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Abstract. Let M be a hyperbolic surface and G(M) its extended mapping class group.We show
that G(M) is isomorphic to the automorphism group of the following graph G(M). The set of
vertices of G(M) is the set S(M) of nonseparating simple closed geodesics of M. Two vertices
u and v of S(M) are related by an edge if u and v intersect exactly once in M. The graph G(M)
can be thought of as a combinatorial model for M.
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1. Introduction

Let M be a Riemann surface equipped with a complete metric of constant curvature
ÿ1. Let M have genus g and n cusps (and no further boundary components); M is
then called a �g; n�-surface; we will always exclude the case �g; n� � �0; 3�.

Let S�M� be the set of the simple closed geodesics of M. Traditionally, one
considers the sets of mutually disjoint elements of S�M� as the most important ¢nite
subsets of S�M�. These subsets have many important applications, some of them I
am going to describe now. A (maximal) set of 3gÿ 3� n disjoint elements of
S�M� partitions M into pairs of pants and provides parameters for the Teichmu« ller
space T �g; n� of M (one half of the Fenchel^Nielsen parameters). These
3gÿ 3� n disjoint elements also serve as parameters for the set S�M� itself; this
has ¢rst been discovered by Dehn [2] and was rediscovered by Thurston (see [13])
who used these elements also for de¢ning the geodesic laminations. Further, Harvey
[5] has de¢ned the so-called complex of curves where every subset of S�M� of k� 1
disjoint elements is considered as a k-simplex (kX 0). This complex of curves
C�M� has many interesting properties (see, for example, [6, 12]); one of them is that
the automorphism group ofC�M� is isomorphic to the extended mapping class group
G�M� (containing also the isotopy classes of orientation reversing self-homeo-
morphisms of M). This has been proved by Ivanov [7, 8] for gX 2 and,
independently, by Korkmaz [9] and Luo [11] for the remaining cases.
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During my work on simple closed geodesics (see [14] for a survey), I came to the
conclusion that one has to consider more general ¢nite subsets of S�M� than those
described above. In particular, the subsets are important which appear as set of
systoles of a �g; n�-surface (a systole is a shortest simple closed geodesic of a
�g; n�-surface). As a consequence, I propose to study the following `systolic complex
of curves' SC�M�. If n � 0 or n � 1 then the k-simplices are now the sets of
k� 1 nonseparating elements of S�M� which mutually intersect at most once. If
nX 2, then we allow also those separating elements of S�M� which separate a pair
of pants with two cusps from the rest of the surface; such a separating element
is allowed to intersect other elements of the simplex at most twice. Of course,
not every k-simplex of SC�M� will correspond to a set of systoles of a �g; n�-surface,
but SC�M� is the natural combinatorial object which `contains' all interesting sets
of systoles.

As a ¢rst test of the properties of SC�M� one has the following conjecture.

CONJECTURE. The automorphism group of the systolic complex of curves
SC�M� is isomorphic to G�M�.

I can prove the conjecture for a few cases such as �g; n� 2 f�1; 1�; �1; 2�; �2; 0�g. The
content of this paper is another result which may be viewed as an important and
necessary step towards a better understanding of the systolic complex of curves.
Namely, I consider here the following graph G�M�. If g � 1, the set of vertices
of G�M� is the set S�M� of the nonseparating elements of S�M� and two elements
of S�M� are related by a nonoriented edge if they intersect exactly ones. If g � 0,
then the set of vertices is the set S�M� of elements of S�M� which separate a pair
of pants with two cusps from the rest of the surface; two elements of S�M� are related
by a nonoriented edge if they intersect exactly twice. Note that G�M� is a subgraph of
the systolic complex of curves SC�M� when in the latter we only consider 0- and
1-simplices (in the sequel I shall treat SC�M� and C�M� as graphs, but continue
to call them `complexes'). The following is the main result of the paper.

THEOREMA. LetM 2 T �g; n�. ThenG�M� is isomorphic to the groupAut�G�M�� of
automorphisms of G�M�, except in the cases �g; n� 2 f�0; 4�; �1; 1�; �1; 2�; �2; 0�g.

If �g; n� 2 f�1; 1�; �1; 2�; �2; 0�g, then Aut�G�M�� is isomorphic to G�M�=Z2 (since
these surfaces are all hyperelliptic).

If �g; n� � �0; 4�, then Aut�G�M�� is isomorphic to G�M�=H with H ' Z2 � Z2

(since these surfaces have three hyperelliptic involutions).
In all cases, G�M� is connected.

We therefore have the somewhat surprising result that the two automorphism groups
Aut�C�M�� and Aut�G�M�� are isomorphic despite the fact that the graphs C�M� and
G�M� are quite different. For example the maximal order of complete subgraphs is
different; it is 3gÿ 3� n in the case of C�M� while in the case of G�M� it is
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2g� 1 if gX 1 (independent of n) and it is nÿ 1 if g � 0. Note that G�M� is vertex-
transitive and edge-transitive which both is not the case for C�M�. Further, Theorem
A also holds if �g; n� 2 f�0; 4�; �1; 1�; �1; 2�g while for these cases Aut�C�M�� is not
isomorphic to G�M�=H (H being the subgroup generated by the hyperelliptic
involutions); see the references cited above.

On the other hand, both C�M� and G�M� are related to SC�M�, introduced above,
and from this point of view it is less surprising that Aut�C�M�� and Aut�G�M�� are
isomorphic.

In order to prove Theorem A, I introduce the following notation (which here is
explained for the case gX 1). Let u and v be two nonseparating simple closed
geodesics of M which are not disjoint. Then u induces a partition of v into a number
of connected components which I call components of v with respect to u. It will
be suf¢cient to study these components. There are three topological possibilities
for such a component v1 (of v with respect to u). The ¢rst possibility is that v1
separates M n u (M n u is the surface obtained by cutting M along u). If v1 does
not separate M n u, then v1 either starts and ends on the same copy of u in
M n u (v1 is `one-sided') or relates the two copies of u in M n u (v1 is `two-sided').

The paper is organized as follows. Section 2 contains the proof of Theorem A for
gX 1. Section 3 contains the proof of Theorem A for g � 0. In Section 4, I brie£y
discuss some other natural subgraphs of the systolic complex of curves which also
have the same automorphism group as G�M�.

2. Proof of the Main Theorem if gX 1

DEFINITION. (i) A surface is a Riemann surface equipped with a metric of con-
stant curvature ÿ1. A �g; n�-surface is a surface of genus g with n cusps (and no
further boundary components). The case �g; n� � �0; 3� is excluded in this paper.

(ii) A boundarycomponent of a surface is, by de¢nition, a simple closed geodesic (also
called boundary geodesic) or a cusp.

(iii) Let M be a �g; n�-surface. An embedded subsurface M0 �M is called a
�g0; n0� ÿ subsurface if M0 has genus g0 and n0 boundary components.

(iv) A pair of pants is a surface of genus zero with three boundary components.
(v) Let M be a �g; n�-surface. By G�M� is denoted the extended mapping class group

of M (which also contains the isotopy classes of orientation reversing
self-homeomorphisms of M ).

Remark. Let M be a �g; n�-surface and let u be a nonseparating simple closed
geodesic of M. I shall often use the surface which is the closure of M0 �M n u (the
closure of M0 has two copies of u among the boundary components). By abuse
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of notation I shall not make a difference between M0 and its closure. In the same
spirit, I shall also say that M (or an embedded subsurface of M) `contains' its cusps.

DEFINITION. Let M be a �g; n�-surface, gX 1.

(i) Let S�M� denote the set of nonseparating simple closed geodesics of M.
(ii) Let u; v 2 S�M�.Then i�u; v� denotes the number of intersection points of u and v.

If u � v, then i�u; v� � 0. If i�u; v� � 0 and u 6� v, then u and v are called disjoint.
The same de¢nition also applies if u; v are simple closed geodesic of M which
are not in S�M�.

(iii) If i�u; v� � 1, then I say that u and v are orthogonal and write u ? v.

Remark. The relation `orthogonal' (or ?) de¢ned above is symmetric, but neither
re£exive nor transitive; the name of this relation has been introduced by F. Luo [10].

DEFINITION.

(i) Let M be a �g; n�-surface. G�M� denotes the following graph. S�M� is the set of
vertices of G�M� and

f�u; v� 2 S�M� � S�M� : u ? vg

is the set of (nonoriented) edges. Instead of G�M�, I also use the notation G�g; n�.
(ii) Let F � fu1; u2; . . . ; ukg � S�M�, kX 1. De¢ne

N�F � :� N�u1; . . . ; uk� :� fx 2 S�M� : x ? ui; 8i � 1; . . . ; kg:

(iii) Aut�G�M�� denotes the automorphism group of G�M�.

Remark. Let M be a �g; n�-surface. Note that G�M� and G�M� depend only on g
and n and not on the particular �g; n�-surface M.

DEFINITION. Let M be a �g; n�-surface, gX 1, let u 2 S�M�. Let v 2 S�M� such
that i�u; v�X 2. Let v1 be a connected component of v in M n u. If M n �u [ v1� is
connected, then v1 is called a nonseparating component of v with respect to u.
Otherwise, v1 is called a separating component of v with respect to u.

Let M1 �M n u. Let u1 and u2 be the two copies of u in M1. Let v1 be a non-
separating component of v with respect to u. If v1 relates u1 and u2, then v1 is called
two-sided. Otherwise, v1 is called one-sided.

LEMMA 1. LetM be a �g; n�-surface, gX 1. Let u; v 2 S�M� such that i�u; v�X 2. Let
v have a separating component v1 with respect to u. Then there exists w 2 S�M� n fu; vg
such that N�u; v� � N�w�. Moreover, w is disjoint to u.
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Proof (Compare Figure 1). LetM1 �M n u. Let u1 and u2 be the two copies of u in
M1. Then v1 starts and ends in the same boundary geodesic ofM1, in u1, say. Denote
by V1 and V2 the two connected components ofM1 n v1 where the notation is chosen
such that u2 lies in V2. In V2, there is a unique simple closed geodesic w such that
V2 n w has a connected component W of genus zero which contains no cusps
and which has v1 in its boundary. Note that w 6� u2 since v is simple. It follows that
w 2 S�M� n fu; vg. Put X �W [ V1.

Let s 2 N�u; v�. Since s 2 N�u�, it follows that s \ X has a connected component s1
relating u1 and w. Assume that s \ X has a second connected component s2. Then s2
starts and ends in w and therefore intersects v1 at least twice (since v1 separates
X ). But since s 2 N�v�, s2 cannot exist and therefore s 2 N�w�. &

DEFINITION. A subset fu; v;wg � S�M� of three elements is called a triple if the
three elements are mutually orthogonal and if M has a �1; 1�-subsurface which
contains u; v;w.

LEMMA 2. Let M be a �g; n�-surface, gX 1. Let u; v 2 S�M�, u ? v. Then S�M� has
exactly two different elements w such that fu; v;wg is a triple. Moreover,
M n �u [ v [ w� has three connected components; two of them are isometric hyperbolic
triangles.

Proof. Obvious. &

LEMMA 3. LetM be a �g; n�-surface, gX 1. Let u; v 2 S�M� such that i�u; v�X 2. Let
v have a nonseparating component v1 with respect to u. Then there exist
w;w0 2 S�M� n fu; vg such that N�u; v� � �N�w� [N�w0��. Moreover, if v1 is one-sided,
then u;w;w0 are mutually disjoint; if v1 is two-sided, then fu;w;w0g is a triple with

i�u; v� � i�v;w� � i�v;w0� and minfi�v;w�; i�v;w0�g > 0: �1�

Proof (Compare Figure 2). LetM1 �M n u. Let u1 and u2 be the two copies of u in
M1.

Figure 1. The separating component v1 of v with respect to u in M1
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(i) Assume ¢rst that v1 is two-sided. Cut M1 along v1; then in the boundary of the
resulting surface there is a simple closed curve which is freely homotopic to a unique
simple closed geodesic z (inM1) which is the boundary geodesic of a pair of pants Y
(inM1) which contains v1; the two other boundary geodesics ofY are u1 and u2. InM,
z separates a �1; 1�-subsurface Q from the rest (Q contains u).

Let s 2 N�u; v� and let s1 be the connected component of s \Q which intersects u.
Assume that s \Q has a second connected component s2. Since s 2 N�u�, s2 does
not intersect u. By construction, s2 then intersects v1. Since s 2 N�v�, it follows that
s \Q has at most two connected components.

Let now w;w0 be simple closed geodesics inQ such that fu;w;w0g is a triple and such
that w \ Y and w0 \ Y are homotopic to v1 (the homotopy is such that the endpoints
may vary on ui, i � 1; 2). It follows that v1 intersects each of w and w0 at most once.
Let s1 be disjoint to v1. Then, by Lemma 2, s1 is disjoint to one of w;w0 and intersects
once the other one. If s2 does not exist, we are done. If s2 exists, then s2 intersects once
each of w;w0, and we are done again. So assume that s1 intersects v1 (and that s2 does
therefore not exist). It follows by Lemma 2 that s1 intersects once one of w;w0. We
thus have proved that s 2 N�w� [N�w0�.

By Lemma 2, the triangle inequality and the fact that v cannot intersect trans-
versally v1, it follows that i�u; v� � i�v;w� � i�v;w0�. Let v0 � v be the connected
component of v in Q which contains v1. Then v0 intersects u at least twice and there-
fore, v0 cannot be connected in Q n w nor in Q n w0. This proves that v intersects
both w and w0 and therefore (1) holds.

(ii) Assume now that v1 starts and ends in u1. Then v1 separates u1 into two parts
u1a and u1b. Let w be the simple closed geodesic in M1 which is freely homotopic
to u1a [ v1; let w0 be the simple closed geodesic in M1 which is freely homotopic
to u1b [ v1. Then u1;w;w0 are the boundary geodesics of a (unique) pair of pants
Y , embedded in M1. Note that v1 � Y . Since v1 is a nonseparating component,
w and w0 are in S�M� n fu; vg. Let s 2 N�u; v�. It follows that s \ Y has a connected
component s1 starting in u1 and ending in w or in w0. Let s2 be another connected
component of s \ Y . Then s2 must relate w and w0 and therefore intersects v1. It

Figure 2. The nonseparating component v1 of vwith respect to u in M1; v1 is two-sided on the left-hand side
and one-sided on the right-hand side, respectively.
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follows that s \ Y has at most two connected components and therefore,
s 2 N�w� [N�w0�. &

Remark. Let M be a �g; n�-surface, gX 1. Let u; v 2 S�M�, let k � i�u; v�. If k � 0,
then N�u; v� is not empty. If kX 2, then i�v;w� < k where w is de¢ned as in Lemma
1 or in Lemma 3. It follows by induction with respect to k that v and w are in
the same connected component of G�M� and hence also u and v. This proves that
G�M� is connected.

LEMMA 4. LetM be a �g; n�-surface. Let F be a subset of S�M� such that there exists
v 2 S�M� with i�u; v� � 0 for all u 2 F. If N�F � has an element w which intersects v,
then N�F � is an in¢nite set.

Proof. Let w 2 N�F � such that w intersects v. Execute a full twist deformation
along v. The result is a surfaceM1 isometric toM. As marked geodesics, the elements
of F are not changed by this deformation, but w has become a different element
w1 2 S�M�. Of course, w1 2 N�F �. The same argument holds for a twist deformation
along v of k full twists (for any integer k). This proves the lemma. &

LEMMA 5. LetM be a �g; n�-surface, gX 1. Let u; v 2 S�M� be two disjoint elements.
Then there do not exist elements w;w0 2 S�M� n fu; vg such that N�u; v� � �N�w�
[ N�w0��.

Proof. Assume that there exist w;w0 2 S�M� n fu; vg such that N�u; v� � �N�w� [
N�w0��. Let z 2 S�M� such that i�w; z� > 0 and i�u; z� � i�v; z� � 0. Let z0 2 S�M� such
that i�w0; z0� > 0 and i�u; z0� � i�v; z0� � 0. Let T � N�u; v� be the subset of elements
which intersect both z and z0; it is clear that T is not empty.

Let t 2 T . By Lemma 4 we can `twist' t along z in order to obtain t0 2 T such that
the number of intersections of t0 with w becomes big. By the same argument we then
can twist t0 along z0 so that also the number of intersections with w0 becomes big.
It is therefore impossible that T � �N�w� [N�w0��. &

THEOREM 6. Let M be a �g; n�-surface, gX 1. Let u; v 2 S�M�, u 6� v. Then u and v
are disjoint if and only if f�u� and f�v� are disjoint for every f 2 Aut�G�M��. In other
words, G�M� recognizes whether the elements of S�M� are disjoint or not disjoint.

Proof. This follows by Lemma 1, Lemma 3, and Lemma 5. &

DEFINITION. Let M be a �g; n�-surface, gX 1. A partition P � S�M� is a set of
3gÿ 3� n mutually disjoint elements.

CONVENTION. Let M be a �g; n�-surface. Let g 2 G�M�, taken as a
self-homeomorphism of M. Let u be a simple closed geodesic of M. Then g�u� is
a simple closed curve in M, and in the homotopy class of g�u�, there is a unique
simple closed geodesic. Therefore, g induces a map, also denoted by g, of the simple
closed geodesics of M to the simple closed geodesics of M (of course, this map does
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not change if g is replaced by a g0 isotopic to g). We will use this interpretation of the
elements of G�M�.

COROLLARY 7. Let M be a �g; n�-surface, gX 1. Let P � S�M� be a partition. Let
f 2 Aut�G�M��. Then f�P� is a partition. Moreover, there exists g 2 G�M� such that
g�u� � f�u� for all u 2 P.

Proof. It is clear by Theorem 6 that f�P� is a partition. It is therefore suf¢cient to
prove that the boundary components of a pair of pants (induced by P) are mapped,
by f, to boundary components of a pair of pants (induced by f�P�); this would
imply the existence of g as claimed.

In the sequel let Y be a pair of pants induced by P with boundary components
u; v;w.

(i) Assume ¢rst that u; v;w 2 P and then assume that N�u; v;w� is empty, so also is
N�f�u�;f�v�;f�w��. This implies that M n �f�u� [ f�v� [ f�w�� is not connected. On
the other hand, there exists u0 2 N�u� disjoint to v. It follows from Theorem 6 that
f�u0� is disjoint in f�v�. This implies that M n �f�u� [ f�v�� is connected. The same
argument shows that M n �f�u� [ f�w�� is connected and that M n �f�v� [ f�w�� is
connected. Therefore, f�u�;f�v�;f�v� are the boundary geodesics of a pair of pants.

(ii) Assume now that w is a cusp and that only u and v are in P. Then there does not
exist u0 2 N�u� disjoint to v. By Theorem 6 this property is respected by f which
implies that M n �f�u� [ f�v�� is not connected.

Further, there exists z 2 S�M� disjoint to u [ v such that z intersects all elements of
P n fu; vg. By Theorem 6 this property is respected by f. Therefore, f�u� and f�v� are
the boundary components of a pair of pants induced by f�P�. &

COROLLARY 8. Let M be a �g; n�-surface, gX 1. Let fu; v;wg � S�M� be a triple.
Then ff�u�;f�v�;f�w�g is also a triple for every f 2 Aut�G�M��.

Proof. By de¢nition of a triple, there exists a �1; 1�-subsurface Q of M with
boundary component z such that u; v;w are inQ. If �g; n� � �1; 1�, the corollary holds,
so we can exclude this case in the sequel and assume that z is a simple closed geodesic.

(i) Let gX 2. Then there exists a �1; 2�-subsurface R �M with boundary com-
ponents x; y 2 S�M� which contains Q. Moreover, there exists t 2 N�x; y�, t disjoint
to z. By Corollary 7, f�u�;f�v�;f�w� lie in a �1; 2�-subsurface R0 �M with boundary
components f�x�;f�y�. Since f�t� is disjoint to f�u�;f�v�;f�w� and intersects the
boundary of R0, it follows that f�u�;f�v�;f�w� lie in a �1; 1�-subsurface.

(ii) Assume now that g � 1. Then M has a partition

P � fu; x1; . . . ; xnÿ1g � S�M�
such that xi 2 N�v;w�, 8i � 1; . . . ; nÿ 1. To xi there exists a unique simple closed
geodesic zi in M such that zi is disjoint to v and to all elements of P n fxig,
i � 1; . . . ; nÿ 1. Since fu; v;wg is a triple, w is disjoint to zi, i � 1; . . . ; nÿ 1. By
Lemma 4 it follows that if the elements of P n fxig are ¢xed, then there are in¢nitely
many different possibilities to choose xi with the required properties. By Corollary
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7, P0 � f�P� is a partition. Since we had in¢nitely many different possibilities to
choose xi, it follows that to every x0 2 P0 n ff�u�g, there must exist a simple closed
geodesic z0 which is disjoint to f�v� and f�w� and to all elements of P0 n fx0g. This
implies that ff�u�;f�v�;f�w�g is a triple. &

THEOREM 9. LetM be a �g; n�-surface, gX 1. Letf 2 Aut�G�M��. Let u; v 2 S�M�.
Then i�u; v� � i�f�u�;f�v��.

Proof. If i�u; v� � 0, then the theorem follows by Theorem 6. Assume that the
theorem holds for all u; v 2 S�M� with i�u; v�W kÿ 1 for a kX 2.

Let u; v 2 S�M� such that i�u; v� � k. In order to prove the theorem, it is suf¢cient
to show that i�u; v� � i�f�u�;f�v��. In the sequel, a component of v is always a
component with respect to u.

(i) Assume that there exists a two-sided component v1 of v. Let w;w0 be de¢ned as
in Lemma 3. Then fu;w;w0g is a triple and (1) in Lemma 3 holds. Since v intersects
both w and w0, it follows by hypothesis on k that i�v;w� � i�f�v�;f�w�� and
i�v;w0� � i�f�v�;f�w0��. By Corollary 8, ff�u�;f�w�;f�w0�g is a triple, therefore,
by the triangle inequality and Lemma 2,

i�f�v�;f�w�� � i�f�v�;f�w0��X i�f�u�;f�v��

which implies i�u; v�X i�f�u�;f�v��. It follows by hypothesis on k (applied to fÿ1)
that i�u; v� � i�f�u�;f�v��.

(ii) Let u1; u2 be the two copies of u in M0 �M n u. By (i) we can assume that all
components of v are separating ore one-sided. LetMi be the smallest embedded sub-
surface of M0 (the boundary components of Mi being simple closed geodesics or
cusps) such thatMi contains all components of v with endpoints on ui, i � 1; 2. Then
M1 and M2 have disjoint interior. Since u is nonseparating, M1 and M2 have a com-
mon boundary component x � x1 � x2 2 S�M� or M0 n �M1 [M2� has a connected
component M3 which has a common boundary component xi 2 S�M� with Mi,
i � 1; 2. Then there exists a simple curve ti �Mi which relates ui and xi and is disjoint
to v, i � 1; 2. Let t �M0 be a simple curve which relates u1 and u2 such that
t \Mi � ti, i � 1; 2. Let t be a geodesic segment homotopic to t (the homotopy
is such that the endpoints may vary on ui, i � 1; 2). Treat t as a component of a
simple closed geodesic with respect to u. Then de¢ne w;w0 as in Lemma 3. It follows
as in Lemma 3 that i�u; v� � i�v;w�� i�v;w0�. If v intersects both w and w0, it follows
by the same argument as in (i) that i�u; v� � i�f�u�;f�v��.

If g � 1, then v must intersect both w and w0 since otherwise, v is separating. This
proves the theorem for g � 1.

Assume that gX 2. Note that we can interchange the role of u and v and, by the
same argument as above, construct a triple fv; �w; �w0g such that i�u; v� � i�u; �w��
i�u; �w0� (where �w; �w0 are orthogonal to x1). We therefore can assume that v does
not intersect w and that u does not intersect �w. This implies that in
M�M n x1, both u; v are nonseparating. M is homeomorphic to a
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�gÿ 1; n� 2�-surface, also denoted by M. Of course, f induces canonically an
element in Aut�G�M��. It then follows by induction with respect to g that
i�u; v� � i�f�u�;f�v��. &

LEMMA 10. G�1; 1� and G�0; 4� are isomorphic.
Proof. Let G�1� be the modular group, let G�3� be the principal congruence sub-

group of G�1� of level three and let G0 be the commutator subgroup of G�1�. Then
M0 � H=G0 is a �1; 1�-surface (the so-called modular torus) and M � H=G�3� is a
�0; 4�-surface (H is the upper halfplane). It is well known (see [1, 3]) that there exists
a natural bijection between the simple closed geodesics of M and the simple closed
geodesics of M0. This bijection induces an isomorphism between G�1; 1� and
G�0; 4�. &

LEMMA 11. Let M be a �0; 4�-surface. Let u and v be simple closed geodesics of M
with i�u; v� � 2.

(i) Let w be a simple closed geodesic of M such that i�u;w� � 2. Then there exists
g 2 G�M� such that g�u� � u and g�v� � w.

(ii) There are exactly two simple closed geodesics wi of M such that i�u;wi� �
i�v;wi� � 2, i � 1; 2. Moreover, there exists g 2 G�M� such that g�u� � u,
g�v� � v, and g�w1� � w2�.

Proof. (i) A twist deformation along u will do the job.
(ii) The ¢rst statement is a reformulation of Lemma 2, applying the bijection

de¢ned in the proof of Lemma 10. The existence of an (orientation reversing)
involution g 2 G�M� with the properties required is obvious. &

THEOREM 12. Let M be a �g; n�-surface, gX 1.

(a) If �g; n� 62 f�1; 1�; �1; 2�; �2; 0�g, then Aut�G�M�� is isomorphic to G�M�.
(b) If �g; n� 2 f�1; 1�; �1; 2�; �2; 0�g, then Aut�G�M�� is isomorphic to G�M�=H where

H is the subgroup generated by the hyperelliptic involution.

Proof. (i) Let g 2 G�M�. It follows by our convention that g is an automorphism of
Aut�G�M��. Therefore, we have a group homomorphism, denoted by C�g; n�,

C�g; n� : G�M� ÿ!Aut�G�M��:
The kernel of C�g; n� is trivial, except in the cases �g; n� 2 f�1; 1�; �1; 2�; �2; 0�g. In
these three cases, the kernel of C�g; n� contains the isotopy class of the identity
and the isotopy class of the (unique) hyperelliptic involution. This has been proved
in [4] for closed surfaces (that is n � 0), the general case easily follows.

(ii) We have to prove that C�g; n� is surjective. Let f 2 Aut�G�M��. Let
m � 3gÿ 3� n. Let P � fu1; . . . ; umg � S�M� be a partition of M. By Corollary
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7 we can assume that f�ui� � ui, i � 1; . . . ;m. To every ui, i � 1; . . . ;m, there exists
vi 2 S�M� with i�ui; vi� � 2 and i�uj; vi� � 0 for all j � 1; . . . ;m, j 6� i. By Lemma
11 (i) we can assume that f�vi� � vi, i � 1; . . . ;m.

For i � 1; . . . ;m, there exists wi 2 S�M� such that i�uj;wi� � 0 for all j � 1; . . . ;m,
j 6� i, and such that i�ui;wi� � 2 and i�vi;wi� � 2. By Lemma 11 (ii) we can assume
that f�wi� � wi, i � 1; . . . ;m.

Let P0 � fui; vi;wi : i � 1; . . . ;mg. It now follows that x 2 S�M� is uniquely
determined by the 3m intersection numbers i�x; y�, y 2 P0. This was ¢rst proved
by Dehn [2] and rediscovered by Thurston, see [13] for a proof. Therefore, by
Theorem 9, f�x� � x for all x 2 S�M� so that f is the identity and C�g; n� clearly
is surjective. &

LetM be a �g; n�-surface, gX 1. Recall that we have already seen (after Lemma 3)
that G�M� is connected.

3. Proof of the Main Theorem if g � 0

LEMMA 13. LetM be a �0; 4�-surface. Let S�M� be the set of simple closed geodesics
of M. Let G�M� be the following graph. S�M� is the set of vertices of G�M� and

f�u; v� 2 S�M� � S�M� : i�u; v� � 2g

is the set of (nonoriented) edges. Then the automorphism group Aut�G�M�� of G�M�
is isomorphic to G�M�=H where H is the subgroup of order four generated by the
three hyperelliptic involutions of M. Moreover, G�M� is connected.

Proof. This follows by the the corresponding result for �g; n� � �1; 1� by virtue of
Theorem 12 and of Lemma 10. &

Remark. For the rest of this section we can therefore exclude the case
�g; n� � �0; 4�.

DEFINITION. Let M be a �0; n�-surface, nX 5.
(i) Let S�M� be the set of simple closed geodesics of M which separate a pair of

pants (with two cusps) from the rest of the surface. These two cusps are called
the cusps of u.

Let u; v 2 S�M�. Then I say that u and v are orthogonal and write u ? v if
i�u; v� � 2.

(ii) Let G�M� be the following graph. S�M� is the set of vertices of G�M� and
f�u; v� 2 S�M� � S�M� : u ? vg

is the set of (nonoriented) edges.
(iii) Denote by O�M� the set of simple geodesics in M which relate two different

cusps.
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Let u 2 O�M� such that u relates the cusps A and B. Then A and B are called the
cusps of u.

Let u; v 2 O�M�. Then I say that u and v are orthogonal and write u ? v if u and v
have one common cusp and do not intersect in the interior of M.

Let G0�M� be the following graph. O�M� is the set of vertices of G0�M� and
f�u; v� 2 O�M� �O�M� : u ? vg

is the set of (nonoriented) edges.
(iv) Let F � fu1; . . . ; ukg � O�M�. Then de¢ne

N�F � :� N�u1; . . . ; uk� :� fu 2 O�M� : u ? ui; i � 1; . . . ; kg :

The analogous de¢nition is used if F � S�M�.

LEMMA 14. Let M be a �0; n�-surface, nX 5. Then G�M� and G0�M� are canonically
isomorphic.

Proof. Let u 2 S�M�. Then u separates M into a pair of pants Y �u� and a second
surfaceM0 which is not a pair of pants (since nX 5�. InY �u� there is a unique element
of O�M�. It is clear that this de¢nes an isomorphism between the two sets of vertices
S�M� and O�M�.

Let u; v 2 O�M�, u ? v. Then the corresponding elements in S�M� intersect twice so
that they are orthogonal as well.

Let u 2 S�M� and let Y �u� be de¢ned as above. Let v 2 S�M�, v ? u. Then v
intersects twice the boundary geodesic u of Y �u� and it follows that Y �v� and
Y �u� have a common cusp so that the corresponding elements of u; v in O�M� are
orthogonal. &

LEMMA 15. Let M be a �0; n�-surface, nX 5. Let u; v 2 O�M� such that u and v are
different, but neither orthogonal nor disjoint. Let v have a connected component
v1 � v in M n u which starts and ends on u (u includes the cusps of u). Then there
exists w 2 O�M� n fu; vg such that N�u; v� � N�w�.

Proof. By hypothesis there exists w 2 O�M� n fu; vg which has the same cusps as u
and is homotopic to v1 (the homotopy is such that the endpoints may vary on
u). Let s 2 N�u; v�. Then s has a common cusp with u and hence with w. On the
other hand, s cannot intersect the interior of w since then s would also intersect
the interior of u or of v1. This proves s 2 N�w�. &

LEMMA 16. Let M be a �0; n�-surface, nX 5. Let u; v 2 O�M� such that u and v are
different, but neither orthogonal nor disjoint. Let v have a connected component
v1 � v in M n u which starts on u and ends in a cusp A which is not a cusp of u. Then
there exist w;w0 2 O�M� n fu; vg such that N�u; v� � �N�w� [N�w0��.

Proof. LetA1 andA2 be the cusps of u. There exist w and w0 in O�M�, w 6� w0, which
both have the cusp A and both are homotopic to v1 (the homotopy is such that the
endpoint on u may vary); the second cusp of w is A1, the second cusp of w0 is
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A2. Note that v1 � v is impossible (otherwise u ? v), therefore w;w0 2 O�M� n fu; vg.
Let s 2 N�u; v� and assume that s has the cusp A1. Then s cannot intersect the interior
of w or w0 since s would then also intersect the interior of u or of v1. It follows that if
the second cusp of s is A, then s 2 N�w0� and if the second cusp of s is not A, then
s 2 N�w�. An analogous argument holds if A2 is a cusp of s. &

LEMMA 17. Let M be a �0; n�-surface, nX 5. Let u; v be two disjoint elements of
S�M�. Then there do not exist elements w;w0 in S�M� n fu; vg such that
N�u; v� � �N�w� [N�w0��.

Proof. Assume that there exist w;w0 in S�M� n fu; vg such that N�u; v� �
�N�w� [N�w0��. Let t 2 N�u; v� (of course, N�u; v� is not empty). Note ¢rst that if
t 2 N�w�, then w intersects u or v. The same is true for w0. Therefore, at least
one of w;w0 must intersect u [ v. If both w and w0 intersect u [ v, then by twisting
t along u and v (as in the proof of Lemma 4) we can produce t0 2 N�u; v� such that
both i�t0;w� and i�t0;w0� become arbitrarily big, hence t0 62 N�w� [N�w0�, a con-
tradiction. If only w intersects u [ v, then N�u; v� � N�w�. But by twisting t along
u and v, we again can produce t0 2 N�u; v� such that i�t0;w� becomes arbitrarily big.

&

THEOREM 18. Let M be a �0; n�-surface, nX 5. Let f 2 Aut�G�M��. Let
u; v 2 S�M�, u 6� v. Then u and v are disjoint if and only if f�u� and f�v� are disjoint
for every f 2 Aut�G�M��. In other words, G�M� recognizes whether the elements
of S�M� are disjoint or not disjoint.

Proof. Note ¢rst that (from Lemma 14) we could also formulate Lemmas 15 and
16 for S�M�. Therefore, the theorem follows from Lemmas 15, 16, and 17. &

DEFINITION. Let M be a �0; n�-surface, nX 5. Let fx; y; zg � O�M�. Then fx; y; zg
is called a 0-triple if x; y; z are mutually orthogonal and if M n �x [ y [ z� has a
connected component which is an embedded triangle.

LEMMA 19. Let M be a �0; n�-surface, nX 5. Let fx; y; zg � O�M� be a 0-triple.

(i) Let f 2 Aut�G�M��. Then ff�x�;f�y�;f�z�g is a 0-triple.
(ii) Let x0; y0; z0 be the corresponding (to x; y; z) elements in S�M�. Let u 2 S�M�.Then

i�u; x0�W i�u; y0� � i�u; z0�.

Proof. (i) Since fx; y; zg is a 0-triple, there exists a unique �0; 4�-subsurface Q �M
which contains x; y; z. Let M0 �M nQ, let A be a cusp of M0. Then there are nÿ 4
mutually orthogonal elements vi 2 O�M�, i � 1; . . . ; nÿ 4, which all have the cusp
A and which lie in M0. By Theorem 18, f�x�;f�y�;f�z� are all disjoint to f�vi�,
i � 1; . . . ; nÿ 4. It follows that f�x�;f�y�;f�z� lie in a �0; 4�-subsurface of M which
proves (i).
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Assertion (ii) follows by the triangle inequality (recall that M n �x [ y [ z� has a
connected component which is a triangle). &

THEOREM 20. Let M be a �0; n�-surface, nX 5. Let f 2 Aut�G�M��. Then
i�u; v� � i�f�u�;f�v�� for all u; v 2 S�M�.

Proof. If i�u; v� � 0, then the theorem follows by Theorem 18. Assume that the
theorem holds for all u; v 2 S�M� with i�u; v�W k for a kX 2.

Let u; v 2 S�M� with i�u; v� � k� 2 (note that i�u; v� is always even). In order to
prove the theorem, it is suf¢cient to prove that i�f�u�;f�v�� � i�u; v�. Let u0; v0 be
the elements in O�M� corresponding to u; v. Let Ai, i � 1; 2, be the cusps of u0.

(i) Assume that v0 has a cusp A 62 fA1;A2g. Let v1 � v0 be the connected component
of v0 in M n u0 which starts in A and ends on u0. Let w;w0 2 O�M� be de¢ned as in
Lemma 16. Then fu0;w;w0g is a 0-triple. Let w1 2 S�M� correspond to w and
w2 2 S�M� correspond to w0. It follows by Lemma 19(ii) that

i�v;w1� � i�v;w2� � i�u; v� �2�
(since v cannot intersect v1 transversally). Since v0;w;w0 have the common cusp A, it
follows that i�v;wi� > 0, i � 1; 2. By hypothesis on k this implies

i�f�v�;f�wi�� � i�v;wi�; i � 1; 2: �3�
By Lemma 19(i), ff�u0�;f�w�;f�w0�g is a 0-triple and it follows by (2), (3) and
by Lemma 19(ii) that i�f�u�;f�v��W i�u; v�. If i�f�u�;f�v�� < i�u; v�, then a contra-
diction follows by hypothesis on k (applied to fÿ1). This proves that i�f�u�;
f�v�� � i�u; v�.

(ii) Assume now that u0 and v0 have the same cusps. Let v1 � v0 be the component of
v0 inM n u0 which starts in A1. ThenM n �u0 [ v1� has a connected component V such
that the interior ofV is disjoint to v0 (and such thatA1 is on the boundary ofV ). LetA
be a cusp ofM inV ,A 62 fA1;A2g. Then there exists t 2 N�u0; v0�with cuspsA;A1. Let
v0 2 O�M� have cusps A1;A2 such that v0 is homotopic to v1 (the homotopy ¢xes A1

while the second point on u0 may vary). Then there exists t0 2 N�v0� such that
fu; t; t0g is a 0-triple. Let s 2 S�M� correspond to t and s0 2 S�M� correspond to
t0. By the choice of V it follows by Lemma 19(ii) that i�s; v� � i�s0; v� � i�u; v�.
We then conclude by the same argument as in (i) that i�f�u�;f�v�� � i�u; v�. &

THEOREM 21. Let M be a �0; n�-surface, nX 5. Then the automorphism group
Aut�G�M�� of G�M� is isomorphic to G�M�.

Proof. (i) We use the same convention for the elements of G�M� as in the case gX 1
in Section 2. As in the proof of Theorem 12 we then have a natural group
homomorphism

C�0; n� : G�M� ÿ!Aut�G�M��:
The kernel of C�0; n� is trivial (compare the proof of Theorem 12) so it remains to
prove that C�0; n� is surjective.
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(ii) Let f 2 Aut�G�M��. Let F � O�M� be a maximal set such that every two
elements of F are disjoint or orthogonal. Then the elements of F induce a triangula-
tion of M, each triangle corresponds to a 0-triple. By Theorem 18 and by Lemma
19 this structure is respected by f. It is then clear that there exists g 2 G�M� such
that g�u� � f�u� for every u 2 F . We therefore may assume that f�u� � u for every
u 2 F . Let F 0 � S�M� be the to F corresponding set in S�M�. Then f�u0� � u0 for
every u0 2 F 0.

(iii) Let u; t; v be three elements of F such that u and v are disjoint and such that
t 2 N�u; v�. Let u0; t0; v0 be the corresponding elements in F 0. t is partitioned by
u0 [ v0 into three parts, denote by t0 that part which contains none of the cusps
of t. Let Y be the unique pair of pants embedded in M which has u and v among
its boundary geodesics and which contains t0. Let z be the third boundary component
of Y . Let w 2 S�M�. It then follows by Theorem 20 that i�u0;w� � i�u0;f�w��,
i�v0;w� � i�v0;f�w��, and i�t0;w� � i�t0;f�w��. It follows by the proof of Dehn's
theorem (see [13], compare the proof of Theorem 12), that i�w; z� is determined
by i�u0;w�, i�v0;w�, and i�t0;w�. Therefore, i�z;w� � i�z;f�w�� (note that we cannot
apply Theorem 20 directly since z is in general not in S�M�).

(iv) Let F0 � F 0 be a maximal subset of disjoint elements. Let F1 � F0 be a set of
nÿ 3 mutually disjoint simple closed geodesics of M. Let w 2 S�M�. Repeating
the argument in (iii), it follows that i�z;w� � i�z;f�w�� for all z 2 F1. It then follows
by Dehn's theorem that f�w� � w. Therefore, f is the identity and C�0; n� is
surjective. &

Remark. Let M be a �0; n�-surface, nX 5. It follows by Lemma 15 and Lemma 16
that G�M� is connected; compare the remark in Section 2 after Lemma 3.

Remark. We have proved in Lemma 10 that Aut�G�1; 1�� is isomorphic to
Aut�G�0; 4��. One can also prove that Aut�G�0; 6�� is isomorphic to Aut�G�2; 0��
by the following argument.

LetM be a �2; 0�-surface. LetH be the subgroup of the automorphism group ofM
generated by the hyperelliptic involution c. Then M0 �M=H corresponds to a
�0; 6�-surface. Let u 2 S�M�. Then u passes through two ¢xed points A and B of
c (for a formal proof of this fact see, for example, [4]). Therefore, in M0, u corre-
sponds to an element u0 2 O�M�. This correspondence induces an isomorphism
between Aut�G�2; 0�� and Aut�G�0; 6�� by virtue of Lemma 14.

It easily follows from the main theorem and its proof that there are no further
isomorphisms between groups Aut�G�g; n�� and Aut�G�g0; n0��, �g; n� 6� �g0; n0�
(compare for example partitions P � S�M� and P0 � S�M0� where M is a
�g; n�-surface and M0 is a �g0; n0�-surface).
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4. Some Further Graphs

In the Introduction, I have de¢ned the systolic complex of curves SC�M� of a
�g; n�-surfaceM. Taking this complex as a graph, SC�M� has a number of interesting
subgraphs, some of them are shortly presented here, without complete proofs. One
subgraph is G�M� which we have already discussed in Sections 2 and 3. The complex
of curves C�M� induces another natural subgraph which is the intersection of C�M�
and SC�M�.

DEFINITION. LetM be a �g; n�-surface. Let S�M� be de¢ned as in Section 2 if gX 1
and as in Section 3 if g � 0. Let CS�M� be the following graph. S�M� is the set of
vertices of CS�M� and

f�u; v� 2 S�M� � S�M� : u is disjoint to vg

is the set of (nonoriented) edges.

THEOREM 22. Let M be a �g; n�-surface, �g; n� 62 f�0; 4�; �1; 1�; �1; 2�g. Then the
automorphism group Aut�CS�M�� of CS�M� is isomorphic to Aut�G�M�� if and only
if g 6� 1.

Proof. By the main theorem for Aut�G�M�� it is suf¢cient (for g 6� 1) to prove that
g 2 Aut�CS�M�� recognizes orthogonal elements. For gX 2 we can use the argument
of Ivanov (proof of Lemma 1 in [8]), slightly adapted since in our present situation we
cannot work with simple closed geodesics which are not in S�M�. For g � 0 we can
use a similar argument. The interesting case is however g � 1 so suppose g � 1
in the sequel.

Let fa; b; cg � S�M� be a triple. De¢ne S�a� � fx 2 S�M� : i�a; x� � 0�mod 2�g. Let
u 2 S�M� be disjoint to a and let c 2 G�M� map a to u. Since
i�a; x� � i�u; x��mod 2� for all x 2 S�M�, it follows that c�S�a�� � S�a�. Now de¢ne
the following bijection c0 of S�M�. On S�a�, put c0 � c while on S�M� n S�a�, let
c0 be the identity. Let v;w 2 S�M� be disjoint. Then i�a; v� � i�a;w��mod 2�. It
follows by the de¢nition of c0 that c0�v� and c0�w� are disjoint. Since we can apply
the same argument to �c0�ÿ1, it follows that v;w 2 S�M� are disjoint if and only
if c0�v� and c0�w� are disjoint. This proves that c0 2 Aut�CS�M��. But c0 maps
the triple fa; b; cg to fu; b; cg which is not a triple. Therefore, there is no element
of G�M� which can induce c0. This proves the theorem for g � 1. &

Remark. It follows by the argument given in the proof of Theorem 22 that the
graph CS�M� is not connected if g � 1.

Here is the de¢nition of two other interesting subgraphs of SC�M�.

DEFINITION. LetM be a �g; n�-surface, gX 1. Let ~S�M� be the set of simple closed
geodesics which are either nonseparating or separate a pair of pants from the rest of
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the surface. Let ~Gi�M� be the following graph, i � 0; 1. The set of vertices of ~Gi�M� is
~S�M�, i � 0; 1 (the same set of vertices than the graph SC�M� has). Two vertices u and
v are related by an edge if u and v are disjoint (this is ~G0�M�) or if u ? v (this is
~G1�M�), respectively.
Here, u ? vmeans the following. If u and v are nonseparating, then i�u; v� � 1. If at

least one of u; v is separating, then i�u; v� � 2.

THEOREM 23. Let M be a �g; n�-surface, gX 1.

(i) Aut� ~G1�M�� and Aut�G�M�� are isomorphic groups.
(ii) If �g; n� 62 f�1; 1�; �1; 2�g then Aut� ~G0�M�� and Aut�G�M�� are isomorphic groups.

Proof. (i) Let u; v 2 ~S�M�, u ? v. One then proves that there exists w 2 ~S�M� with
N�u; v;w� � ; if and only if u; v are both nonseparating or both separating. This
implies that f 2 Aut� ~G1�M�� either maps all nonseparating elements of ~S�M� to
separating elements or to nonseparating elements. One veri¢es that the latter must
be the case. Finally, it remains to show that if f is the identity if restricted to
S�M�, then f is also the identity in Aut� ~G1�M��.

(ii) By (i) it is suf¢cient to show that f 2 Aut� ~G0�M�� maps orthogonal elements
u; v 2 ~S�M� to orthogonal elements. This is done by analysing the action of f on
some particular partitions of M which are related to u; v. &

References

1. Beardon, A. F., Lehner, J. and Sheingorn, M.: Closed geodesics on a Riemann surface,
Trans. Amer. Math. Soc. 295 (1986), 635^647.

2. Dehn, M.: Papers on Group Theory and Topology (J. Stillwell (ed.)), Springer, New York,
1987.

3. Haas, A.: Diophantine approximation on hyperbolic Riemann surfaces,Acta. Math. 156
(1986), 33^82.

4. Haas, A. and Susskind, P.: The geometry of the hyperelliptic involution in genus two,
Proc. Amer. Math. Soc. 105 (1989), 159-165.

5. Harvey, W. J.: Boundary structure of the modular group, In: I. Kra and B. Maskit (eds),
Riemann Surfaces and Related Topics, Princeton Univ. Press, 1981, pp. 245^251.

6. Ivanov, N. V.: Complexes of curves and the Teichmu« ller modular group. Uspekhi Mat.
Nauk 42 (1987), 43^91; English transl. Russian Math. Surveys 42 (1987), 55^107.

7. Ivanov. N.V. Automorphisms of complexes of curves and of Teichmu« ller spaces, Preprint
IHES (1989). Also in: M. Boileau, M. Domergue, Y. Mathieu and K. Millet (eds), Pro-
gress in Knot Theory and Related Topics, Hermann, Paris, 1997, pp. 113^120.

8. Ivanov, N. V.: Automorphisms of complexes of curves and of Teichmu« ller spaces,
Internat. Math. Res. Notices, (1997), 651^666.

9. Korkmaz, M.: Automorphisms of complexes of curves on punctured spheres and on
punctured tori, to appear in Topology Appl.

10. Luo, F.: On non-separating simple closed curves in a compact surface, Topology 36
(1997), 381^410.

11. Luo, F.: Automorphisms of the complexes of curves, Topology 39 (2000), 283^298.

MAPPING CLASS GROUPS OF HYPERBOLIC SURFACES 259

https://doi.org/10.1023/A:1002672721132 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002672721132


12. Minsky, Y. N.: A geometric approach to the complex of curves on a surface, In: S. Kojima
(ed.), Topology and Teichmu« ller Spaces, World Scienti¢c, Singapore, 1996, pp. 149^158.

13. Penner, R. C. and Harer, J. L.: Combinatorics of Train Tracks, Princeton Univ. Press,
1992.

14. Schmutz Schaller, P.: Geometry of Riemann surfaces based on closed geodesics, Bull.
Amer. Math. Soc. 35 (1998), 193^214.

260 PAUL SCHMUTZ SCHALLER

https://doi.org/10.1023/A:1002672721132 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002672721132

