK 2. Since the function ϕ(−a,b)
x (u) is continuous in all its arguments, (4.1)

has unique solution. This is a classical result in the theory of integral equations (see
[6, Theorem 5, Page 183]).

https://doi.org/10.1017/S144618110900025X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900025X


452 V. De-la-Peña et al. [8]

4.1. Another expression for the exit time density From the proof of Theorem 3.2,
we can see that it is possible to modify the integral equation slightly. Recall the
notation T f

−g(x); in (3.7),

P
(

Ai,n

∣∣∣ T fn ≥ T− fn , T fn
− fn
= u

)
= P

(
ti−1,n − u ≤ T

f (ti−1,n)

− f (ti−1,n)
( f (tk−1,n)) < ti,n − u

)
for u ∈ (tk−1,n, tk,n]. Finally this becomes∫ ti,n−u

ti−1,n−u
ϕ
(− f (ti−1,n), f (ti−1,n))

f (tk−1,n)
(w) dw.

The idea is to consider a BM starting at f (tk−1,n), rather than at 0, as was originally
done in (3.7).

This change gives a new expression for the integral equation, namely

ϕ(t)= ϕ(− f (t), f (t))
0 (t)−

∫ t

0
ϕ
(− f (t), f (t))
f (u) (t − u)ϕ(u) du.

4.2. Numerical solutions We now exploit a numerical procedure to solve (4.1).
A numerical algorithm based on a recursive formulae is quite straightforward to
implement; we summarize it briefly (the interested reader can refer to [17]).

We want to solve the Volterra integral equation

F(t)= G(t)+
∫ t

0
K (t, s)F(s) ds, (4.2)

where G and K are known functions, the latter usually being called the kernel.
Equation (4.2) is an equation of the second kind because function G is nonzero, which
is important for the method to work.

Suppose that we want to obtain an approximation of F in the interval [0, r ],
and we divide it into N equally spaced subintervals of size h. We have N + 1
nodes {t0, t1, . . . , tN } such that tn+1 − tn = h, n = 0, 1, . . . , N − 1, with t0 = 0.
We denote by {F1, . . . , FN } the approximation of f at the nodes {t1, . . . , tN }. The
following recursive formula can be used:

Fn+1 =
G(tn+1)+

∑n
k=1 Fk

∫ tk
tk−1

K (tn+1, s) ds

1−
∫ tn+1

tn
K (tn+1, s) ds

, n = 0, . . . , N − 1. (4.3)

Notice that

F1 =
G(h)

1−
∫ h

0 K (h, s) ds
.

EXAMPLE 3. Using Scilab 4.1.2, we compute the density function of T 1
−1(0) and

T f
− f (0), where f (t)= 1+ 0.0001t . The two densities should be close to each other.

In Figure 1 a sampling from the density of T 1
−1(0) (determined by (2.2)) is shown as a

line and similarly, the density of T f
− f (0) (determined by (4.3)) is shown with points.
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FIGURE 1. Densities for the exit times.

5. Conclusion

We studied the first-exit-time distribution of a reflected Brownian motion and
found a Volterra integral equation for the density. The main result is derived from
approximating the barriers by step functions and carrying out a careful analysis of
the paths.

The solution of the integral equations does not seem a trivial task; however, it was
shown to be feasible using numerical methods.

We briefly mention other possible directions to take.
• Extend the result to the case of nonsymmetric barriers. The main technical

difficulty is the nonsymmetrical probabilities in (3.6).
• The problem of solving the integral equation explicitly remains open.
• There is an interesting relation between the maximum and the reflected Brownian

motion. Let M be the maximum of the Brownian motion, that is, Mt =

max(Bs, s ≤ t). It is known the two processes,

{Mt − Bt : t ≥ 0} and {|Bt | : t ≥ 0},

have the same law (see, for example, [14, Page 210]). We may want to use this
to find the first passage distribution of M .

Acknowledgement

This research was partially supported by the CONACYT-NSF (Mexico–USA)
program.

https://doi.org/10.1017/S144618110900025X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900025X


454 V. De-la-Peña et al. [10]

References

[1] D. Bañuelos, R. D. DeBlassie and R. Smits, “The first exit time of a planar Brownian motion from
the interior of a parabola”, Ann. Probab. 29 (2001) 882–901.

[2] R. G. Bartle, The elements of real analysis, 2nd edn (John Wiley & Sons, New York, 1976).
[3] R. A. Betensky, “A boundary crossing probability for the Bessel process”, Adv. Appl. Probab. 30

(1998) 807–830.
[4] A. N. Borodin and P. Salminen, Handbook of Brownian motion—facts and formulae (Birkhäuser,

Basel, 1996).
[5] D. L. Burkholder, “Exit times of Brownian motion, harmonic majorization and Hardy spaces”,

Adv. Math. 26 (1977) 182–205.
[6] W. Cheney, Analysis for applied mathematics (Springer, New York, 2001).
[7] D. A. Darling and A. J. F. Siegert, “The first passage problem for a continuous Markov process”,

Ann. Math. Statist. 24 (1953) 624–639.
[8] R. D. DeBlassie, “Exit times from cones in Rn of Brownian motion”, Probab. Theory Related

Fields 74 (1987) 1–29.
[9] R. D. DeBlassie, “The change of a long lifetime for Brownian motion in a horn-shape domain”,

Electron. Comm. Probab. 12 (2007) 134–139.
[10] V. De-la-Peña and G. Hernández-del-Valle, “First-passage densities of Brownian motion over a

non-decreasing, right continuous barrier”. Unpublished technical report, Department of Statistics,
Columbia University, 2007.

[11] J. L. Doob, “Heuristic approach to the Kolmogorov–Smirnov theorems”, Ann. Math. Statist. 20
(1949) 393–403.

[12] D. S. Grebenkov, “NMR survey of the reflected Brownian motion”, Rev. Modern Phys. 79 (2006)
1077.

[13] G. Hernández-del-Valle, “First passage time densities of Brownian motion and applications to
credit risk”. Ph. D. Thesis, Department of Statistics, Columbia University, 2005.

[14] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus (Springer, New York, 1998).
[15] S. Karlin and H. M. Taylor, A first course in stochastic processes (Academic Press, New York,

1975).
[16] F. Klebaner, Introduction to stochastic calculus with applications, 2nd edn (Imperial College Press,

London, 2005).
[17] R. Kress, Numerical analysis (Springer, New York, 1998).
[18] P. Levitz, D. S. Grebenkov, M. Zinsmeister, K. M. Kolwankar and B. Sapoval, “Brownian flights

over a fractal nest and first-passage statistics on irregular surfaces”, Phys. Rev. Lett. 96 (2006)
180601.

[19] W. V. Li, “The first exit time of Brownian motion from a parabolic domain”, Electron. Comm.
Probab. 12 (2003) 134–139.

[20] W. V. Li, “The first exit time of Brownian motion from an unbounded convex domain”, Ann.
Probab. 31 (2003) 1078–1096.

[21] M. Lifshits and Z. Shi, “The first exit time of Brownian motion from a parabolic domain”,
Bernoulli 8 (2002) 745–765.

[22] G. Peskir, “On integral equations arising in the first-passage problem for Brownian motion”,
J. Integral Equations Appl. 14 (2001) 397–423.

[23] D. Revuz and M. Yor, Continuous Martingales and Brownian motion (Springer, Berlin, 1999).
[24] L. M. Ricciardi, L. Sacerdote and S. Sato, “On an integral equation for first-passage-time

probability densities”, J. Appl. Probab. 21 (1984) 302–314.

https://doi.org/10.1017/S144618110900025X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110900025X

