GROUP RINGS WHOSE TORSION UNITS FORM A SUBGROUP*

by SÔNIA P. COELHO and C. POLCINO MILIES

(Received 19th February 1992)

In this note, we determine fields K and groups G that are either nilpotent or FC and such that the set of torsion elements of the group ring KG forms a subgroup.

1991 Mathematics subject classification: 20C07.

1. Introduction

Let U(KG) denote the group of units of the group ring of a given group G over a field K. Also, we shall denote by T = T(G) and TU(KG) the set of elements of finite order in G and U(KG) respectively.

In this note, we shall consider groups G that are either nilpotent or FC and determine conditions on G and K for TU(KG) to be closed under multiplication, i.e. to be a subgroup of U(KG). This question was first studied in [4] but the answer was incomplete because it depended on the fact that every idempotent of KT is central in KG, a condition not fully understood at that time. Using the results in [1, 2], we are able to give a complete answer to this question. In particular, we do not need a technical hypothesis assumed in [4, Theorem 4.4] and we correct a gap in [4, Theorem 5.2]. In what follows, if a ring R is such that its torsion units form a subgroup, we shall say, briefly, that R has the t.p.p. (torsion product property).

2. Group rings in characteristic p > 0

We remark first that, if G is either a nilpotent or FC group, then T is locally finite and that if $G \neq T$, then G contains a central element of infinite order (see [5, 5.2.22 and 14.5.6]). We denote the Jacobson radical of a given ring R by J(R).

Lemma 2.1. Let G be a group such that T = T(G) is locally finite, and assume that either G contains a central element of infinite order or K is not algebraic over its prime field $\mathcal{P}(K)$. If TU(KG) is a subgroup then, for every finite subgroup $T_1 \subset T$, the quotient ring $KT_1/J(KT_1)$ is a direct sum of fields.

*Both authors were partially supported by a research grant from CNPq.

Proof. Let x denote be a central element of infinite order in G. Denote by $KT_1[x]$ the smallest subring of KG containing KT_1 and $\{x\}$ and let $\phi: (KT_1)[x] \to (KT_1/J(KT_1))[x]$ the epimorphism induced by the natural map $KT_1 \to KT_1/J(KT_1)$. Since $J(KT_1)$ is nilpotent and x is central, it follows that $Ker(\phi) = J(KT_1)[x]$ is a nilpotent ideal. Hence, ϕ induces, by restriction, epimorphisms of the respective unit groups and also of the respective sets of torsion elements. Then, it is easily seen that $(KT_1/J(KT_1))[x]$ also has the t.p.p.

Since $KT_1/J(KT_1)$ is semisimple artinian, we have that

$$\frac{KT_1}{J(KT_1)} \cong \bigoplus_{i=1}^t M_{n_i}(D_i),$$

where D_i is a division ring containing K, $1 \le i \le t$.

For each index i we have:

$$(M_{n_i}(D_i))[x] \cong (M_{n_i}(D_i) \otimes_K K)[x]$$

$$\cong (D_i \otimes_K M_{n_i}(K) \otimes K)[x] \cong D_i \otimes_K M_{n_i}(K[x]).$$

Then, also $M_{n_i}(K[x])$ has the t.p.p. It follows from [4, Prop. 2.2] that $n_i = 1$. Then:

$$\frac{KT_1}{\mathsf{J}(KT_1)} \cong \bigoplus_{i=1}^t D_i.$$

Given any two elements $x, y \in T_1$ we have that $\bar{x}, \bar{y} \in \bigoplus_{i=1}^t TU(D_i)$ and [4, Prop. 2.1] shows they are central. Hence, $KT_1/J(KT_1)$ is commutative and the result follows.

A similar argument proves the statement in the case where K contains an element x which is transcendental over $\mathcal{P}(K)$.

Lemma 2.2. Let K and G be as in the previous lemma. If TU(KG) is a subgroup, then P, the set of p-elements in G, is a normal subgroup of G and $T' \subset P$.

Proof. Assume that α is a p-element. Then, for some integer $n \ge 1$ we have that $(\alpha - 1)^{p^n} = \alpha^{p^n} - 1 = 0$ i.e. $\alpha - 1$ is a nilpotent element. We set $T_1 = \langle supp(\alpha) \rangle$. Then T_1 is finite and the image $\alpha - 1$ in $KT_1/J(KT_1)$ is also nilpotent. Then, Lemma 2.1 shows that $\alpha \in 1 + J(KT_1)$.

Given two p-elements $\alpha, \beta \in G$, put $T_1 = \langle supp(\alpha), supp(\beta) \rangle$; then we have that $\alpha\beta \in 1 + J(KT_1)$, which is a p-group.

Given $x, y \in T$, Lemma 2.1 shows that $K(\langle x, y \rangle)/J(K(\langle x, y \rangle)) \cong \bigoplus_i D_i$, a direct sum of fields; hence, $(x, y) - 1 = xyx^{-1}y^{-1} - 1 \in J(K(\langle x, y \rangle))$. Thus, there exists an integer $n \ge 1$ such that $(x, y)^{p^n} = 1$. Consequently $T' \subset P$.

In what follows, we shall denote by $\Delta(G:P)$ the kernel of the natural homomorphism $KG \rightarrow K(G/P)$.

Theorem 2.3. Let G be a nilpotent or FC group and let K be a field with char(K) = p > 0. Then TU(KG) is a subgroup if and only if one of the following conditions holds:

- (i) G is abelian.
- (ii) G = T and K is algebraic over its prime field $\mathcal{P}(K)$.
- (iii) The set P of p-elements in G is a subgroup, $T' \subset P$ and if T/P is non central in G/P then Ω , the algebraic closure of $\mathcal{P}(K)$ in K, is finite and, for all $x \in G$ and all p'-elements $a \in T$, we have that xax^{-1} is of the form $xax^{-1} = a^{pr}y$, where $r \ge 0$ and $y \in P$. Furthermore, for every such an exponent r we have that $[\Omega:\mathcal{P}(K)]|r$.

Proof. Assume that TU(KG) is a subgroup, that G is not abelian and that either $G \neq T$ or K is not algebraic over $\mathscr{P}(K)$. From Lemma 2.2 we see that P is a subgroup and that $T' \subset P$.

Since $\Delta(G:P)$ is a locally nilpotent ideal, it follows that K(G/P) also has the t.p.p. Since T/P contains no p-elements, [7, Lemma VI.3.12] shows that if there exists a non central idempotent $e \in K(T/P)$, then U(K(G/P)) contains a subgroup which is isomorphic to GL(m,K) with m>1. If K is not algebraic over $\mathscr{P}(K)$ this yields a contradiction. On the other hand, if $G \neq T$, then [4, Theorem 4.1] shows directly that every idempotent of K(T/P) is central in K(G/P).

In both cases, [1] shows that (iii) holds.

To prove sufficiency, we observe that both (i) and (ii) imply readily that KG has the t.p.p. Thus, assume that (iii) holds. Then, [1] shows that every idempotent of K(T/P) is central in K(G/P) and, as in [4, Theorem 4.4] we see that KG has the t.p.p. also in this case.

3. Group rings in characteristic 0

Our first result holds in a slightly more general setting.

Lemma 3.1. Let G be a group such that T(G) is locally finite and let K be a field of characteristic 0. If TU(KG) is a subgroup, then T is abelian.

Proof. To prove our statement, we can assume that T is finite. Then, we can write $KT \cong \bigoplus_{i=1}^{t} M_{n_i}(D_i)$. Since $M_2(\mathbf{Q})$ does not have the t.p.p. (see, for example [6, p. 20]), it follows immediately that $n_i = 1$, $1 \le i \le t$.

Thus, $KT \cong \bigoplus_{i=1}^{r} D_i$ contains no nilpotent elements, so [7, Theorem VI.1.11] shows that T_1 is either abelian or a Hamiltonian group. Finally, if T_1 is Hamiltonian, it contains a subgroup of the form

$$\mathcal{Q} = \langle a, b | a^4 = 1, a^2 = b^2, bab^3 = a^3 \rangle.$$

Let p be any prime and denote by $Z_{(p)}$ the localization of Z at the prime ideal (p). It was shown in [3, Theorem 2] that $\alpha = x + ya$ with $x, y \in Z$, $p \nmid x, p \mid y$, is a unit in $Z_{(p)} \mathcal{Q}$,

and therefore in QG and that $b(b^{-1})^{\alpha} = (b, \alpha)$ is not an element of finite order. Hence, T_1 must be abelian.

We can now correct [4, Theorem 5.2], which should be stated as follows.

Theorem 3.2. Let G be a nilpotent or FC group and let K be a field of characteristic 0. Then, TU(KG) is a subgroup if and only if the following conditions hold:

- (i) T is abelian.
- (ii) For each $t \in T$ and each $x \in G$ there exists a positive integer i such that $xtx^{-1} = t^i$ and, for each non central element $t \in T$, K contains no root of unity of order o(t).

Proof. Assume that TU(KG) is a subgroup. We know, from the lemma above, that T is abelian.

Also, every idempotent in KT is central in KG, since, if this is not the case, as before, [7, Lemma VI.3.12] shows that U(KG) contains a copy of GL(m, K), with m > 1. This yields a contradiction, because $M_2(\mathbf{Q})$ does not have the t.p.p.

Now, [2] shows that, for each $t \in T$ and each $x \in G$ we have that $xtx^{-1} = t^i$, as stated, and that for every non central element $t \in T$, K contains no root of unity of order o(t).

To prove sufficiency, notice that we may suppose that G is finitely generated and, therefore, that T is finite. Thus $KT = \bigoplus_{i=1}^{r} K_i$, a direct sum of fields. Let S be a transversal of T in G. Then, we know from [7, Lemma VI.3.22] that every unit $u \in KG$ can be written in the form $u = \sum_{i} f_i g_i$ where $0 \neq f_i \in K_i$, $g_i \in S$, $1 \leq i \leq t$.

Since [2] show that the conditions in the statement of our theorem imply that every idempotent of KT is central in KG, we have that $g_i f_i = f'_i g_i$, for some $f'_i \in K$, $1 \le i \le t$. Hence:

$$u^m = \sum_{i=1}^t \vec{f}_i g_i^m,$$

where $\overline{f}_i \in K_i$, $1 \le i \le t$. Thus, $u \in TU(KG)$ if and only if there exists an integer m such that $g_i^m = 1$, $1 \le i \le t$, i.e. if and only if $u \in U(KT)$. Since T is abelian, it follows easily that KG has the t.p.p.

REFERENCES

- 1. S. P. Coelho, A note on central idempotents in group rings, *Proc. Edinburgh Math. Soc.* 30 (1987), 69-72.
- 2. S. P. Coelho and C. Polcino Milies, A note on central idempotents in group rings II, *Proc. Edinburgh Math. Soc.* 31 (1988), 211-215.
- 3. M. M. PARMENTER and C. POLCINO MILIES, Group rings whose torsion units form a nilpotent or FC group, *Proc. Amer. Math. Soc.* 68 (1978), 247–248.
- 4. C. Polcino Milies, Group rings whose torsion units form a subgroup II, Comm. Algebra 9 (1981), 699-712.

- 5. D. J. S. Robinson, A Course in the Theory of Groups (Springer-Verlag, New York, 1982).
- 6. J. J. ROTMAN, The Theory of Groups: An Introduction, 2nd ed. (Allyn and Bacon, Boston, 1973).
 - 7. S. K. Sehgal, Topics in Group Rings (Marcel Dekker, New York, 1978).

Instituto de Matemática e Estatistica Universidade de São Paulo Caixa Postal 20570—Ag. Iguatemi 01452—990—São Paulo—Brasil